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Abstract

Motor imagery-based (MI based) brain-computer interface (BCI) using electroencephalography 

(EEG) allows users to directly control a computer or external device by modulating and decoding 

the brain waves. A variety of factors could potentially affect the performance of BCI such as the 

health status of subjects or the environment. In this study, we investigated the effects of soft drinks 

and regular coffee on EEG signals under resting state and on the performance of MI based BCI. 

Twenty-six healthy human subjects participated in three or four BCI sessions with a resting period 

in each session. During each session, the subjects drank an unlabeled soft drink with either sugar 

(Caffeine Free Coca-Cola), caffeine (Diet Coke), neither ingredient (Caffeine Free Diet Coke), or 

a regular coffee if there was a fourth session. The resting state spectral power in each condition 

was compared; the analysis showed that power in alpha and beta band after caffeine consumption 

were decreased substantially compared to control and sugar condition. Although the attenuation of 

powers in the frequency range used for the online BCI control signal was shown, group averaged 

BCI online performance after consuming caffeine was similar to those of other conditions. This 

work, for the first time, shows the effect of caffeine, sugar intake on the online BCI performance 

and resting state brain signal.
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I. Introduction

Brain-computer interfaces (BCI) have shown promise to re-establish the connection between 

brain and the outside world for both healthy human subjects and patients who suffer from 

severe neuromuscular disorders including muscular dystrophy, stroke, and spinal cord injury 

[1]. MI based BCI using electroencephalography (EEG) has demonstrated to control virtual 

cursor [2] and virtual helicopter [3,4], as well as physical devices such as drone [5,6], 

wheelchair [7], and robotic arm [8]. Noninvasive EEG-based BCI has attracted many 

interests, including new algorithm exploration [9–13], and new paradigm designs [14–18].

The modulation of sensorimotor rhythm (SMR) through motor imagination has been studied 

broadly in various applications [2–10, 19, 20]. Particularly, MI based BCI have been used in 

the rehabilitation such as after stroke or spinal cord injury [21, 22]. However, the 

performance of SMR-BCI varies substantially among different subjects and among sessions 

for the same subject even if the same decoding algorithm is used throughout the whole 

process due to subjects’ learning [23, 24], inconsistent modulation strategy [25] or brain 

stimulation [26], as well as other non-learning factors such as the shifting of electrode 

position [27], and changing of skin condition [28]. Previous studies show that medication 

experience, motivations for the experiment as well as other factors might positively affect 

online BCI performance [24, 29,30]. On the contrary, fatigues and slight alteration in 

electrode positions, among other reasons, have shown negative effects on BCI performance 

[29, 30]. Previous studies show that human caffeine consumption might be beneficial on the 

maintenance of attention [31–33], which implies that it might somehow counteract with the 

detrimental fatigue to potentially maintain or increase BCI performance. However, previous 

studies also show that there is a global reduction in EEG power of the alpha frequency band 

and a global increase shift of alpha frequency accompanying consumption of caffeine during 

resting state [31]. The SMR includes both alpha and beta rhythms [34] and thus might be 

affected by both the reduction of power and shift of frequency. These factors altogether 

confound the effect of caffeine on the performance of BCI, which has not been investigated 

before, to the best of our knowledge. Preliminary results from this work were presented in 

IEEE EMBC conference [35]. This paper reports our completed work, extending from the 

conference presentation [35], with more subjects being recruited and additional experiments 

being added. Because caffeine is one of the world’s most commonly used stimulant [36] and 

a great amount of caffeine intake is consumed through soft drinks, this work aims to 

investigate the effect of caffeine and sugar intake on the MI based BCI performance and 

resting state (RS) brain signals in the alpha and beta frequency bands after soft drink 

consumption.

