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Abstract

Induced pluripotent stem cells (iPSCs) or their progeny, derived from human somatic cells,

can give rise to functional improvements after intracerebral transplantation in animal models

of stroke. Previous studies have indicated that reactive gliosis, which is associated with

stroke, inhibits neurogenesis from both endogenous and grafted neural stem/progenitor

cells (NSPCs) of rodent origin. Here we have assessed whether reactive astrocytes affect

the fate of human iPSC-derived NSPCs transplanted into stroke-injured brain. Mice with

genetically attenuated reactive gliosis (deficient for GFAP and vimentin) were subjected to

cortical stroke and cells were implanted adjacent to the ischemic lesion one week later. At 8

weeks after transplantation, immunohistochemical analysis showed that attenuated reactive

gliosis did not affect neurogenesis or commitment towards glial lineage of the grafted

NSPCs. Our findings, obtained in a human-to-mouse xenograft experiment, provide evi-

dence that the reactive gliosis in stroke-injured brain does not affect the formation of new

neurons from intracortically grafted human iPSC-derived NSPCs. However, for a potential

clinical translation of these cells in stroke, it will be important to clarify whether the lack of

effect of reactive gliosis on neurogenesis is observed also in a human-to-human experimen-

tal setting.

Introduction

Ischemic stroke is a leading cause of brain damage, long-term disability and death in humans

[1]. Apart from thrombectomy and thrombolysis during the first hours after the insult, which

can be applied only to a minority of patients, there are no effective treatments to improve
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functional recovery in the post-ischemic phase. Over recent years, stem cell-based approaches

have emerged as promising experimental tools with a potential for the restoration of brain

function also in stroke patients [2]. From a clinical perspective, reprogramming of somatic

cells seems attractive for the generation of cells suitable for transplantation in stroke, in partic-

ular because this strategy avoids the ethical issues associated with the use of human embryonic

stem cells. A bulk of experimental studies has demonstrated that grafted reprogrammed cells

can induce functional improvements in stroke models (for references see, e.g., [3]). For

example, we have shown that human induced pluripotent stem cell (iPSC)-derived neural

stem/progenitor cells (NSPCs), transplanted into mouse and rat models of stroke, improve

sensorimotor deficits, differentiate to mature neurons [4, 5], and integrate anatomically and

functionally into host neuronal circuitry [6].

For the clinical translation and optimization of their therapeutic efficacy, it is important

to understand how the tissue environment in the stroke-injured brain affects the behavior

and fate of the grafted cells. One prominent pathological feature of ischemic stroke is reactive

gliosis and glial scar formation [7–11]. After stroke, astrocytes undergo prominent changes

in morphology, function and expression profile [12–14]. These reactive astrocytes are char-

acterized by cellular hypertrophy and upregulation of glial fibrillary acidic protein (GFAP),

which is the main component of the cytoplasmic intermediate filament (IF) system (known

also as the nanofilament system) of astrocytes, together with vimentin, nestin and synemin

[15–19]. Besides a pivotal role in astrocyte structure, IFs are central players in transducing

biomechanical and molecular signals and in regulating astrocyte functions [15, 19]. In

GFAP-/-Vim-/- mice, reactive astrocytes show abundance and distribution comparable to that

of wild-type (WT) mice [20], but are not hypertrophic [17, 20] and generate less dense glial

scar [21, 22].

Reactive astrocytes have been reported to have a beneficial protective role after brain ische-

mia [23, 24]. GFAP-/-Vim-/- mice with attenuated reactive gliosis show increased loss of brain

tissue after ischemic stroke induced by middle cerebral artery transection [23]. Reactive astro-

cytes induced by the ischemic insult assist in repairing the blood–brain barrier, controlling the

osmoregulation, counteracting the development of brain edema, limiting immune cell influx,

minimizing neuronal death and sealing the lesioned area from the rest of the CNS, thereby

limiting the spread of the damage [19, 23, 25–29].

However, reactive astrocytes can also negatively effect the regenerative capacity, for exam-

ple after neurotrauma [19, 27, 28, 30]. Several reports indicate that reactive gliosis inhibits sur-

vival and differentiation of neural progenitor cells in vitro and neurogenesis in vivo as well as

CNS regeneration after injury [20, 31–36]. Indeed, GFAP-/-Vim-/- mice exhibit increased neu-

rogenesis from endogenous NSPCs both under basal conditions and following hippocampal

de-afferentation or perinatal hypoxia/ischemia [34, 36, 37]. Moreover, attenuation of reactive

gliosis in GFAP-/-Vim-/- mice leads to increased neuronal and astrocytic differentiation of adult

rat hippocampal NSPCs transplanted into hippocampus [35] as well as improved integration

and survival of retinal grafts [38]. Whether attenuation of reactive astrocytes affects the fate of

human iPSC-derived NSPCs transplanted into stroke-injured brain is unknown.

