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Abstract

Networked systems display complex patterns of interactions between components. In physical 

networks, these interactions often occur along structural connections that link components in a 

hard-wired connection topology, supporting a variety of system-wide dynamical behaviors such as 

synchronization. While descriptions of these behaviors are important, they are only a first step 

towards understanding and harnessing the relationship between network topology and system 

behavior. Here, we use linear network control theory to derive accurate closed-form expressions 

that relate the connectivity of a subset of structural connections (those linking driver nodes to non-

driver nodes) to the minimum energy required to control networked systems. To illustrate the 

utility of the mathematics, we apply this approach to high-resolution connectomes recently 

reconstructed from Drosophila, mouse, and human brains. We use these principles to suggest an 
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advantage of the human brain in supporting diverse network dynamics with small energetic costs 

while remaining robust to perturbations, and to perform clinically accessible targeted manipulation 

of the brain’s control performance by removing single edges in the network. Generally, our results 

ground the expectation of a control system’s behavior in its network architecture, and directly 

inspire new directions in network analysis and design via distributed control.

Network systems are composed of interconnected units that interact with each other on 

diverse temporal and spatial scales [1]. The exact patterns of interconnections between these 

units can take on many different forms that dictate how the system functions [2]. Indeed, 

specific features of network topology – such as small-worldness [3] and modularity [4] – can 

improve efficiency and robustness. Yet, exact mechanisms driving the relationship between 

structure and function remain elusive, hampering the analysis, modification, and control of 

interconnected complex systems. The relationship between interconnection architecture and 

dynamics is particularly important in biological systems such as the brain [5], where it is 

thought to support optimal information processing at cellular [6] and regional [7, 8] levels. 

Understanding structure-function relationships in this system could inform personalized 

therapeutics [9] including more targeted treatments for drug-resistant epilepsy to make the 

epileptic state energetically unfavorable to maintain [10, 11], especially due to the 

development of multi-site stimulation tools [12, 13] that allow for exponentially increasing 

stimulation configurations.

Existing paradigms seeking to explain how a complex network topology drives observable 

dynamics have advantages and disadvantages. Efforts in nonlinear dynamics define basins of 

attraction and perturbations driving a system between basins [14, 15]. Efforts in network 

science define graph metrics and report statistical correlations with observed functions such 

as attention [16] and learning [17, 18]. Neither approach offers comprehensive analytical 

solutions explaining mechanisms of control. A promising paradigm that meets these 

challenges is linear network control theory [19, 20], which assumes that the state of a system 

at a given time is a function of the previous state, the structural network linking system units, 

and injected control energy. From this paradigm, one can identify (i) driver nodes [21, 22] 

capable of influencing the system along diverse trajectories, and (ii) optimal inputs that 

move the system from one state to another with minimal cost. This latter formulation has 

proven useful in understanding the human brain where control points enable diverse 

cognitive strategies [23, 24], facilitate efficient intrinsic activation [25], and inform optimal 

targets for brain stimulation [26].

While practical tools exist, basic intuitions about the network properties that enhance control 

have remained elusive. Here, we address this challenge by formulating a linear control 

problem on the bipartite subgraph linking driver nodes to non-driver nodes, which provides 

excellent estimates of the control of the full network. Our results include analytical 

derivations of expressions relating a network’s minimum control energy to its connectivity, 

an intuitive geometric representation to visualize this relationship, and rules for modifying 

edges to alter control energy in a predictable manner. While our mathematical contributions 

are applicable to any complex network system whose dynamics can be approximated by a 

linear model, we illustrate their utility in the context of networks estimated from the mouse 
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[27, 28], Drosophila [29], and human brain (Fig. 1d–f). Our results offer fundamental 

insights into the patterns of connections between brain regions that directly impact their 

minimum control energy, providing a link between the structure and function of neural 

systems and informing potential clinical interventions. An extension of this framework to 

non-bipartite graphs with corresponding results can be found in the supplementary methods 

and results.

