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Abstract

Haploid cells are increasingly used for screening of complex pathways in animal genomes.

Hemizygous mutations introduced through viral insertional mutagenesis can be directly

selected for phenotypic changes. Here we present HaSAPPy a tool for analysing sequenc-

ing datasets of screens using insertional mutations in large pools of haploid cells. Candidate

gene prediction is implemented through identification of enrichment of insertional mutations

after selection by simultaneously evaluating several parameters. We have developed

HaSAPPy for analysis of genetic screens for silencing factors of X chromosome inactivation

in haploid mouse embryonic stem cells. To benchmark the performance, we further analyse

several datasets of genetic screens in human haploid cells for which candidates have been

validated. Our results support the effective candidate prediction strategy of HaSAPPy.

HaSAPPy is implemented in Python, licensed under the MIT license, and is available from

https://github.com/gdiminin/HaSAPPy.

This is a PLOS Computational Biology Software paper.

Introduction

Next generation sequencing (NGS) has facilitated the exploration of animal genomes in a

number of areas including recent approaches for genetic screening. In mammals, screening of

important biomedical pathways can be performed orders of magnitude faster in cell cultures

than in the organism and at a fraction of the cost. Cell based screens have been performed

using RNA interference [1], sequence specific nucleases [2], and mutagenesis of haploid cells.

The latter strategy has been originally implemented in a haploid human leukemia cell line [3]

and recently extended to haploid embryonic stem cells (ESCs). A number of successful screens

illustrate the power of pooled mammalian haploid cell screening. Clinically relevant pathways

[4,5] including pathogen [3,6–8] and toxin [9–12] mechanisms have been studied in human

haploid cells. Haploid ESCs from mouse [13,14] and from human embryos [15] have been

used to characterize mechanisms of drug action [13,14,16] and developmental questions

[17,18].
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In haploid cells mutations can be introduced in a hemizygous state by chemical mutagene-

sis [19], viral [13,18,20], and transposon vectors [16,17] ensuring that potential phenotypic

changes become expressed. Several screens have focused on gene trap vectors, which are char-

acterized by high mutagenicity. Thereby the identification of mutations is possible through

cloning the genomic flanking regions of the insertion sites. Typically, cell pools containing

tens of millions of viral insertions are subjected to selection for predefined phenotypic charac-

teristics. Comparison of viral insertions before and after selection is used to detect candidate

genes, whose mutations become enriched. Use of NGS techniques to simultaneously analyse

millions of insertion sites in large cell pools without isolating clonal cell lines has facilitated

comprehensive screening in mammalian cells [3].

Previously, computational methods for candidate identification in microbial genetic inser-

tional screens [21] and mammalian haploid cell screens [22] have been developed. Large mam-

malian genomes pose challenges as a lower mutation density can be achieved and regional

differences in chromatin packaging can bias the distribution of insertions. Here, we present

HaSAPPy (Haploid Screen Analysis Package in Python) for computational candidate identifi-

cation. HaSAPPy analyses NGS datasets to reconstruct viral insertions in control and selected

cell pools, estimates the enrichment of disruptive mutations, and the ratio of disruptive over

neutral mutations for each gene. From the fold enrichment of these three parameters during

selection candidate genes are identified as outliers from the distribution of all genes. We dem-

onstrate that this strategy is effective by benchmarking candidate prediction from published

datasets from screens aimed at identifying genes required for Xist-mediated gene repression

[18] and for viral entry [8,20] in mouse and human haploid cells.

Design and implementation

HaSAPPy uses NGS datasets for predicting candidates from insertional mutagenesis screens in

haploid cells based on selection for specific phenotypes including genetically encoded report-

ers, cell survival, and physical isolation of cells (Fig 1A). Gene-trap insertion sites are identified

by reads starting with the first base of the genomic sequence flanking the vector insertion [23]

(Fig 1B). Reads are preprocessed for eliminating regions with consistently low base quality and

maintaining a maximum of sequence information. Subsequently, adaptor removal is per-

formed and reads that become shorter than a threshold (default 26nt) are discarded. HaSAPPy

has been preconfigured with three read mappers including the Burrows-Wheeler transform

based Bowtie2 [24], and nvBowtie (https://github.com/NVlabs/nvbio/tree/master/nvBowtie),

and the hash table index structure based NextGenMap [25] using a test suite [26]. HaSAPPy

also accepts pre-aligned datasets in Sequence Alignment/Map (SAM) format and a threshold

for alignment quality (MAPQ).