Here we have assessed the effect of attenuation of reactive gliosis on the behavior of human

iPSC-derived NSPCs at 8 weeks after transplantation into a model of cortical stroke using

GFAP-/-Vim-/- mice. We provide evidence that the reactive gliosis associated with cortical

stroke in mice does not affect neurogenesis from intracortically grafted human-derived, repro-

grammed NSPCs. However, due to the xenograft situation in the present study, it needs to be

considered to what extent rodent models are suitable to reveal the impact of the ischemic envi-

ronment on the grafted human cells.

Reactive gliosis and neurogenesis from iPS cells
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Materials and methods

Animals and experimental design

We used adult male mice (10–12 weeks old, body weight 22–27 g) carrying a null mutation in

the GFAP and vimentin genes (GFAP-/-Vim-/- mice, labeled as KO in the figures) on a mixed

C57Bl/6-129Ola-129Sv genetic background [21, 39] (n = 9) and age and sex-matched WT con-

trols (n = 6) generated by our in-house breeding facility. Mice were subjected to distal middle

cerebral artery occlusion (dMCAO), and transplanted with green fluorescent protein (GFP)-

labeled human iPSC-NSPCs at 1 week and sacrificed at 9 weeks following the ischemic insult.

All animals were kept in 12 h light/12 h dark cycles with ad libitum access to food and water.

All procedures used in the present study were conducted in accordance with the European

Union Directive (2010/63/EU) on the subject of animal rights, and were approved by the com-

mittees for the use of laboratory animals at Gothenburg and Lund Universities and the Swed-

ish Board of Agriculture.

Distal middle cerebral artery occlusion

Mice were anesthetized with isoflurane mixed with air (3.0% induction; 1.5% maintenance).

Mice were anesthetized with a mixture of isoflurane (3.0% induction; 1.5% maintenance) and

air. All mice received local injection of Marcain for pain relief (20 μl of 2.5 mg/ml stock solu-

tion, Astra Zeneca). During the surgical procedure and in the early recovery period (2 h), mice

were placed on a heating pad at 37 ˚C. Permanent occlusion of the distal branch of the right

middle cerebral artery (dMCAO) was performed as previously described [40]. Briefly, the dis-

tal portion of the right middle cerebral artery was exposed and occluded by cauterization. The

artery was then cut off to be sure that there was no remaining blood flow to the corresponding

cortical region. During the first week after dMCAO, animals were provided with high calorie

gel diet (DietGel™ Boost, clear H2O) and injected subcutaneously with Ringer’s solution in

case of dehydration.

Transplantation

Human iPSCs were differentiated to neural stem precursor cells (NSPCs) via an embryoid

body step as previously described [41]. Briefly, upon plating, embryoid bodies generated neu-

ral rosettes, which were carefully picked, dissociated and grown in adhesion as iPSC-NSPC

line in the presence of 10 ng/ml FGF2, 10 ng/ml EGF (both from R&D systems) and B27

(1:1000, Invitrogen). The generated human iPSC-NSPC line was routinely cultured in mono-

layer on 0.1 mg/ml poly-L-ornithine- and 10 mg/ml laminin- (both from Sigma) coated plates

and passaged at a ratio of 1:2 to 1:3 every second to third day using trypsin (Sigma).

Intracortical implantation of human iPSC-NSPCs, transduced with lentivirus carrying GFP

and characterized in previous publications [5, 6, 41], was performed stereotaxically at 7 days

after MCAO. On the day of surgery, human iPSC-NSPCs were resuspended to a final concen-

tration of 100 000 cells/μl. A volume of 1 μl was injected at the following coordinates (from

bregma and brain surface): anterior/posterior: +0.5 mm; medial/lateral: +1.8 mm; dorsal/ven-

tral: -0.9 mm. Tooth-bar was set at -3.3 mm. Mice were injected subcutaneously with 10 mg/

kg Cyclosporine A every day during the first month after transplantation and every other day

during the second month.