II. Methods

A. Experimental Setup

Twenty-six healthy volunteers (eleven females, one left handed) participated in this study 

and were divided into two groups. Their ages ranged from 18 to 38 years old with mean age 

of 22.8±4.1. All of the participants in this study were mild or moderate caffeine consumers 

(i.e. they regularly consumed 1–3 or less cups of coffee or cola equivalent daily). Twelve 

subjects in the first group were seated in front of a computer screen in a distance of around 
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90 cm..64-channel EEG signals were recorded using a Neuroscan Synamps RT system at a 

sampling frequency of 1000 Hz and band-pass filtered from 0.5 – 200Hz. The electrode on 

the vertex and forehead were used as reference and ground, respectively. All electrode 

impedances were maintained below 5 kΩ. A notch filter of 60Hz was applied to the raw 

EEG signals. Later, fourteen subjects in a second group were using 64-channel Biosemi 

EEG cap with active electrodes and an Active Two amplifier to record the EEG signals at a 

sampling frequency of 1024 Hz. Conductive gel (SignaGel, Cortech Solutions) was applied 

to reduce electrodes offsets to below 20 mV for EEG electrodes. Two electrodes near 

channel POz (CMS and DRL) were used as reference and ground.

The algorithm extracted power spectrum of mu rhythm (10 –14Hz) from electrodes above 

the motor cortex (channel C3 and C4) by fitting an autoregressive (AR) model. The 

difference of power spectral signals between the two electrodes (C3 and C4) over two 

hemispheres was used as the control signal and normalized by a normalizer in BCI2000 [3]. 

In each BCI run, a one-dimensional (1D) cursor control task with Left-Right or Up-Down 

cursor control was tested, At the beginning of each BCI trial, a yellow rectangular target 

appeared on the left/right or top/bottom side of the computer screen for two seconds 

indicating which side of hand motor imagination the subject should perform. Then a circular 

cursor was displayed in the center of the screen, providing feedback and indicating that the 

user should begin motor imagination. Subjects were instructed to imagine movement of their 

left or right hand to move the cursor left or right, imagine movement of both hands versus 

relaxation to move the cursor up and down. In each trial subjects try to control the cursor to 

contact the target (hit) in an average feedback period of three seconds before the cursor 

incorrectly contacted an invisible target bar on the opposite side of the screen (miss). 

Otherwise, it was an abort if the 12 second time limit was reached but the cursor did not 

reach neither the correct or incorrect target. After the trial, cursor disappeared and the 

subject could have a short relaxing period of three seconds. The BCI trial structure was 

shown on Fig. 1A.

B. Study Design

The experimental procedures involving human subjects described in the current study were 

approved by the Institutional Review Board (IRB) of the University of Minnesota. In the 

first group, each of the twelve subjects participated in three sessions of BCI online 

experiment over a period of one to three weeks. Their participating time of each day was 

mostly held constant for each subject. All of subjects were instructed not to have caffeine or 

a substantial amount of sugar in the four hours before their scheduled session. In each 

session, the subjects were asked to perform two runs of Left-Right BCI cursor control with 

30 trials in each run. Between each run there was a short break of one to five minutes 

according to subjects’ willingness. The cursor did not move for the first trial of the first run, 

it was served as a calibration trial buffering data to initialize the normalizer, but subjects 

were still required to perform the imagination accordingly. After the first trial of the first run, 

the feedback was provided to subjects. Then the subjects were offered a soft drink (Coca-

Cola variant) with either 46 mg caffeine, 39g sugar, or neither substance (considered as 

control) in each session on separate days. Since there were three types of soft drink, six 

drink order permutations could be generated. The type of drink for each session was 
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randomized across the twelve subjects to fully use the permutations twice. The subjects were 

given around five minutes to consume the 12 oz. drink; they were blinded to the type of soft 

drink they consumed in each session. Then 32 minutes of resting state period were followed 

and EEG data were recorded during this period, where subjects were instructed to open and 

close their eyes every two minutes. There were both visual and audio cues to indicate when 

the subjects should alternate between opening and closing eyes. The reason of choosing 32 

minutes resting state is that caffeine plasma concentration approach to maximum after about 

30 minutes and its effect last for a few hours [31]. After the resting state when the caffeine 

effects approximately approached maximum, subjects performed two post-soft drink runs of 

Left-Right BCI cursor control [8] and the first trial of the first run was used as the calibration 

trial as well. The procedure of the experiment is illustrated in Fig. 1B. In the second group, 

each of the fourteen subjects participated in four sessions of BCI online experiments with 

similar requirement of time interval between sessions and no caffeine and sugar 

consumption four hours before the experiment as group one did. In the first three sessions, 

the same soft drinks and dink order permutations were given to the participants; additionally, 

each of them took a fourth session with a regular coffee (Green Mountain K-cup Coffee, 

Dark Magic (Extra Bold)) of 12 oz with about 75 –120 mg caffeine. In each session, each 

subject completed four runs of 20 Left-Right BCI trials and four runs of 20 Up-Down BCI 

trials before consuming the selected drink. Then a similar 32 minutes of resting state EEG 

data were collected. Finally, the L/R and U/D BCI control were repeated. The procedure of 

the experiment is illustrated in Fig. 1C.