I. NETWORK TOPOLOGY AND CONTROLLABILITY

We consider a network represented by the directed graph , where 

and  are the sets of network vertices and edges, respectively. Let aij ∈ ℝ be the 

weight associated with the edge (i, j) ∈ ℰ, and let A = [aij] be the weighted adjacency matrix 

of . We associate a real value (state) with each node, collect the nodes’ states into a vector 

(network state), and define the map x : ℝ≥0 → ℝn to describe the evolution (dynamics) of 

the network state over time (Fig. 1a–c). We assume that a subset of N nodes, called drivers, 

is independently manipulated by external controls and, without loss of generality, we reorder 

the network nodes such that the N drivers come first. Thus, the network dynamics read as

(1)

where xd and xnd are the state vectors of the driver and non-driver nodes, A11 ∈ ℝN×N, M = 

n − N, A12 ∈ ℝN×M, A21 ∈ ℝM×N, A22 ∈ ℝM×M, IN is the N-dimensional identity matrix, 

and u: ℝ≥0 → ℝN is the control input.

We will use the word controllable to refer to networks that are point-to-point controllable at 

time T ∈ ℝ≥0 if, for any pair of states  and , there exists a control input u for the 

dynamics Eq. (1) such that  and . For a detailed discussion and 

rigorous conditions for the controllability of a system with linear dynamics, see [30]. We 

define the energy of u as

where ui is the i-th component of u. The energy of ui can be thought of as a quadratic cost 

that penalizes large control inputs.

In the context of the brain, we approximate the interactions between brain regions as linear, 

time invariant dynamics, where a stronger structural connection between two regions 

represents a stronger dynamic interaction (for empirical motivation, see [23, 31, 32]). We 

specifically study the empirical inter-areal meso-scale connectomes of the mouse (112 brain 

regions, example schematic in Fig. 1g, h) from the Allen Brain Institute, the Drosophila (49 

brain regions) [29], and a set of human connectomes (116 brain regions) interconnected by 
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white matter tracts (for empirical details regarding connectivity estimates, see supplementary 

results XA).

II. PREDICTING CONTROL ENERGY

We seek an accurate, tractable relationship between the energy required to drive a network to 

a specific state and its connectivity. We begin with the original, non-simplified network (Fig. 

2a) involving edges between all nodes, and consider dynamics along the simplified network 
(Fig. 2b) involving only edges from the driver to the non-driver nodes (for a conceptual 

schematic of the full and simplified Drosophila connectome, see Fig. 2c–d). We then derive 

an approximation of the minimum control energy (Lemma X.2 – X.4) by assuming that 

xd(0) = 0, xnd(0) = 0 (Assumption 1), and A11 = 0, A12 = 0, and A22 = 0 (Assumption 2) in 

Eq. (1), which reads as

(2)

We make Assumption 1 because we are interested in the change in brain state through 

control, and consider initial conditions xd(0) = 0, xnd(0) = 0 to be a neutral baseline. Because 

Eq. (2) only involves edges from driver to non-driver nodes, we call Eq. (2) a first-order 

approximation to the minimum control energy of the non-simplified network Eq. (1). 

Importantly, this approximation requires at least as many driver nodes as non-driver nodes 

for  to be invertible (i.e. N ≥ M). To assess the accuracy of our expression, we look to 

classic results in the mathematical theory of systems and control [30], where the spectral 

properties of the reachability Gramian  quantify the minimum 

amount of energy (Section XI A 2) to control the non-simplified network Eq. (1).

In these brain networks, we observe that the first-order energy approximation is accurate 

across a range of parameters, which are the magnitude of the adjacency matrix (given by the 

magnitude of the largest eigenvalue, c = ‖λmax‖ after multiplying A by a constant scalar), 

and the fraction d of nodes selected as non-driver nodes (Fig. 2e–g). The error remains 

below approximately 5% for scaling c < 1.5 and non-driver fraction d < 0.4 (Fig. 2e–g). In 

this paper, we will use these connectomes scaled such that c = ‖λmax‖ = 1, and non-driver 

fraction d ≤ 0.4, to ensure generalizability of our findings to the non-simplified versions of 

these same networks.

III. DETERMINANT OF THE DRIVER-TO-NON-DRIVER NETWORK

After deriving a closed-form approximation for the minimal energy to control a network, we 

seek a physical interpretation of the mathematical features that predict the control energy. 

We let , and write Eq. (2) as

(3)
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where  and , and adj(Q) is the adjugate matrix of Q. We notice that 

the determinant of Q acts as a scaling factor for the total energy. This insight is useful 

because of the geometric interpretation of a Gram matrix determinant. Specifically, let ai ∈ 
ℝ1×N be the i-th row of A21 (which we will call the weight vector), representing weights 

from all N drivers to the i-th non-driver node (Fig. 3a). Then, the determinant of the Gram 

matrix Q is equal to the squared volume of the parallelotope formed by all ai.