Immunohistochemistry

Mice were deeply anaesthetized with an overdose of pentobarbital and transcardially perfused

with cold saline followed by 4% paraformaldehyde (PFA). Brains were post-fixed overnight in

Reactive gliosis and neurogenesis from iPS cells
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4% PFA and incubated in 20% sucrose for 24 h at +4˚C before being snap-frozen with dry ice,

cut in 30 μm thick coronal sections on a microtome and stored in antifreeze solution at -20˚C

until they were used.

Sections were preincubated in blocking solution for 1 h (5% normal serum and 0.25% Tri-

ton X-100 in 0.1 M potassium-phosphate buffered solution). Primary antibodies were diluted

in the blocking solution and incubated overnight at +4˚C (S1 Table). Fluorophore-conjugated

secondary antibodies (Molecular Probes or Jackson Laboratories) were diluted in blocking

solution (1:200) and applied for 2 h at room temperature. Nuclei were stained with Hoechst

(Molecular Probes or Jackson Laboratories) for 10 min and sections were mounted with

Dabco mounting medium. Images were obtained using epifluorescence (Olympus, Germany)

and confocal (Zeiss, Germany) microscopes.

Single labeling for NeuN was performed followed by biotin-avidin amplification. Briefly,

after incubation with the primary rabbit anti-NeuN antibody, the samples were incubated with

biotinylated secondary horse anti-rabbit antibody (1:200) and the staining visualized with avi-

din-biotin-peroxidase complex (Elite ABC kit, Vector Laboratories), followed by peroxidase-

catalyzed diaminobenzidine (DAB) reaction.

Quantifications and statistical analysis

All quantifications were performed by researchers blinded to the experimental groups. Lesion

volume was assessed in NeuN-immunostained sections. Intact areas, identified by NeuN+ cells

in the ipsilateral and contralateral hemispheres, were delineated and then measured using C.A.

S.T. software (Visiopharm, Denmark). The lesion area was calculated by subtracting the non-

lesioned (stained) area in the injured hemisphere from the corresponding area in the contra-

lateral hemisphere. Lesion volume was then obtained by multiplying the lesion area by the

thickness and distance between the sections (240 μm).

To evaluate the magnitude of glial reaction following stroke, we analyzed S100β immunore-

activity in a region of 1 mm around the stroke lesion or 300 μm around the graft. To evaluate

the glial reaction around the stroke lesion, one picture per section was acquired at 4x magnifi-

cation in the epifluorescence microscope, and a total of 3 sections per mouse were analyzed.

The area of S100β-immunoreactivity was determined by image analysis using CellSens Dimen-

sion 2010 software (Olympus, Germany). In each section, areas of immunoreactivity were

identified using a defined threshold for specific signal. Using these defined parameters, the

images of each region were analyzed by the software, which calculated the total area covered

by pixels/specific immunopositive signal. The values corresponding to total fluorescence areas

were averaged and expressed as the percentage of area covered by S100β per animal. The same

procedure was used to analyze the glial reaction around the graft.

To evaluate the activation of monocytes/microglia in response to the stroke, we counted

ED1+ and Iba1+ cells in the area adjacent to the ischemic lesion in three coronal sections at

+0.62, +0.86, and +1.1 mm from bregma using an epifluorescence microscope with 40x objec-

tive. A 1 mm region around the injury not containing the transplant was delineated and ana-

lyzed. To quantify ED1+ and Iba1+ cells in the region of the transplant, we analyzed a 300 μm

area surrounding the graft in all sections containing the transplant. Total number of positive

cells was estimated stereologically using C.A.S.T.-Grid software. Around 200 cells per animal

were counted in a predefined fraction of the area of interest.

Total numbers of GFP+ cells in the grafts were estimated stereologically, selecting the whole

graft as area of interest. GFP+ cells expressing DCX, NeuN, Ki67 and S100β were analyzed in the

same way and results were expressed as percentage of the total number of GFP+ cells. Colocaliza-

tion of different markers was in all cases validated with a confocal microscope (Zeiss, Germany).

Reactive gliosis and neurogenesis from iPS cells
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Statistical comparisons were performed using GraphPad Prism version 7 (GraphPad software,

La Jolla, CA, www.graphpad.com) by unpaired t-test. Data were presented as means ± SEM, and

differences were considered significant at p< 0.05.