Reconstruction of virus insertions

Unequal amplification during NGS library preparation makes read numbers ineffective for

estimating selection. We reconstruct independent insertions (I.I.) from the start positions of

read alignments in a strand specific manner (Fig 1C). To avoid that sequence errors on read

ends lead to multiple counting of insertions, reads within a genomic window on the same

strand are attributed to the same virus insertion (Fig 1C) and collapsed onto a single I.I. at the

position with the highest initial read count. A single I.I. per genomic position guarantees that

all insertions are independent. Genome annotation from Refseq Genes or ENSEMBL tran-

scripts, which is available through the UCSC genome browser Tables interface (http://genome.

ucsc.edu/cgi-bin/hgTables?command=start), is used for defining genomic intervals of genes

[27] that cover all transcript variants listed for a unique gene name. To further evaluate the
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mutagenic effect of insertions two sub-regions ‘Exon_specific’ and ‘Introns’ are considered.

Counts are obtained by iteration over I.I. from each dataset for all genes. Insertion counts for

introns are obtained in an orientation specific manner for assessing the trapping function of

the splice acceptor of the gene-trap (Fig 2A). Disrupting insertions (D.I.) are calculated as the

sum of exonic I.I., and intronic I.I. with the splice acceptor aligned with transcription. A bias is

calculated as the ratio of intronic insertions in sense over anti-sense orientation for each gene

(Fig 2B). I.I., D.I., and Bias are the basic parameters for estimating selection of genes in a

screen.

Candidate identification

HaSAPPy allows the analysis of multiple experiments against a single control, whereby each

dataset can contain multiple replicates. For predicting candidates we implement a method that

evaluates multiple parameters in parallel. Each gene is represented by a vector composed of the

Fig 1. Overview of insertional mutagenesis screening in haploid cells. (A) Mutations are introduced into haploid cells by gene-trap vectors and subsequently selected

for a desired phenotype for enriching driver mutations. Genomic regions flanking viral insertion sites are amplified and NGS libraries are prepared for sequencing.

Subsequently, reads are aligned to the reference genome, insertions are reconstructed and localized in genes. Parameters for candidate selection are output in a tabular

format. (B) Experimental strategy for NGS sequencing genomic regions flanking viral insertions. Linear amplification (LAM PCR) of genomic flanking sequences using

a specific primer in the virus vector is performed (1). LAM PCR products are purified and a single stranded adaptor is ligated at the 3’end (2). NGS libraries are

amplified by exponential PCR using primers at the end of the viral LTR and in the adaptor (3), and subsequently sequenced (4). P5, P7 represent Illumina NGS

adaptors. (C) For reconstruction of virus insertion events the mapping of the first base of each read is assumed to represent the genomic position of the insertion event

(I.). Read alignments are collapsed in a genomic window in a strand specific manner into the position of an independent insertion (I.I.), which is chosen as the position

with the highest initial read count. The cumulative read count is reported and only insertions that satisfy a read count threshold (grey) are considered in the analysis.

https://doi.org/10.1371/journal.pcbi.1005950.g001
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fold enrichment of I.I., D.I., and Bias in selected relative to control datasets. The majority of

genes, for which mutations are not selected, clusters in this vector space. Selection is detected

as the distance of a gene from this cluster by divergence of one or more parameters using the

Local Outlier Factor (LOF) [28]. Candidates are then ranked by evidence for selection by sort-

ing score factors in decreasing order.