C. BCI Performance Analysis

Online performance of BCI cursor task was analyzed by grouping the sessions consisted of 

same type of soft drink together to compare how soft drink consumption altered BCI control 

signals and performance. A two-way repeated measure ANOVA was used to test whether the 

different types of soft drink cause any significant difference of BCI online performance and 

whether there was any difference before and after the 32 minutes’ resting period. Percent 

Valid Correct (PVC) was calculated and used as the online performance metric for each run. 

PVC was the percent of hit trials dividing by the total number of trials excluding those trials 

which resulted in a abort. BCI runs before and after soft drink consumption were grouped 

together by the type of drink and then were averaged across subjects. In total, there were 12 

PVC values were averaged for the first group to compare performance before and after soft 

drink consumption based on the drink type and 14 PVC values were averaged for the second 

group.

D. Resting State EEG Analysis

EEG data during the resting state period were analyzed to evaluate how frequency band 

power, especially alpha and beta rhythms - the rhythms of interest, were affected by the 

consumption of each drink. The MATLAB toolbox EEGLAB [37] was used to analyze the 

resting state EEG data. Bad channels were firstly removed; data were down sampled to 250 

Hz/256 Hz for Neuroscan data and Biosemi data, respectively. Then the data were re-

referenced to the common average reference and were epoched into the two minute eyes 

open or closed segments. Finally, these two minute segments were segmented into 2 second 

epochs. All of epochs were plotted sequentially to remove individual epochs contaminated 
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by obvious artifacts through visual inspection. Epochs with obvious noise like muscle 

movement contamination were discarded manually. The remaining two second epochs for 

each of two minute eyes open and eyes closed period were used to estimate the power 

spectrum by autoregressive (AR) spectrum estimation individually and then averaged to get 

the power spectrum for each two minutes. Results in eyes open epochs were focused in the 

result analysis because eyes were open during the online BCI control task. The frequency 

power was calculated for each channel within each cleaned epoch. The power was averaged 

across all channels except those which were identified as bad channels by visual inspection 

in order to calculate the global average power. Then the power values in the alpha band (10–

14 Hz) and beta band (14–26 Hz) were each extracted to yield two band power averages per 

2 minute period, for each subject, and each type of soft drink consumed. The average band 

powers were grouped by the soft drink consumed during the session and averaged over clean 

epochs identified by visual inspection in each two minute epochs. The power spectra were 

plotted to compare the average alpha and beta band power among different drink groups and 

across the eyes opening periods of the resting state period. In order to calculate the channel 

C3 and C4 average, the previous steps were repeated but only data from channel C3 and C4 

were averaged.

Resting state power during inter-trial interval of BCI control runs were calculated for runs of 

pre- and post-drink consumption separately with respect to channel C3 + C4. Signals of 

individual inter-trial interval during each BCI control trial (i.e. 3 seconds duration when the 

screen was blank and subjects were relaxed) went through visual inspection, removing 

artifact-contaminated trials. Then power spectra of remained inter-trial intervals were 

estimated for each subjects pre- and post-drink consumption separately in the frequency 

bands of 6–31 Hz including alpha (α, 10–14Hz) and beta (β, 14–26Hz) rhythms. The power 

spectrum was then used to calculate the power change ratio between post-drink consumption 

and pre-drink consumption for each subject and group results were averaged over all 

subjects for each condition.

Topographies of band powers in alpha and beta frequency bands of all of channels were 

plotted across the eyes open periods of the 32 minutes’ resting period. The band powers in 

alpha and beta frequency bands of all channels were calculated similarly to the previous 

steps. Additionally, independent component analysis (ICA) was performed on the 32 

minutes’ resting state data for each subject and each session; obvious artifacts contaminated 

segments were removed before data was input to perform ICA. The components which were 

visually inspected as artifacts according to experience were removed; the signals were 

reconstructed from the clean ICA components and used for further analysis of topography. 