Results

Attenuation of reactive gliosis does not alter infarct volume after distal

middle cerebral artery occlusion in mice

We first aimed to determine whether the extent of the ischemic lesion was affected in

GFAP-/-Vim-/- mice. Previous reports have indicated increased or unchanged infarct volume in

these mice after middle cerebral artery transection [23] or cortical photothrombotic stroke

[42], respectively. We used a model of cortical stroke in which a distal branch of the middle

cerebral artery is occluded, resulting in permanent cortical ischemia without reperfusion. We

observed 100% survival rate in both WT (9/9) and GFAP-/-Vim-/- (6/6) groups.

At 7 days after dMCAO, WT and GFAP-/-Vim-/- mice were transplanted with 100 000 GFP-

labeled hiPSC-NSPCs in the cortex adjacent the stroke lesion (within 1 mm from the lesion

border). All mice were sacrificed 8 weeks after transplantation. We analyzed in detail the dis-

tribution and extent of the ischemic injury in NeuN-stained sections to detect any possible

alteration due to the attenuated reactive gliosis. At 9 weeks after stroke, neuronal loss was con-

fined to the somatosensory cortex in both WT and GFAP-/-Vim-/- mice with no differences in

either location (Fig 1A) or volume of the ischemic damage (Fig 1B).

Attenuation of reactive gliosis does not alter survival or neurogenic

potential of human-iPSC-derived neural progenitors transplanted in

stroke-injured mice

To evaluate the impact of the attenuated reactive gliosis on the fate of the human iPSC-NSPCs

transplanted into stroke-injured mice, we first analyzed their survival and distribution. In both

WT and GFAP-/-Vim-/- mice, the human iPSC-NSPCs were located in the cortex up to 1 mm

from the ischemic injury. We observed the same variability in the distributional pattern of grafted

Fig 1. Genetic ablation of GFAP and vimentin does not alter volume of ischemic lesion following dMCAO. (A) Location of ischemic

injury at 9 weeks after dMCAO, covering most of the somatosensory cortex, as shown by NeuN-immunostaining in coronal sections

from WT and GFAP-/-Vim-/- mice. Scale bar = 1 mm. (B) Mean volume of ischemic lesion in WT (n = 9) and GFAP-/-Vim-/- (n = 6) mice.

Means ± SEM. KO = GFAP-/-Vim-/- mice.

https://doi.org/10.1371/journal.pone.0192118.g001
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cells in WT and GFAP-/-Vim-/- mice (Fig 2A and 2B). There was no significant difference between

the two groups in the number of GFP+ grafted cells at 8 weeks after implantation (Fig 2C), but

we observed a substantial variation in cell numbers in both WT and GFAP-/-Vim-/- mice.

Next we assessed the effect of the attenuation of reactive gliosis on the proliferation of trans-

planted human iPSC-NSPCs. We found a lower percentage of Ki67+/GFP+ cells of the total

number of GFP+ cells as compared to our previous reports [5, 43]. However, no differences

were observed between WT and GFAP-/-Vim-/- mice (Figs 2D, 2H, 2L and S1A). We then ana-

lyzed the phenotype of the transplanted cells in order to unveil a possible influence of the envi-

ronment on their fate. Irrespective of the attenuation of the glial reaction, the ratio between

neuroblasts (Figs 2E, 2I, 2M and S1B) (DCX+/GFP+) and mature neurons (Figs 2F, 2J, 2N and

S1C) (NeuN+/GFP+) remained the same as previously observed [5, 43]. Moreover, the number

of glial cells (Figs 2G, 2K, 2O and S1D) (S100β+/GFP+) did not differ between GFAP-/-Vim-/-

and WT mice and was almost 10 times lower than the number of mature neurons (Fig 2F and

2G): Taken together, these findings indicate that the attenuation of reactive gliosis does not

alter the differentiation of human iPSC-NSPCs towards neurons or astrocytes.

Attenuation of reactive gliosis does not alter inflammatory tissue

environment after distal middle cerebral artery occlusion in mice

The inflammatory reaction after stroke involves many different cellular players, which interact

with each other giving rise to the formation of a glial scar around the border of the ischemic

lesion composed of reactive astrocytes, activated microglia, monocyte-derived macrophages

(MDMs) and extracellular components [44]. Here we analyzed if the attenuation of reactive

gliosis following stroke affects microglia and MDM activation and their recruitment to the site

of injury.