Implementation

HaSAPPy is written in Python and depends on HTSeq [27] for handling sequence files and

genomic coordinates, and pandas, matplotlib, numpy, scipy, sklearn, and xlsxwriter for data

analysis and output. Parameters of the analysis including table layout and graphics are speci-

fied in a text file that is used to instantiate HaSAPPy. Sorting, filtering, and visualization of

insertions over candidate gene regions in SVG format is supported (S1 Fig).

Results

We developed HaSAPPy by analysing a screen for silencing factors in X inactivation [18],

which used an inducible Xist expression system in haploid mouse ESCs for identifying muta-

tions that mediate cell survival by escaping inactivation of the X chromosome. 7 control

(SRX1060416) and 7 selected (SRX1060407) datasets with a total of 300 million reads were

analysed on workstations with Ubuntu Linux version 14.04, at least 32 gigabytes memory, and

graphics processing units (GPUs). Runtimes between 90 minutes and 3 hours were predomi-

nated by read mapping and subsequent analyses were also performed on a Macbook (Intel

Core i7, 2.3GHz) in 30 minutes. We have evaluated different read mappers and alignment

parameters by benchmarking on experimental and generated read datasets using a previously

Fig 2. Parameters for measuring selection of viral insertions. (A) Disruptive insertions (D.I.) are calculated as the sum of exonic I.I. and intronic I.I. for

which the splice acceptor of the gene-trap is oriented in the direction of transcription of a gene. In this orientation the gene-trap vector will truncate the gene

and can be predicted to have a strong mutagenic effect. In reverse orientation the splice acceptor is not functional rendering intronic anti-sense insertions

neutral. (B) A Bias value is calculated as the ratio of sense (red) over anti-sense (green) intronic gene-trap insertions within one gene measuring the excess of

disruptive over neutral mutations. Bias can therefore provide evidence for selection independent of the number of I.I. and D.I.. Exonic mutations are

considered mutagenic in sense (blue) and anti-sense (yellow) orientation and are excluded from Bias calculation.

https://doi.org/10.1371/journal.pcbi.1005950.g002
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published test suite [26]. As a result HaSAPPy is preconfigured to run with Bowtie2 [24],

nvBowtie, and NextGenMap [25]. The latter two aligners utilize accelerators for speeding up

read alignment by taking advantage of recent hardware developments. Although some differ-

ences in the number of insertions assigned to candidate genes were observed (Fig 3A, S2 Fig,

Table A in S1 Text), our results suggest that GPUs can be effective in speeding up read map-

ping without a loss in sensitivity consistent with earlier results [25,26].

Reconstruction of independent virus insertion events

Independent insertions are reconstructed from read alignments for estimating the selection of

mutations in potential candidate genes over background. Typically, each insertion results in

Fig 3. Effects of analysis parameters on candidate identification. (A) Comparison of the number of I.I. that were obtained by

using different read mapping tools. Genes with more than 10 insertions are plotted and the sample aligned with Bowtie2 is used

as reference (I.I. reference). (B) Effect of genomic window size on defining I.I. from reads. Genes with more than 10 insertions

are plotted and a 5 nucleotide window is used as reference (I.I. reference). (C) Effect of read number threshold on defining I.I..

Genes with more than 10 insertions are plotted and a threshold for 2 reads is used as reference (I.I. reference).

https://doi.org/10.1371/journal.pcbi.1005950.g003
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multiple reads, whereby read counts reflect amplification and library preparation as well as the

abundance of insertions in the cell populations [22]. We find that individual insertions can be

represented by more than 105 reads. Their mapping to isolated genomic regions without anno-

tated genes hints at strong amplification bias. To ensure that only insertions that have been

selected independently are scored, we consider for each dataset at most one insertion for each

genomic position by combining all reads starting within a genomic window on the same

strand into a single independent insertion (I.I.). The genomic position with the highest initial

read count is reported along with the cumulative read count (Fig 1C). We evaluated the effects

of the window size on candidate ranking (Fig 3B, Fig 4A and 4B, and Table B in S1 Text).