To get an average topography across the resting state for each condition, the topography for 

band powers of alpha and beta frequency bands were normalized for each subject by the 

maximum value of band power in three or four conditions for each individual and then 

averaged across subjects. The normalization was used to alleviate the bias towards the 

topography of those subjects showing the strongest band power activity and let each subject 

contribute equally for the average topography.
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III. Results

Throughout the study, two primary aspects of the data were quantitatively analyzed: effects 

of soft drinks on BCI online performance due to the consumption of each type of soft drink 

or a regular coffee and the change of resting state EEG signals in the frequency band of 

alpha and beta bands which are highly related to the MI based BCI control signals.

A. BCI online performance

Group average PVC of L/R cursor control for all of the twenty-six subjects in two groups is 

shown before and after each drink in Fig. 2a. BCI average performance is increased after all 

of three soft drinks and a 32 minutes resting state. The group average PVC of L/R cursor 

control before and after consumption of each drink for only the second group is displayed in 

Fig. 2b. Similarly, the group average PVC of U/D cursor control before and after 

consumption of each drink for the second group is displayed in Fig. 2c. For the second 

group, a two-way repeated measures ANOVA with two within-subject factors, i.e.. drink 

type and test time (before or after consumption of the drinks), was performed for both L/R 

cursor control and U/D cursor control, respectively. For L/R cursor control, the statistics for 

the main effect of test time is F(1,13) = 8.20, p<0.05, n2 = 0.03 (generalized Eta-Squared 

measure of effect size); main effect of drink type is F(3,39) = 0.24, p = 0.87, n2 = 0.01; 

interaction effect of test time and drink type is F(3,39) = 0.91, p = 0.45, n2 = 0.01. For U/D 

cursor control, similar results were shown. The statistics for the main effect of test time is 

F(1,13) = 4.09, p = 0.06, n2 = 0.01; main effect of drink type is F(3,39) = 0.28, p = 0.84, n2 

= 0.02; interaction effect of test time and drink type is F(3,39) = 0.54, p = 0.66, n2 = 0.01. 

Additionally, two-way repeated measures ANOVA was performed for the L/R cursor control 

in the combination of two groups, 26 subjects altogether (as shown in Fig. 2a). The statistics 

for the main effect of test time is F(1,25) = 7.94, p < 0.01, n2 = 0.01; main effect of drink 

type is F(2,50) = 0.04, p = 0.96, n2 <0.001; interaction effect of test time and drink type is 

F(2,50) = 0.15, p = 0.86, n2 <0.001. Thus, the statistical analysis support the hypothesis that 

there is no significant difference of PVC performance between before and after each type of 

drink, whether it contains caffeine, sugar or neither, but there is a significant difference of 

PVC performance before and after the resting state of 32 minutes.

B. Drink-induced BCI inter-trial interval power change ratio

In this section, the short resting state power in between each task trials (i.e. inter-trial 

interval) before and after the drink consumption was analyzed. The power change ratio of 

resting state power during BCI inter-trial interval induced by drink consumption is shown in 

Fig. 3. After the consumption of caffeine (red line, black line), there is a slight decrease of 

power spectrum between 12Hz to 29Hz. However, there are increasing change of power 

spectrum in control group (green line) and sugary group (blue line) for alpha rhythm (8–

14Hz) and lower beta rhythm (14 – 21Hz) after the drink consumption compared to before 

the drink consumption. The power change ratio for the group of control shows value in 

between caffeine group and sugary intake group.
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C. Change of resting state power since drink consumption

The change of resting state power of alpha and beta frequency bands during those eyes open 

periods for the four conditions in the average of channels C3 and C4 are shown in Fig. 4, 

subplot (a) and subplot (b), respectively. A substantial difference between power values of 

caffeine/regular coffee and control/sugary group is shown for both alpha and beta frequency 

bands. For channels C3+C4, average alpha and beta power is substantially lower in the 

caffeine/regular coffee group compared to the control/sugary group. This trend seems to 

continue throughout the duration of the resting state period. Power values in the sugary 

group for channels C3+C4 show similar activities and trend in between those of two caffeine 

groups and those of control group.