We observed an accumulation of cells immunoreactive for the microglia/macrophage

marker Iba1 in the region adjacent to the ischemic lesion (Fig 3A and 3B), but their numbers

did not differ between WT and GFAP-/-Vim-/- mice (Fig 3C). Also the number of activated,

ED1+/Iba1+ microglia/macrophages (Fig 3A, 3B and 3D) and percentage of ED1+/Iba1+ cells

of the total number of Iba1+ cells (Fig 3E) were similar in the two groups.

Astrocytes around the ischemic lesion were visualized with antibodies against S100β, previ-

ously shown to be a reliable marker of mature astrocytes in both WT and GFAP-/-Vim-/- mice

[20]. Glial cells immunoreactive for S100β were distributed throughout cortex, with a higher

density at the lesion border (Fig 3F and 3G). Similar numbers of these cells were detected around

the stroke lesion in GFAP-/-Vim-/- and WT mice (Fig 3H). In agreement, the area covered by

astrocytes in the region adjacent to the injury calculated as percentage of the total area covered

by S100β immunoreactivity did not differ between WT and GFAP-/-Vim-/- mice (Fig 3I).

We finally assessed whether the inflammatory reaction in the region of the transplant

was affected in GFAP-/-Vim-/- mice. Similar to what was found around the stroke lesion, we

observed a higher density of microglia/macrophages and glial cells inside and around the

transplant. There was a comparable number of Iba1+ cells (Fig 4A, 4B and 4E), number of acti-

vated ED1+/Iba1+ microglia/macrophages (Fig 4F) and percentage of ED1+/Iba1+ cells of the

total number of Iba1+ cells (Fig 4G) in WT and GFAP-/-Vim-/- mice. Also, the number of S100β
positive cells (Fig 4C, 4D and 4H) and the relative S100β positive area (Fig 4I and 4J) were

comparable in WT and GFAP-/-Vim-/- mice in the region of the graft.

Discussion

The glial scar has been considered one of the barriers for CNS regeneration after injury, at

least in some neurological disorders [11, 19, 26, 45–47]. Here we used a mouse model of

Reactive gliosis and neurogenesis from iPS cells
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Fig 2. Attenuated reactive gliosis does not alter fate of human iPSC-NSPCs after transplantation in stroke-injured mice. (A-B) Distribution of GFP+ human

iPSC-NSPCs in the vicinity of the cortical stroke lesion in WT and GFAP-/-Vim-/- mice. Dotted line delineates the stroke lesion border, solid lines indicate the corpus

callosum; corpus callosum = cc, cortex = ctx, striatum = str, transplant = tr. Scale bar = 200μm. (C) Number of GFP+ human iPSC-NSPCs remaining in the tissue 8

weeks after transplantation. Means ± SEM. (D-G) Percentage of transplanted cells which are actively proliferating (Ki67+, D) (WT n = 6; KO n = 4), giving rise to

neural progenitor cells (DCX+, E) (WT n = 8; KO n = 4), neurons (NeuN+, F) (WT n = 7; KO n = 6) or glial cells (S100β+, G) (WT n = 9; KO n = 5) out of the total

number of GFP+ human iPSC-NSPCs. (H-O) Representative images of transplanted GFP+ cells co-expressing the proliferation marker Ki67 (H, L), the neuroblast

marker DCX (I, M), the mature neuronal marker NeuN (J, N) and the glial marker S100β (K, O) from a WT (H-K) and GFAP-/-Vim-/- (I-O) mouse. Arrowheads

indicate representative double positive cells. Scale bar = 20μm. KO = GFAP-/-Vim-/- mice.

https://doi.org/10.1371/journal.pone.0192118.g002
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genetically attenuated reactive gliosis (mice deficient for IF proteins GFAP and vimentin) to

determine the impact of ischemia-induced reactive gliosis on the regenerative capacity of

transplanted human iPSC-derived NSPCs. We find that attenuated reactive gliosis after corti-

cal stroke does not influence neurogenesis or commitment towards glial lineage of intracorti-

cally grafted human iPSC-NSPCs at 8 weeks after transplantation. Moreover, in this model,

attenuated reactive gliosis does not seem to alter the number and activation of microglia/mac-

rophages and number of astrocytes around the stroke lesion and the graft.