To gain an intuition for these results, we show a simple system with 3 drivers and 2 non-

drivers with varying network topologies in Fig. 3b–d, and their corresponding geometric 

parallelotopes in Fig. 3e–g with weight-vector a1 in gray and a2 in tan. We also compute the 

distribution of control energy required to drive each network from initial states xd = 0, xnd = 

0 to 10,000 random final states ,  in Fig. 3h. As the non-

drivers xnd1, xnd2 become more similarly connected, the total area of the parallelotope (and 

corresponding Gram determinant) decreases (Fig. 3e–g), and the control energy increases 

(Fig. 3h). We note that this determinant relationship persists for any number of nodes where 

N > M. We conclude that the similarity between weight-vectors generally scales the control 

energy through det(Q), allowing us to analyze and modify the connectivity of a network with 

respect to its control energy.

IV. IDENTIFYING ENERGETICALLY FAVORABLE CONTROL NODES

Here, we further explore the idea of “similarity” between connections ai, to quantify the 

impact of each individual non-driver on the control energy.

A. Topological contributors to control energy

Our analysis is rooted in the intuition that the edge weights ai that maximize the 

parallelotope volume, thereby facilitating network control, are large in magnitude and 

orthogonal to each other. Let λi and ei be the eigenvalues and eigenvectors of the matrix Q 
in Eq. (3). We derive in Lemma X.6 the equivalent, alternative control energy expression

(4)

where , , and θk is the angle formed between ak and the parallelotope 

formed by aj≠k. We also derive in Lemma X.7 the average control energy to reach all 

random final states drawn uniformly from −1 to 1, ,  as

(5)
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For N drivers and M non-drivers, we can visualize the M weight vectors ak as forming a 

parallelotope in an N-dimensional space. The variable θk then represents the angle formed 

between ak and the paralellotope formed by the remaining M − 1 vectors aj≠k. An example 

with N = 3, M = 2 is shown in Fig. 3e–g, where θ1 = θ2 is the angle between the tan and 

gray vectors.

Here, we have segregated the control energy into a task-based  and topology-

based  term (Eq. 4), where the average minimum control energy 

depends linearly on the topology-based term (Eq. 5). This segregation allows us to analyze 

the topology separate from the specific control task, and shows that each non-driver 

additively contributes to the total control energy minimally when ║ai║ and sin(θi) are 

large.

B. Energetically favorable driver-nondriver sets

To support this discussion, we used expression Eq. (4) to find the selections of M non-

drivers that minimized and maximized this topology term (see supplementary results X B), 

which we define as the energetically most favorable and energetically least favorable 
selections, respectively. We show example distributions of each weight-vector’s magnitude 

║ak║ times angle sin(θk) (Fig. 4a–c) between these selections in Drosophila, mouse, and 

human for non-driver fraction 0.2. We observe that the energetically least favorable 

selections have significantly weaker magnitudes and angles than the most favorable 

selections.

Next, we demonstrate the utility and robustness of these topological features for control by 

computing the minimum control energy along the non-simplified networks using the driver 

and non-driver designations from the simplified networks in Eq. (4) for a range of non-driver 

fractions. For each non-driver fraction and species, we computed the control energy to bring 

the energetically most and least favorable non-driver selections, and 2000 random non-driver 

selections to a corresponding set of 2000 random final states , 

 (Fig. 4j–l). Across all three species, the most favorable selections require 

around 0.5–1 order of magnitude less control energy than the random selections, and 2.5–4 

orders of magnitude less control energy than the least favorable selections. This difference 

indicates an energetic advantage for some configurations of drivers and non-drivers over 

others.

V. COMPLEX BRAIN NETWORKS ARE ENERGETICALLY FAVORABLE

Given the relationship between a network’s connectivity and minimum control energy in Eq. 

(4), we seek to understand if brain networks are organized along energetically favorable 

principles. Fundamentally, we ask how well a network’s specific set of connectivity features 

║ak║ and sin(θk) combine to minimize the topology-dependent energy term 
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. In networks that are not designed along these energetic principles, 

we expect to see no particular relationship between ║ak║ and sin(θk). In networks that 

minimize the topology dependent energy term, we expect a compensatory effect, where non-

drivers with small angles have large magnitudes, and vice versa.