Although, increasing window sizes did not affect the ranking of the highest scoring genes,

Fig 4. Effects of analysis parameters on candidate ranking. (A-B) Effects of variation in the window size applied to define I.I. in candidate

selection. (A) Venn-diagram comparing the 20 top candidates. (B) Effect of window size on I.I. for the experimentally validated candidates Xist
and Spen. The number of I.I. and the ratios of I.I. in Selected over Control samples for different window sizes are shown. (C-D) Effects of the read

number threshold for I.I. on candidate identification. (C) Venn-diagram comparing the 20 top candidates. (D) Insertion number (I.I.) of Xist and

Spen using different thresholds.

https://doi.org/10.1371/journal.pcbi.1005950.g004
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variation was observed for lower ranked candidates. We determined that a window size larger

or equal to 5 nucleotides resulted in greater reproducibility. The average distance between

independent viral insertions can be expected to be larger than 5 bases suggesting that loss of

information is negligible. Trimming or sequence errors cause alignment shifts of few nucleo-

tides and are corrected by our approach.

Read alignment errors can affect the analysis of genetic screens, where a single read can be

sufficient for the reconstruction of a viral insertion event. To mitigate this problem, we intro-

duce a threshold for the number of reads that is required for considering an insertion in the

analysis. Selecting stringent thresholds reduces the number of I.I., which is particularly prob-

lematic for unselected libraries with large numbers of insertions and lower read coverage

(Table C in S1 Text). Also candidate genes that are supported by insertions with low read cov-

erage become undetectable (Fig 3C, Fig 4C and 4D) reflecting a reduction in sensitivity. A

threshold of 2 reads to consider an insertion can reduce noise from alignment errors without

materially reducing I.I. numbers. Additionally, different read number thresholds can be used

for adjusting for sampling rates in control and selected datasets.

Comparison of candidate ranking strategies

For obtaining a candidate list a scoring function or selection strategy needs to be implemented.

Previous methods have applied Fisher’s exact test (FT) for detecting enrichment of D.I. in

selected compared to control samples [20]. VISITs implements a statistical candidate selection

strategy by combining FT for D.I. enrichment and a binomial test for comparing D.I. to I.I. in

selected samples [22]. Candidates are subsequently ordered by increasing probability of no dif-

ference between selected and control datasets. FT based methods have not considered quantifi-

cation of additional biological parameters for evidence of selection. Rank-based methods can

also be applied for sorting candidates, whereby genes are assigned a rank according to their

number of D.I., and the difference of the logarithmic rank positions of a gene in the selected

and control datasets is used for candidate ranking by sorting for increasing values. Although,

these strategies are generally effective they do not take full advantage of gene structure in-

formation. To improve on this situation, we developed a new algorithm based on two con-

siderations. Firstly, multiple parameters are evaluated for each gene in parallel for detecting

evidence for selection. Secondly, evaluation of parameters is performed relative to all other

genes. For each gene, we construct a vector using the fold enrichment of I.I., D.I. and Bias val-

ues between selected and control samples. The distance from the mass centre of all genes in

3-dimensional vector space is used to obtain a score by the Local Outlier Factor (LOF) algo-

rithm [28]. Candidates are identified and scored as most diverging genes similar to outliers

(Fig 5A and 5B, S3A Fig and Table 1).

We compared the performance of different candidate ranking strategies by applying methods

available in HaSAPPy (FT, Rank, LOF) and VISITs [22] for analysis of the X inactivation datasets

aligned with Bowtie2 (Fig 5C and Table D in S1 Text). Ten genes were shared among the first

twenty predicted candidates by all methods, whereby differences were observed in the ranking

order (S4 Fig). The LOF and Rank methods showed substantial overlap (Fig 5D and 5E) despite

the different algorithms and parameters. Candidates predicted by VISITs and FT showed limited

overlap, which is likely explained by implementation of additional data transformations in VISITs.