In our study, the genetic ablation of GFAP and vimentin did not affect the size of the ische-

mic injury in the dMCAO model. This finding is in contrast to the notion that reactive astro-

cytes are important for neuroprotection in the ischemic penumbra, as evidenced by the

decreased ability of GFAP-/-Vim-/- astrocytes to counteract hypoosmotic stress [25], by the

Fig 3. Attenuation of reactive gliosis does not alter number or activation of microglia/macrophages and the number of astrocytes in the region adjacent to the

ischemic lesion. (A-B) Representative images of microglia/macrophage activation, as shown by ED1 (green) and Iba1 (red) immunostaining, around the stroke

lesion in WT (A) and GFAP-/-Vim-/- (B) mice. Scale bar = 50μm. (C-E) Total number of microglia/macrophages (Iba1+ cells, C), and number (ED1+/Iba1+ cells, D)

and percentage (ED1+/Iba1+ cells of total number of Iba1+ cells, E) of activated microglia in the area around the ischemic lesion up to 1 mm from the lesion core in

WT (n = 9) and GFAP-/-Vim-/- (n = 6) mice. Means ± SEM. KO = GFAP-/-Vim-/- mice. (F-G) Representative confocal images of the cortical lesion in WT and

GFAP-/-Vim-/- mice at 9 weeks after dMCAO, immunostained for GFAP (red) and S100β (green). Scale bar = 200 μm. (H-I) Quantification of astrocytes around the

stroke lesion (1 mm around the lesion core) expressed as number of S100β+ cells per mm2 (H) and the relative S100β+ area (I) (WT n = 9; GFAP-/-Vim-/- n = 6).

Means ± SEM. KO = GFAP-/-Vim-/- mice.

https://doi.org/10.1371/journal.pone.0192118.g003
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Fig 4. Attenuation of reactive gliosis does not alter numbers or activation of microglia/macrophages and the number of astrocytes in the

region of the transplant after dMCAO. (A-B) Representative images of microglia/macrophage activation via ED1 (yellow) and Iba1 (red) staining,

around the transplant (GFP+ cells, green) in WT (A) and KO (B) mice. Scale bar = 50μm. (C-D) Representative confocal images of a transplant in

WT and GFAP-/-Vim-/- mice at nine weeks after dMCAO showing the transplanted cells (GFP+ cells, green) and astrocytes stained for S100β (yellow)

and GFAP (red). Scale bar = 100 μm. (E-G) Total number of microglia/macrophages (Iba1+ cells, E) and number (ED1+/Iba1+ cells, F) and

percentage (ED1+/Iba1+ cells of total number of Iba1+ cells, G) activated microglia in the area inside and around the transplant in WT (n = 9) and

GFAP-/-Vim-/- (n = 4) mice. Means ± SEM. KO = GFAP-/-Vim-/- mice. (H-J) Quantification of astrocytes in the area of the transplant (including the

area 100 μm from the transplant) expressed as number of S100β+ cells per mm2 (H) and the relative S100β+ area around (I) and inside (J) the

transplant (GFP+ cells, green) (WT n = 8; GFAP-/-Vim-/- n = 5). Means ± SEM. KO = GFAP-/-Vim-/- mice.

https://doi.org/10.1371/journal.pone.0192118.g004
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reduced ability of GFAP-/-Vim-/- astrocytes to protect co-cultured neurons and to eliminate

free oxygen species under oxygen and glucose deprivation and reperfusion [48], and by the

lower survival of cells in the inner retina of GFAP-/-Vim-/- mice in a retinal ischemia-reperfu-

sion model [49]. After middle cerebral artery transection, the GFAP-/-Vim-/- mice had a larger

infarct volume compared to WT mice [23], whereas in a photothrombotic model of stroke

[42] and here, after dMCAO, there were no differences between GFAP-/-Vim-/- and WT mice

in the size of the ischemic lesion. All these models lead to minimal reperfusion and photo-

thrombotic stroke and dMCAO are characterized by restricted lesions, confined to the cerebral

cortex. We previously reported an altered distribution of chondroitin sulphate proteoglicans

(CSPGs), glial scar components inhibiting post-traumatic neuronal regeneration, in

GFAP-/-Vim-/- mice subjected to phototrombotic stroke, indicating decreased CSPG expression

within the lesion boundary zone and increased expression within the lesion cortex [42].

Although we did not assess the distribution of CSPGs in the current study, it is possible that

altered distribution of CSPGs around the infarct and the transplant in mice with attenuated

reactive gliosis affected the survival and neuronal differentiation of the transplanted cells.

Taken together, these findings seem to indicate that the extent of the ischemia-induced dam-

age in GFAP-/-Vim-/- mice is highly dependent on the specific stroke model used.