To explore the relationship between ║ak║ and sin(θk) in brain networks, we selected 

10,000 random permutations of non-drivers in each of the Drosophila, mouse, and 10 human 

connectomes, at non-driver fraction d. For each permutation, we calculated ║ak║ and 

sin(θk) for every non-driver. Then, we averaged ║ak║ and sin(θk) for each non-driver 

across all permutations, giving us an averaged magnitude ║ak║ and sin(θk) for each brain 

region in each network. Finally, we plotted the averaged sin(θk) versus kakk for all brain 

regions in each network for d = 0.2 (Fig. 5a–c). We find little relationship between the 

averaged ║ak║ and sin(θk) in the Drosophila (Spearman ρ = −0.25, p = 0.0748), a 

moderate negative relationship in the mouse (ρ = −0.36, p = 0.000125), and a strong 

negative relationship in the human (ρ = −0.73, p ≈ 0). This ordering holds for a wide range 

of non-driver fractions (Fig. 5d). We graphically demonstrate how this negative sin(θk) 

versus ║ak║ relation might arise in networks, using a simple 5-node network with two 

communities of 3 and 2 strongly interconnected sets of nodes (Fig. 5d-f), which has a strong 

negative relationship (Fig. 5h).

VI. NETWORK MANIPULATION TO FACILITATE CONTROL

Here, we consider network modifications that lead to lower control energies. We focus on 

the effects of edge deletion since it is often useful in the study of biological systems such as 

brain [33], metabolic [34], and gene regulatory [35] networks. Specifically, we quantify the 

effect of modifying each edge weight on the determinant in Lemma X.5 as

(6)

and compute the decrease in control energy as a result of deleting edges that maximally 

increase the determinant.

First, for each species and each of a range of non-driver fractions, we randomly selected 

2,000 permutations of non-drivers. For each permutation, we extracted the block matrix A21, 

calculated 2 det(Q)(Q−1)A21, and found the element aij ≠ 0 yielding the largest increase in 

det(Q) based on Eq. (6). We then simulated an edge deletion by setting aij = 0, and repeated 

the process to obtain networks of 1, 2, 3, and 4 deleted edges. Finally, we computed the 

percent change in control energy required to bring the non-simplified network from initial 

states xnd(0) = 0, xd(0) = 0, to final states ,  before and after 

edge deletion (Fig. 6a–d).

As can be seen in Fig. 6a, the removal of one edge can sometimes lead to more than a 10% 

average reduction in control energy, while the removal of four edges (Fig. 6d) can 
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sometimes lead to more than a 30% reduction. Across most non-driver fractions, the 

Drosophila experienced greater energy reduction than the mouse, which also experienced 

greater energy reduction than the human. This corresponds to the previous finding where, 

because brain networks of these increasingly complex species are already energetically 

favorably wired, they may not experience as much improvement after modification.

VII. CONTRIBUTION AND FUTURE DIRECTIONS

The control of networked systems is a critical frontier in science, mathematics, and 

engineering, as it requires a fundamental understanding of the mechanisms that drive 

network dynamics and subsequently offers the knowledge necessary to intervene in real-

world systems to better their outcomes [36]. While some theoretical predictions exist in 

nonlinear network systems [15], the majority of recent advances have been made in the 

context of linear control [21, 22]. Nevertheless, basic intuitions regarding how edge weights 

impact control have remained elusive. Although spectral analysis of a network’s 

controllability Gramian [30] yields theoretically useful information about the overall 

behavior of the network under control [37], it is not obvious how specific patterns of 

connectivity or selections of driver and non-driver nodes contribute to this behavior. 

Understanding this relationship is crucial when analyzing empirical biological networks 

such as the brain, where nodes and edges often have known functions [38] that may 

modulate or influence one other.

A distinct advantage of our approach is the focus on a physically meaningful topological 

understanding of the principles governing network control. We map control behavior to 

network topology through a simplified network only involving connections from driver to 

non-driver nodes. This simplification hard-codes the fact that energy can be transmitted 

directly from drivers to non-drivers along walks of length unity, and is motivated by recent 

work demonstrating that relatively sparse network representations of complex biological 

systems [39, 40] can contain much of the information needed to understand the system’s 

structure and dynamics [41, 42]. Our results inform our understanding of how much first-

order connections contribute to the overall dynamics of our network control systems. 