The change of resting state power in the alpha and beta frequency bands for the four 

conditions during the eyes open periods in both the average channels C3+C4 and global 

average of all the channels are shown in Fig. 5. The global average of both alpha and beta 

activities shows similar trend as those of only average of channels C3 + C4, but they have 

higher average values compared to the average of only channels C3 + C4. Similarly, the 

resting state power for the group of control and sugar ends up with higher values than the 

two caffeine groups for both alpha and beta frequency bands, in both average of channels C3 

+ C4 and global average. The results for the eyes closed periods are presented in Fig. 6. The 

general trends shown in the eyes open periods seem still hold for the eyes closed period. But 

since the alpha rhythm is dominating during the eye closed periods, the resting state powers 

for all of conditions are in general much higher than the counterparts during the eyes open 

periods and the trends are slightly less clear in eyes closed condition.

D. Group average topographies of alpha, beta power during eyes open epochs

Group average topographies of alpha power during each two minute eyes open epochs 

across the resting state are displayed in Fig. 7. The alpha powers distribute similarly at the 

beginning (0 minute). A trend of increasing posterior alpha powers is displayed throughout 

the resting state period for the conditions of control and sugary consumption. Alpha power 

in the group of caffeine and regular coffee consumption does not show a clear trend of 

increasing activities relative to that of control and sugar group. This is in accordance with 

the previous results of change of global average of resting state power.

Similarly, group average topographies of beta power during each two minute eyes open 

epochs across the resting state are displayed in Fig. 8. The beta powers like the alpha powers 

distribute similarly at the beginning (0 minute). A slightly increasing posterior and frontal 

beta activities are displayed during the resting state period for both the control group and 

sugary drink group as well but does not clearly show for the caffeine and regular coffee 

group. The normalized average beta activities in general show similar trend as the alpha 

activities while the normalized beta band powers in frontal areas seems to be stronger 

compared to the normalized alpha band powers in the frontal area.
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IV. Discussion

Altering the underlying spectral powers of brain signals could potentially improve or 

deteriorate the modulation of the brain rhythms like alpha rhythm (mu rhythm) and beta 

rhythm. This alteration could improve or hinder BCI user ability to control the peripheral 

device such as computer cursors or more complex systems like robotic arms. Since previous 

study has shown that caffeine intake significantly affect the brain signals [31] especially in 

the frequency range commonly used for SMR based BCI control, the effects of caffeine on 

BCI online performance are worthy investigating. The change of the BCI performance 

before and after the soft drink consumption and the alpha and beta rhythms change across 

the resting state are discussed below.

A. BCI Online Control Performance

Fig. 2 shows that there is no significant difference in BCI performance to either L/R or U/D 

cursor control after consumption of different drinks. Despite resting state data during inter-

trial interval and 32 minutes eyes open and closed state showing decreased power levels after 

caffeine consumption, these trends do not have a significant effect on BCI performance, 

which are thought to be relatively intense. Since the online control signals in channel C3 and 

C4 depends on user modulation of the alpha rhythm around 12 Hz frequency band 

bilaterally, average power of channel C3 + C4 were decreased by caffeine consumption, thus 

the amount of possible amplitude change or modulation may be decreased by caffeine 

consumption which could potentially hinder the BCI performance. A previous study shows 

that the average power of channel C3 + C4 after removing noise floor has a significantly 

positive correlation to BCI feedback performance [38], which could be served as a predictor 

of a new subject’s SMR based BCI performance. With the assumption that noise level was 

not changed by the drinks, caffeine intake may negatively affect the signal to noise ratio 

(SNR) of the control signal and decrease task performance. But the online results support the 

notion that the decreased power amplitudes did not significantly alter the online behavior 

performance throughout the BCI task. There might be a couple of reasons to explain this 

difference. First, the previous study shows the correlation between the average power of 

channel C3 + C4 during a 2 minutes’ resting state epoch with eyes open and a subject’s 

performance in a group number of 80 subjects, this might not account for the dynamic 

property of EEG signals for an individual subject. Thus, the correlation might not be 

generalized to the prediction of an individual subject’s performance variation. Second, 

caffeine is also known to increase attention and reduce fatigue [32], which may affect 

positively on BCI performance in addition to decreasing power in alpha and beta rhythm. 