We observed that attenuated reactive gliosis did not affect neurogenesis or glial differentia-

tion of intracortically grafted human iPSC-NSPCs after stroke. We previously showed that the

GFAP-/-Vim-/- mice exhibit increased basal and post-traumatic neurogenesis [34, 36] as well as

increased neurogenesis after neonatal hypoxic-ischemic injury [37]. We also demonstrated

better integration of neural grafts transplanted into retinas of GFAP-/-Vim-/- mice [38] and

increased neuronal differentiation of transplanted rat NSPCs in the hippocampus of

GFAP-/-Vim-/- mice [35]. However, these studies assessed neurogenesis and astrogenesis in the

intact brain or in other injury models, whereas in the present study adult mice were subjected

to ischemic cortical stroke in combination with a human-derived graft and immunosuppres-

sion. Astrocytes are known to respond differently to various types of brain damage, exhibiting

protective or detrimental functions [14, 19, 24]. A transcriptome analysis of reactive astrocytes

provides further support for the notion that phenotype of reactive astrocytes strongly depends

on the type of injury [18, 24]. The analysis by Zamanian et al. [24], as well as our previous data,

indicated that after transient MCAO followed by reperfusion, reactive astrocytes have predom-

inantly a beneficial/protective role [23, 24]. The present findings provide evidence that the

attenuation of astrocyte reactivity following permanent cortical ischemia does not sufficiently

alter the environment to influence neurogenesis from the transplanted human-derived NSPCs

in immunosuppressed mouse hosts.

The origin of the transplanted cells and the use of immunosuppression may be of particular

importance with regard to outcome. Indeed, besides the presence of an ischemic lesion, impor-

tant differences between the present experiment and the study showing increased neurogenesis

and astrogenesis from grafted rat NSPCs into intact hippocampus of GFAP-/-Vim-/- mice on

the Rag-1-/- background, i.e. lymphocyte-deficient [35], are the origin of the xenograft and

immunosuppression by cyclosporine A versus Rag-1 deficiency. Human and rodent NSPCs

exhibit different features such as growth requirements [50–52], differentiation kinetics [53],

surface protein expression (i.e., aquaporins) [54] and susceptibility to different chemical com-

pounds [55]. Therefore, it seems possible that the human-derived NSPCs respond differently

to signals in the mouse tissue environment as compared to rat cells, not least because the

NSPCs used here had been generated by reprogramming of human skin cells. It should also be

mentioned that, although it was given to both GFAP-/-Vim-/- and WT mice, cyclosporin A,

which per se can have direct effects on neurogenesis [56], might have confounded the data

interpretation.
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The absence of effect of the attenuation of reactive gliosis on neuronal differentiation of

human NSPCs could also be due to the fact that astrocytes are of mouse origin. Astrocytes are

crucial for proper neuronal function [19, 57, 58] and exhibit many interspecies differences:

astrocyte-to-neuron ratio is higher in humans than in rodents [59, 60], structure, morphology

and variety of human astrocytes greatly differ from those of rodent astrocytes with human astro-

cytes exhibiting higher complexity than rodent ones [61]. Therefore, the interaction between

transplanted NSPCs of human or rodent origin and murine reactive astrocytes, such as regula-

tion of neuronal differentiation of NSPCs via Notch signaling [36, 62], could greatly differ.

We and others have suggested an interplay between microglia/macrophage activation and

astrocyte reaction to injury [63–66]. We also recently demonstrated a tight relation between

MDMs and reactive astrocytes, as the depletion of circulating monocytes early after stroke

caused an overall reduction of astrocyte activation [43]. In line with previous studies, [23, 43]

we observed here that the attenuation of reactive gliosis influenced neither microglia/macro-

phage reactivity nor number and coverage of S100β astrocytes around the stroke lesion and

the graft. Interestingly, this is in contrast to increased presence and/or reactivity of microglia

that we previously reported in GFAP-/-Vim-/- mice that were crossed with the Batten disease

mouse model [65].

In conclusion, our data suggest that post-stroke reactive gliosis in mice does not affect neu-

ronal differentiation of intracortically grafted human iPSC-NSPCs. However, the implications

of these findings for a clinical setting, in which such cells would be implanted into the stroke-

injured human brain, need careful consideration due to the xenograft situation. Future studies

to determine whether human reactive astrocytes affect neurogenesis from human NSPCs in

experimental models are highly warranted.
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