Moreover, they inform the development of analytical constraints on the accessible state 

space of a networked system, particularly informing the set of states within which one might 

seek to push the brain using stimulation paradigms common in the treatment of neurological 

disorders and psychiatric disease [43, 44]. While many initial studies have examined 

unconstrained state spaces [23, 25, 26], understanding viable states and state trajectories is 

critical for the translation of these ideas into the clinic [45]. Further, by formally quantifying 

the contribution of the network connectivity to the control energy, we lay the groundwork 

for the optimization of stimulation sites in neural systems, a problem that has received very 

little theoretical treatment, and is considered one of the current critical challenges in 

neuroengineering [46].

Finally, we make strategic, task-agnostic edge deletions that maximally increase the 

determinant and observe that, even in an overdetermined, unsimplified system (N > M), a 

single edge deletion could produce a profound improvement in the general controllability of 

a network. This sensitivity suggests that dynamical networks such as the brain can produce 
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fairly drastic changes in dynamical behavior given minute changes in physiological 

topology, consistent with observations of critical dynamics in human and animal 

neurophysiology [47, 48]. Moreover, these results also suggest that minor, targeted structural 

changes through concussive injury can lead to drastic changes in overall brain function [49, 

50], via altering the controllability landscape of the brain [24]. We further observed that 

these topological modifications were task-agnostic edge deletions, signifying that even in a 

linear regime, the presence of an unfavorable edge can have a profoundly negative impact on 

the controllability of a network. We note that it is natural to perform a similar analysis that 

takes into account the specific tasks v1, v2 by taking the derivative of the full energy term 

Etotal with respect to A21, which would optimize the network topology for a specific task, as 

studied in more detail in [25].

To achieve the most meaningful comparison between species, we only analyzed weighted 

meso-scale whole brain networks. As such, we did not include binary neuronal connectomes 

(e.g., C. elegans), and binary or partial connectomes (e.g., macaque). As more connectomes 

become available, we hope to further explore the role of species complexity on network 

controllability. Until then, we consider the comparison of energetically favorable 

connectivity between species to be a preliminary excursion into a nuanced evolutionary 

phenomena. As demonstrated in the significant percent change in energy after edge deletion, 

we emphasize that uncertainty in network connectivity has the potential to yield substantial 

changes in average control energy. Finally, we note that while methodological limitations 

prevent us from resolving excitatory versus inhibitory connectivity, all results are directly 

applicable to networks with signed elements. Further important theoretical considerations 

and methodological limitations pertinent to our approach, linear model of dynamics, 

optimality of control trajectories, and empirical data sets are discussed in the SI.

In closing, we note that the natural direction in which to take this work will be to use higher-

order approximations of this framework found in the supplement to gain intuition for the 

role of complex network topologies (e.g. self-loops, cycles) in controlling networks. 

Moreover, it would be interesting to apply this reduced framework to random graphs and 

other well-known benchmarks – both from a mathematical perspective [51] and also in the 

context of neural systems [52, 53] – to better understand the phenotypes present in those 

graph ensembles. Third and finally, informing the design of new networks with these tools 

may be particularly useful in neuromorphic computing [54], material science [55], and other 

contexts where optimal control of physical systems is of paramount importance.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIG. 1. Network Control of the Drosophila, Mouse, and Human Connectomes
(a) A representation of the mouse brain via the Allen Mouse Brain Atlas, with a 

superimposed simplified network. Each brain region is represented as a vertex, and the 

connections between regions are represented as directed edges. (b) Example trajectories of 

state over time for three brain regions, where the state represents the level of activity in each 

region. (c) A state-space representation of activity on the mouse connectome over time, 

where each point on the black line represents the brain state at a point in time. (d) 

Connectomes represented as n × n adjacency matrices where each i, jth element of the 

adjacency matrix represents the strength of the connection from node j to node i for 

Drosophila, (e) mouse, and (f) human. (g) The mouse connectome represented as a graph 

with vertices as brain regions, and edges colored by their weight, or the magnitude of the 

relevant element of the adjacency matrix. (h) Simplified graph representation: a bipartite 

subgraph containing edges linking driver vertices (red) to non-driver vertices (blue).
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FIG. 2. The Simplified Network Representation Offers a Reasonable Prediction for the Full 
Network’s Control Energy
(a) Graphical representation of a non-simplified network of N drivers (red) and M non-

drivers (blue), with directed connections between all nodes present. (b) Graphical 

representation of a simplified first-order network only containing first-order connections 

from drivers → non-drivers. (c) As an example, we show the adjacency matrix for the 