We next evaluated candidates by examining the orientation of insertions in introns (Bias [29]) as

evidence for selection. We observed an overall lower Bias for genes that were uniquely predicted

by FT and VISITs than by LOF (Table E in S1 Text). To further evaluate the robustness of candi-

date prediction, we segregated the 7 replicates of the X inactivation dataset and treated them as

independent experiments. Candidate lists obtained by using the median number of insertions in
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PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005950 January 16, 2018 7 / 16

https://doi.org/10.1371/journal.pcbi.1005950


control and selected samples substantially overlapped with lists obtained from using the entire

dataset and so did their relative order (Fig 5F and Table F in S1 Text). Lower ranked candidates

with few insertions were lost in the lists of median Rank and LOF analysis reflecting the subsam-

pling of the data, whereas candidates specifically predicted by FT showed substantial divergence.

In conclusion, replicates can increase the robustness of analyses, but the overall number of I.I. is

correlated with sensitivity for detecting potential candidates.

Fig 5. Comparison of candidate selection algorithms. (A) Visualization of fold enrichment of I.I. and D.I. (left panel), I.I. and Bias (Central panel), and D.I. and Bias

(right panel) during selection. The 20 top ranked genes by the LOF algorithm are shown in red, and the validated candidates Xist and Spen are annotated. (B) LOF

score of the first 100 genes of the candidate list plotted against position. The 20 top ranked genes are shown in red. (C) Venn-diagram showing overlap of the 20 top

ranked candidates identified by FT, VISITs, and LOF. (D) Heatmap showing correlation between candidate lists of FT, VISITs, Rank and LOF. 20 top candidates were

considered, colour coding indicates the percentage of genes that are in common. (E) Venn-diagram showing 20 top candidates using Rank and LOF algorithms. (F)

Heatmap showing overlap of the 20 top candidates by FT, Rank, and LOF algorithms using either the entire dataset (Sum) or the median of 7 replicates (Median).

Colour coding as in panel D. (G) Relative growth rate of 2 Tcf7l1 deficient ESC clones (red and blue) and WT control ESCs (black) after Xist induction with

Doxycycline is plotted. Error bars represent standard deviation (n = 3).

https://doi.org/10.1371/journal.pcbi.1005950.g005
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Xist and Spen were experimentally validated [18], and ranked top and third in the lists of

the Rank and LOF methods (Table D in S1 Text). FT or VISITs produce large selections of

candidates in which Xist and Spen are present. Effectively, these occupy lower positions. Tcf71l
is predicted as a potential candidate by all methods and suggested at the top of the list output

by VISITs and FT when sorted for decreasing probability of no difference. For this reason we

were interested in evaluating Tcf7l1 experimentally and engineered a mutation in the first

exon using CRISPR/Cas9 nucleases. Loss of Tcf7l1 protein was confirmed by Western analysis

(S8 Fig). In HATX3 ES cells, a Doxycycline inducible Xist allele facilitates to study the effect

of a Tcf7l1 mutation on Xist function [18]. Induction of Xist caused a similar cell loss in the

parental and Tcf7l1 deficient HATX3 ESCs (Fig 5G), which was not comparable to increased

survival caused by a mutation in Spen [18]. Therefore, Tcf7l1 is likely not involved in Xist
mediated gene repression. Selection of Tcf7l1 might be explained by a generally enhanced self-

renewal and reduced differentiation of Tcf7l1 deficient mouse ESCs [30]. Hence, what appears

to be detected is a positive selection for Tcf7l1 mutations in mouse ESCs, which is unrelated to

a loss of Xist function. For elimination of such candidates additional considerations are

required.

Visualization of insertions for candidate validation

We implemented a graphical view of insertions in candidate gene loci into HaSAPPy that facil-

itates a comparison between selected and control samples. Colour coding is used for sense and

anti-sense insertions for visualization of a selection for disruptive over neutral mutations

within introns. We observe an increase of insertion numbers in selected samples for genes that

were identified by all ranking strategies (FT, VISITs, Rank and LOF) and the enrichment for

mutagenic insertions can be confirmed (S4 Fig). Additionally, genes that are uniquely pre-

dicted by the LOF algorithm have similar properties (S5 Fig). In contrast, the candidate list

produced by the FT method (S6 Fig) contains genes characterized by a high number of

Table 1. LOF selected candidates.