Thus these positive and negative effects may cancel out each other and result in subjects’ 

performing after caffeine intake similar to the control and sugary group.

Interestingly, a significant difference of BCI performance was shown before and after the 32 

minutes’ resting state, which was shown in section 3.1. This might indicate that learning 

occurred during the post-drink BCI cursor task compared to the pre-drink BCI cursor task. 

The learning of BCI control or the trend of improvement on BCI performance was reported 

on a session-by-session basis previously [8,24], however, this result shows that learning 

could happen within a session.
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B. Resting State EEG

Resting state period and its analysis were included in this study to verify that spectral effects 

altered by caffeine shown in previous literature were elicited by the design as well and to 

investigate the details of the spectral altering effect, especially in regard to the control 

signals in electrodes C3 and C4. As shown in Fig. 5–6, the caffeine consumption did causes 

a global decrease in alpha and beta power relative to the control and sugary group during a 

32 minutes’ resting state with eyes open epochs, which is consistent with the literature [31]. 

The same trend occurs in the averaged EEG data from average powers of channels C3 and 

C4 (Fig. 4–6). This decrease of alpha and beta power holds during the BCI inter-trial 

intervals as well, which is shown in Fig. 3. The caffeinated drink used in this study had less 

than a fifth of caffeine amount and the regular coffee contained about half amount of 

caffeine relative to the capsules used in the previous study [31], but these results verify that 

this experimental design does show similar trends which were reported previously. 

Regarding the beta frequency band, the same caffeine, control and sugary group trends 

occur, but the power difference between these groups is less substantial compared to the 

change in alpha band. Since the power in beta frequency band is not used as BCI control 

signals in this study, its effect on BCI online performance is unclear. The power values of 

control and sugary drink conditions show an increasing trend especially in the posterior area 

during the resting state duration. This power increase may be attributed to subjects reaching 

states of fatigue or state of drowsiness slowly and gradually, which is in line with subjects’ 

verbal feedbacks after their experiments. Previous studies of driving fatigue during a driver 

simulation task do show significant increase of alpha power, but change of beta band power 

show inconsistent results during and after mental fatigue [39,40]. In the present study we 

observed gradual increasing of both normalized alpha and beta band power during the 

resting state for both the control and sugary drink group. In general, the sugary drink and 

control drink group show similar trends in the change of alpha and beta power during both 

inter-trial interval of BCI control between post and pre drink condition and 32 minutes’ eyes 

open and closed epochs. This might indicate the moderate amount of sugar used in this study 

does not alter the power of EEG signals in alpha and beta frequency bands significantly 

compared to control condition.

C. Limitations and Future Work

It has to be acknowledged that the effect of caffeine on each person varies due to several 

factors such as body mass and history of caffeine or caffeinated drink consumption. In this 

study, the caffeine amount offered to participants was equal without accounting for their 

weight and the subjects were not grouped according to their history of caffeine or 

caffeinated drink consumption. The caffeine amount provided in this study is also 

considerably lower than other caffeine studies [31–33]. However, the caffeinated drink or 

regular coffee is the most common way for people to consume caffeine, it is meaningful to 

study their effect on MI based BCI performance even though the amount of caffeine might 

be low. Another limitation is that the regular coffee session is always the last session without 

randomizing its sequence, thus both the consumed coffee and three previous sessions 

possibly affect the performance of this session. But this issue is alleviated since only the 

change of performance before and after coffee consumption was compared.

Meng et al. Page 9

IEEE Access. Author manuscript; available in PMC 2018 September 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



It is worthy to investigate whether the results of caffeine effect on MI based BCI still hold 

for more general BCI paradigms such as P300, SSVEP based BCI in the future. Since 

posterior alpha and beta are more strongly affected by the caffeine consumption based on the 

analysis results and the electrodes coverage at the posterior part of head are more important 

to the detection of P300 and SSVEP, it is interesting to see the caffeine effect on P300 and 

SSVEP based BCI in future investigations.