Drosophila connectome segmented into driver → driver A11, driver → non-driver A21, non-

driver → driver A12, and non-driver → non-driver A22 sections for a non-simplified 

network as per Eq. (1), with randomly designated driver and non-driver nodes, and (d) the 

corresponding simplified network as per Eq. (2). (e) Percent error contour plots of the total 

control energy for simplified versus non-simplified networks as a function of the fraction of 

non-driver nodes and matrix scale given by c = ‖λmax‖. For each combination of parameters, 

the median error magnitude to drive the networks from initial states xd = 0, xnd = 0 to 1000 

random final states ,  along 1000 corresponding random 

selections of non-drivers is shown. Each contour represents a 5% interval for the (e) 

Drosophila, (f) mouse, and (g) human connectome.
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FIG. 3. Geometric Interpretation of Simplified, First-Order Networks with Corresponding 
Control Energies and Trajectories
(a) Graph representation of a simplified first-order network containing connections from N 
driver nodes in red to M non-driver nodes in blue. The edges connecting all driver nodes to 

the i-th non-driver corresponding to the i-th row of A21 are shown in different colors. (b) 

Graph representation of a network with driver nodes in red, non-driver nodes in blue, weight 

distribution into non-driver 1 in gray, and weight distribution into non-driver 2 in tan, for 

dissimilarly distributed weights, (c) for somewhat similarly distributed weights, and (d) for 

very similarly distributed weights. (e) Geometric representation of the parallelotope formed 

by the 2 vectors of weight distributions into non-drivers 1 and 2, with the volume shaded in 

beige for dissimilarly distributed weights, (f) for somewhat similarly distributed weights, 

and (g) for very similarly distributed weights. (h) Base-10 log distribution of control energy 

required to bring each graph to 10,000 random final states , .
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FIG. 4. Topological Characteristics and Energetic Performance of Networks with Energetically 
Favorable and Unfavorable Topologies
(a) Boxplot of each non-driver weight-vector’s magnitude and angle product (║ak║ 
sin(θk)) between the energetically most and least favorable networks in the Drosophila, (b) 

mouse, and (c) human connectomes, for a non-driver fraction of 0.2 and p-values from a 2-

sample t-test. (d) Mean and standard deviations of the base-10 log of the minimum control 

energies required to bring the system to 2000 random final states , 

 for each of a range of non-driver fractions for the energetically most 

favorable, least favorable, and random networks for the Drosophila, (e) mouse, and (f) 
human.
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FIG. 5. Energetically Favorable Organization of Topological Features in Networks
(a) Average sin(θk) versus normalized ║ak║ for each brain region across 10,000 random 

non-driver selections for a non-driver fraction of 0.2, along with best fit line (red) and 

corresponding Spearman correlation coefficient in the Drosophila, (b) mouse, and (c) 

human. (d) Spearman correlation coefficients in the Drosophila, mouse, and human over 

2,000 random non-driver selections for each of a range of non-driver fractions. (e) Example 

toy network of 5 nodes with three strongly interconnected nodes at the top, and two strongly 

interconnected nodes at the bottom. (f) Representation of similarity in driver → non-driver 

connections between Non-Driver 1 (light blue, member of three strongly connected nodes) 

and all possible selections of Non-Driver 2 (blue). Across all 4 configurations, Non-Driver 1 

has an average of 1.5 strong connections, and 2/4 similarly connected (small angle) 

configurations. (g) Similarity in driver → non-driver connections between Non-Driver 1 

(light blue, member of two strongly connected nodes) and all selections of Non-Driver 2 

(blue). Across all 4 configurations, Non-Driver 1 has an average of 0.75 strong connections, 

and 1/4 similarly connected configurations. (h) Plot of average magnitude versus sin(θ) for 

the toy network, with Spearman rank correlation coefficient.
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FIG. 6. Modifying the Drosophila, Mouse, and Human Connectomes to Decrease the Minimum 
Energy Required for Control
(a) Means and standard errors of percent change in control energy before and after deleting 

edges that maximally increase the determinant based on Eq. (6) over 2,000 control tasks, 

with initial states xnd(0) = 0, xd(0) = 0, and random final states , 

. Non-drivers were randomly selected for a range of non-driver fractions in 

the Drosophila, mouse, and human connectomes for 1 deletion, (b) 2 deletions, (c) 3 

deletions, and (d) 4 deletions. Standard errors were computed as , where s is the 

sample standard deviation over the 2,000 tasks, and n = 2, 000.
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