Gene Score II DI Bias

Xist 104.0 18.4 27.3 1.0

Hira 59.7 10.2 15.5 6.8

Spen 52.5 6.5 9.2 18.0

Med25 46.6 8.1 12.0 7.4

Cdk8 39.2 3.6 5.0 18.4

Kdm5b 32.6 2.0 3.2 14.3

Tcf7l1 32.2 2.5 5.4 12.7

Eed 23.0 3.0 4.5 7.6

Cat 21.9 0.6 1.0 14.8

Fbrsl1 21.7 1.6 2.5 9.4

Rbm12 21.5 4.4 6.3 3.8

Fbxw7 20.6 1.9 2.7 8.5

Ubn2 20.6 6.4 9.3 6.5

Nsd1 19.8 2.3 3.2 7.4

Cpne1 19.6 4.1 5.6 3.3

Smarcad1 18.5 3.2 4.6 3.3

Scaf8 15.0 2.5 3.9 3.2

Suz12 14.1 2.1 2.7 4.7

Specc1l 11.7 0.7 0.8 5.4

https://doi.org/10.1371/journal.pcbi.1005950.t001
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mutations in both selected and control samples. This peculiarity was also observed in VISITs

(S7 Fig) suggesting that insertion number independently from evidence of selection influences

the prediction of candidates by FT based methods.

Benchmarking candidate prediction

For comprehensively benchmarking HaSAPPy we reanalysed several published screens in

human haploid cells for resistance to virus entry [8,20]. These studies differ from the screen of

silencing factors in X inactivation in two important ways. Firstly, the screens were performed

in human haploid cells and therefore require the use of the human genome and annotation for

the analysis. Secondly, the datasets were generated using an Illumina HiSeq instrument and

consist of much higher read numbers of 30 nucleotide length, which is shorter than the read

length in our Xist screen [18]. HaSAPPy was run using our previously determined parameters.

The top 4 predicted candidates by the LOF algorithm have been experimentally validated fac-

tors for Lassa virus entry [20] suggesting that HaSAPPy detects candidates accurately and with

similar success as the manually curated strategy of the original study (Fig 6A and 6B, S9 Fig

and Table G in S1 Text). Similar results were obtained for the datasets of Staring et al. [8].

PLA2G16 has been validated to be essential for Poliovirus, Coxsackievirus B1 and Coxsackie-

virus A7 infections and was predicted as top candidate by HaSAPPy (S10 Fig and Table K in

S1 Text). In addition, we find evidence for selection of NBPF20 through a high enrichment in

D.I. mutations. NBPF20 has not been detected in the original study. Taken together, the per-

formance of HaSAPPy with preset parameters in a total of 5 different screens [8,18,20] suggests

a wide range of applications over different genomes and sequencing technologies. The robust-

ness against changes in data analysis parameters (Fig 6C–6E and Table H–J in S1 Text) facili-

tates the adaptation and use of HaSAPPy as a standardized analysis method for haploid cell

genetic screens.

Discussion

Analyses of genetic screens require sensitivity to avoid missing individual candidates. Path-

ways can be represented by single candidates, when redundancy or lethality reduces opportu-

nities of discovery. Conversely, false predictions can lead to costly experimental validation,

which limits the number of genes that are followed up. Therefore there is a need for effective

candidate ranking. NGS datasets from genetic screens require strategies to identify evidence

for selection and reduce technical noise that differ from other sequencing analysis problems.

Our study introduces three methodical procedures for candidate prediction in haploid

screens.

Firstly, we aim to accurately reconstruct viral insertion events from read alignments while

eliminating effects from amplification bias, sequencing and alignment errors. In HaSAPPy,

reads within a genomic window are used to reconstruct a viral insertion event that is guaran-

teed to have been selected independently. This procedure is unlikely to remove truly indepen-

dent insertions, but will remove effects from alignment shifts caused by sequencing and

amplification errors. Window size and threshold for the number of reads for defining an inser-

tion can be adjusted to further increase the robustness of candidate selection.