V. Conclusion

We have addressed the question if caffeinated soft drinks and caffeinated coffee would have 

effects on MI based BCI performance and resting state EEG in a group of 26 human 

subjects. Our results indicate that caffeinated drinks have seemingly negative effects on the 

control signal power by lowering the baseline power, in the rhythm of mu and beta bands; 

but it causes insignificant changes in BCI performance in online settings. Sugary drinks have 

no effect on both BCI performance and altering of the control signal power in alpha or beta 

frequency band compared to the control condition. Their effects are relatively small with the 

amount of moderate consumption in this study, thus consumption of caffeine or sugar 

through a soft drink or regular coffee does not seem to play a significant role impacting MI 

based BCI performance. In other words, moderate consumption of soft drink might not be a 

confounding factor to the variation of MI based BCI performance. The present results shed 

light on the effect of world’s most popular stimulant, caffeine, on BCI performance, and 

may have important implications in the development and optimization of BCI technology.
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Fig. 1. Experimental design
A. Trial structure for cursor movement BCI control using left vs. right-hand or both-hands 

vs. relaxation motor imagery. B. Experimental procedure during each session for group one: 

BCI control before soft drink ingestion, resting state EEG acquiring with eyes open and 

closed intermittently right after soft drink administration, and BCI control when caffeine 

effects are approximately maximum after soft drink ingestion. C. Similar Experimental 

procedure for group two with a fourth session in which regular coffee was offered to the 

participants.
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Fig. 2. 
(a) Average PVC performance evaluation of L/R cursor control including both group one 

and group two ± standard error mean (SEM) for each soft drink group before and after coke 

consumption. (b) Average PVC performance measure of L/R cursor control for group two ± 

standard error mean (SEM) for each drink group before and after drink consumption. (c) 

Average PVC performance measure of U/D cursor control for group two ± standard error 

mean (SEM) for each drink group before and after drink consumption.
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Fig. 3. 
Group average power change ratio of resting state power ± standard errors of the mean 

(SEM) during inter-trial interval of BCI control between post and pre drink consumption 

with respect to channel C3 + C4. Power of inter-trial interval during BCI control is estimated 

by AR for each subjects pre and post drink consumption separately in the frequency bands 

of 6–31 Hz including alpha (α, 10–14Hz) and beta (β, 14–26Hz) rhythms. Then the power 

spectrum is used to calculate the power change ratio between post drink consumption and 

pre drink consumption for each subject and is averaged across subjects to get the group 

average.
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Fig. 4. 
Average channel C3 +C4 resting state power for eyes open periods. Power is calculated by 

alpha (α, 10–14Hz) and beta (β, 14–26Hz) frequency bands separately and averaged across 

each two minute eyes open periods for each drink group. Power values (unit, μV2) for drink 

conditions are represented via color lines and organized by number of minutes since drink 

consumption. (a) Power in the alpha frequency band; (b) Power in the beta frequency band.
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Fig. 5. 
Average channel C3 + C4 and global average of resting state power for eyes open periods. 

Power is calculated by alpha (α, 10–14Hz) and beta (β, 14–26Hz) frequency bands 

separately and averaged across each two minutes eye open periods for each drink group. 

Power values (unit, μV2) are represented via color where a color bar shows the scale of value 

for each panel and ordered by number of minutes since the soft drink consumption.
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Fig. 6. 
Average channel C3 + C4 and global average of resting state power for eyes closed periods. 

Power is calculated by alpha (α, 10–14Hz) and beta (β, 14–26Hz) frequency bands 

separately and averaged across each two minutes eye closed periods for each drink group. 

Power values (unit, μV2) are represented via color where a color bar shows the scale of value 

for each panel and ordered by number of minutes since the soft drink consumption.
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Fig. 7. 
Topographies of alpha band power were averaged over all subjects and sessions for each 

condition. Topographies of each individual were normalized by the maximum alpha values 

of band power among the four drink conditions and then averaged across subjects. The top, 

second, third and bottom rows displayed alpha power changes (unit, normalized value) 

during the eyes open epochs across time (minutes) after the soft drink consumption of 

caffeine, no ingredient, sugar or regular coffee.
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Fig. 8. 
Topographies of beta band power were averaged over all of subjects and sessions for each 

condition. Topographies of each individual were normalized by the maximum beta values of 

band power among the four drink conditions and then averaged across subjects. The top, 

second, third and bottom rows displayed beta power changes (unit, normalized value) during 

the eyes open epochs across time (minutes) after the soft drink consumption of caffeine, no 

ingredient, sugar or regular coffee.
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