Secondly, HaSAPPy scores multiple parameters for each gene simultaneously to detect evi-

dence for selection. Considering the mutagenic effect of intronic insertions ensures that candi-

dates with a wide range of possible gene structures can be detected. Whereas an increase in the

total number of insertions can be expected for selected genes, statistics can be less sensitive for

small genes. Multiple viral integrations per cell can lead to co-selection of a driver mutation

with passenger mutations that are not causal to the phenotype. Genes that are in genomic
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regions with frequent virus insertions can maintain high numbers of insertions through co-

selection. Additional evidence for selection can come from examining disruptive mutations,

and the ratio between disruptive and neutral intronic mutations can be useful to detect evi-

dence of selection if large introns are present. Scoring these three parameters simultaneously

in a mathematically consistent framework is achieved by using a multidimensional outlier

method. We verified that this approach is effective in predicting candidates from 5 different

screens. HaSAPPy is able to rank candidates in order of decreasing evidence for selection and

performs equal or better than previously used methods. Co-selection of passenger mutations

Fig 6. Benchmarking HaSAPPy on a screen for resistance to Lassa virus entry. (A) Visualization of parameter distribution for the LOF algorithm.

For each gene the fold enrichment after selection in I.I. and D.I. (left panel), I.I. and Bias (Central panel) and D.I. and Bias (right panel) is plotted.

The 12 top ranked genes by the LOF are marked in red, and validated candidates are annotated. (B) Venn-diagram comparing 20 top candidates

predicted by the FT, VISITs and LOF algorithms. (C) Venn-diagram showing overlap of the 20 top ranked candidates using Bowtie2, nvBowtie and

NextGenMap (Ngm) for read alignment. (D) The Venn-diagram shows the overlap of the 20 top candidates using different window sizes, and (E)

using different read number thresholds for including an I.I. in the analysis.

https://doi.org/10.1371/journal.pcbi.1005950.g006
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may affect the predictions of FT based algorithms leading to a larger set of candidates that are

not sorted for biological evidence for selection. In addition, HaSAPPy compensates experi-

ment specific effects that act on all genes using an outlier detection strategy without a need for

normalizing datasets. Complex library preparation, amplification and insertion biases in hap-

loid screening can lead to a lack of homogeneity in insertion coverage between samples. Nor-

malization strategies are therefore difficult to implement and risk distorting the experimental

information through unanticipated effects of data transformation.

Finally, for enabling researchers to add biological expertise and literature to candidate eval-

uation, HaSAPPy makes all parameters of the analysis accessible in a customizable table for-

mat. A graphical overview of insertions in candidate genes supports the user with selecting

candidates for further studies.

Availability and future directions

HaSAPPy is implemented in Python and released as open-source software under the MIT

license. It supports many typical haploid screening projects and can be adapted to experimen-

tal designs and candidate ranking strategies. Presently, HaSAPPy does not utilize transcript

datasets of haploid cells [31]. In future versions candidates for which little evidence of tran-

scription is observed could be eliminated and gene models could be refined. Development of

graphical user interfaces for specifying run parameters could further facilitate interactive use

of HaSAPPy on workstations. It will also be enticing to explore methods for improving read

alignment of screening datasets, which often contain short reads and sequence errors. A pre-

liminary analysis indicates that nearly half of all viral insertions occur within genes.

Datasets, genome assemblies, and accession numbers

Source code is available from https://github.com/gdiminin/HaSAPPy. Datasets of the X inacti-

vation screen can be downloaded from the SRA archive (https://www.ncbi.nlm.nih.gov/sra)

and consists of 7 control (SRX1060416) and 7 selected samples (SRX1060407). The Lassa

Virus resistance dataset consists of 1 control (SRR663777) and 1 selected (SRR656615) sample.

The Picornavirus resistance dataset consists of 1 control (SRR663777) and 3 selected (PV1-

SRR4885982, CVB1- SRR4886610, CVA7- SRR4887274) samples. Alignments to the mouse

and human genomes were performed using the UCSC mm10 and USCS hg38 assemblies,

respectively.

Supporting information

S1 Text. Supporting information.

(DOCX)

S1 Fig. Screen capture illustrating HaSAPPy output.

(TIF)

S2 Fig. Effects of read mapper choice on candidate ranking. (A-B) Venn-diagram compar-

ing the 20 highest ranked candidates using Bowtie2, nvBowtie and NextGenMap for read

alignment. Candidate predictions were performed using the LOF algorithm on fold enrich-

ment (A) and rank (B) datasets. (C) Number of I.I. in Xist and Spen using different read align-

ers in control and selected samples and the ratio thereof.

(TIF)

S3 Fig. HaSAPPy candidates in X inactivation screen (Monfort et al., 2015). (A) Plot of

genes represented according to fold enrichment during selection in I.I., D.I. and Bias. The 20
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top ranked genes using the LOF algorithm are shown in red. The positions of Xist and Spen are

annotated. (B) Distribution of I.I. at the level of genes detected by HaSAPPy and biologically

validated in Monfort et al., 2015. Selected (top panel) and Control (bottom panel) samples are

compared. Insertions occurring in the orientation of gene transcription are marked in red,

anti-sense insertions are marked in green.

(TIF)

S4 Fig. Candidates identified by all ranking strategies. Distribution of I.I. at the level of

genes detected by the different algorithms. Selected (top panel) and Control (bottom panel)

samples are compared. Insertions occurring in the orientation of gene transcription are

marked in red, anti-sense insertions are marked in green.

(TIF)

S5 Fig. Candidates identified specifically by the LOF analysis. Distribution of I.I. within

genes detected by the LOF algorithm (Outlier-only). Selected (top panel) and Control (bottom

panel) samples are compared. Insertions occurring in sense and antisense orientation of gene

transcription are marked in red, and green, respectively.

(TIF)

S6 Fig. Candidates identified specifically by the Fisher analysis. Distribution of I.I. within

genes detected by the FT algorithm (Fisher-only). Selected (top panel) and Control (bottom

panel) samples are compared. Insertions occurring in sense and antisense orientation of gene

transcription are marked in red, and green, respectively.

(TIF)

S7 Fig. Candidates identified specifically by VISITs analysis. Distribution of I.I. within

genes detected by VISITs algorithm (VISITs-only). Selected (top panel) and Control (bottom

panel) samples are compared. Insertions occurring in sense and antisense orientation of gene

transcription are marked in red, and green, respectively.

(TIF)

S8 Fig. Generation of Tcf7l1 deficient ESCs lines. Western analysis of two Tcf7l1 deficient

(-/-) and one control (WT) HATX3 ES cell clones. Commassie Blue staining is used to control

for loading (below).

(TIF)

S9 Fig. HaSAPPy candidates in the human haploid screening for factors involved in resis-

tance to Lassa Virus entry (Jae et al., 2013). A) Plot of genes represented according to fold

enrichment during selection in I.I., D.I. and Bias. The 12 top ranked genes using the LOF algo-

rithm are shown in red. The positions of SLC35A1, B4GAT1, TMEM5, and ST3GAL4 are anno-

tated. (B) Distribution of I.I. at the level of genes detected by HaSAPPy and biologically

validated in Jae et al., 2013. Selected (top panel) and Control (bottom panel) samples are com-

pared. Insertions occurring in the orientation of gene transcription are marked in red, anti-

sense insertions are marked in green.

(TIF)

S10 Fig. HaSAPPy candidates in the human haploid screening for factors involved in

Picornaviridae Virus entry (Staring et al., 2017). (A) Plot of genes represented according to

fold enrichment during selection in I.I., D.I. and Bias for Poliovirus (PV1), Coxsackievirus B1

(CVB1) and Coxsackievirus A7 (CVA7) infection. Genes characterized by a LOF value higher

than 15 are shown in red. Genes with a LOF value higher than 20 are annotated in the plot. (B)

Distribution of I.I. within genes detected by the LOF algorithm and in common among the
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different selection strategies. PLA2G16was biologically validated in Staring et al., 2017.

Selected (PV1, CVB1 and CVA7—top panels) and Control (bottom panel) samples are com-

pared. Insertions occurring in sense and antisense orientation of gene transcription are

marked in red, and green, respectively.

(TIF)
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