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Abstract

With the recent advent of immunotherapy, there is a critical need to understand immune cell 

interactions in the tumor microenvironment in both pan-cancer and tissue-specific contexts. Multi-

dimensional datasets have enabled systematic approaches to dissect these interactions in large 

numbers of patients, furthering our understanding of the patient immune response to solid tumors. 

Using an integrated approach, we inferred the infiltration levels of distinct immune cell subsets in 

23 tumor types from The Cancer Genome Atlas. From these quantities, we constructed a co-

infiltration network, revealing interactions between cytolytic cells and myeloid cells in the tumor 

microenvironment. By integrating patient mutation data, we found that while mutation burden was 

associated with immune infiltration differences between distinct tumor types, additional factors 

likely explained differences between tumors originating from the same tissue. We concluded this 

analysis by examining the prognostic value of individual immune cell subsets as well as how co-

infiltration of functionally discordant cell types associated with patient survival. In multiple tumor 

types, we found that the protective effect of CD8+ T cell infiltration was heavily modulated by co-

infiltration of macrophages and other myeloid cell types, suggesting the involvement of myeloid-

derived suppressor cells in tumor development. Our findings illustrate complex interactions 

between different immune cell types in the tumor microenvironment and indicate these 
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interactions play meaningful roles in patient survival. These results demonstrate the importance of 

personalized immune response profiles when studying the factors underlying tumor 

immunogenicity and immunotherapy response.
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Introduction

Immunotherapy has emerged as a promising modality for the treatment of cancer. Blockade 

of immune checkpoint proteins, including CTLA4 and PD1/PDL1, has shown clinical 

efficacy in multiple tumor types, with responders experiencing prolonged remission that can 

last several years (1). These therapies predominantly function by enhancing and prolonging 

cytolytic effector functions of infiltrating lymphocytes, resulting in improved anti-tumor 

immunity. Despite these successes, a large fraction of treated patients is either non-

responsive or develops intolerable side effects to immunotherapeutic approaches (2,3). In 

some cases, this may be due to an absence of cytotoxic cells in the patients’ tumors which 

negates any potential benefit of checkpoint blockade therapy (4–6). However, several 

negative checkpoint regulators have now been identified that function non-redundantly to 

CTLA4 and PD1/PDL1 (7–9). Many of these regulators are expressed by different immune 

cell subsets that may be present in varying quantities in the tumor microenvironment of 

individual patients. These cell types interact with effector cells in the tumor 

microenvironment, altering their otherwise normal functions. Understanding how this 

interplay differs between patients can provide insights into why some patients have more 

effective anti-tumor immune responses and greater sensitivity to immunotherapy than others

Recently, high-dimensional datasets, such as The Cancer Genome Atlas (TCGA), have 

allowed for the large-scale interrogation of immune activity in multiple tumor types. 

Analyses of these datasets have made important advances in applying genomic data to tumor 

immunology. DNA sequencing data has been analyzed to connect neoantigen load to T cell 

response (10) and link somatic mutations to immune infiltration (11). Expression data has 

been utilized to measure the cytolytic activity in the tumor microenvironment (12) and more 

recently, to quantify the infiltration levels of individual immune cell subsets (13–17). One 

common theme across these studies is the integration of several types of genomic and 

clinical data, allowing for associations to be made between immune activity, gene 

expression, mutation burden, and patient survival.

Here, we perform a systematic analysis to investigate the immune cell interactions that take 

place in the tumor microenvironment of a diverse array of tumor types. We apply our 

previously developed computational framework (16,18) to quantify infiltration from multiple 

immune cell subsets and apply the resulting scores to address several questions relating to 

the interplay between immune cells in the context of cancer. First, we examine the rate at 

which different immune cell subsets co-infiltrate with each other and examine how the 

quantities of each subset differ across tumor types. Second, we investigate the factors driving 
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tumor immunogenicity by examining the associations between mutation load and immune 

infiltration in a pan-cancer and tumor type-specific manner. Third, we map the effect 

infiltration of different immune cell subsets has on patient survival by performing a pan-

cancer survival meta-analysis spanning 125 independent datasets. Finally, we explore the 

clinical effect of immune cell interactions in the tumor microenvironment by performing 

multi-class survival analyses based on each patient’s personal immune response profile. 

Through these analyses we demonstrate the complexity of immune cell interactions in the 

tumor microenvironment, while providing insights into the tumor-intrinsic features that 

influence immune infiltration and the effect these subsets have on patient survival in both 

pan-cancer and tissue-specific contexts.

Materials and Methods

Datasets

Datasets comprising RNAseq from 7172 TCGA tumors and mutation annotation files from 

6413 TCGA tumors (5061 which overlapped with RNAseq data; Supplementary Table S1) 

were obtained from the TCGA Data Portal in June 2015 (level 3, RNAseqV2; http://

cancergenome.nih.gov/). Absolute expression values obtained from RNAseq data were 

log10 transformed. Raw whole exome sequencing data from paired tumor-normal samples 

for four tumor types (colon adenocarcinoma, rectum adenocarcinoma, uterine corpus 

endometrial carcinoma, uterine carcinosarcoma) were obtained from CGHub (https://

cghub.ucsc.edu/). These data were used to infer microsatellite instability by running 

MSIsensor using default parameters (19). Consensus purity estimates for available TCGA 

tumors were downloaded from a supplemental file from prior work (20). Flow cytometry 

data was obtained from the gene expression omnibus (GEO) under accession number 

GSE65133 (15). Additional gene expression data and the associated survival data from 125 

datasets was obtained from PREdiction of Clinical Outcomes from Genomic profiles 

(PRECOG, https://precog.stanford.edu/precog_data.php; Supplementary Table S2) (21) and 

a supplementary breast cancer dataset (GSE11121) from GEO (22). All datasets obtained 

from hematopoietic cancers were removed from PRECOG for further analyses.

Raw gene expression data from the Immunological Genome Project (ImmGen) was obtained 

from GEO (GSE15907) in October 2015. Robust Microarray Analysis was used for 

background correction of raw data, followed by quantile normalization. Each probeset 

(Affymetrix MoGene-1_0-st) was then fitted to a multichip linear model using the 

‘expresso’ function from the ‘affy’ library in R (23). Probes were collapsed into gene 

symbols using the probe with the highest average intensity across all cell types. Murine 

transcripts were matched to human transcripts on the basis of gene symbol.

Macrophage gene expression profiles used for cell profile correlation analyses were 

downloaded from a supplemental file from prior work (24) and integrated into the processed 

ImmGen dataset. This dataset was quantile normalized at the profile level, median 

normalized at the gene level, reduced to the genes with the top 50% most variable expression 

across samples, and then z-transformed so that each cell’s resulting profile followed a 

standard normal distribution. M1-like and M2-like macrophages in this dataset were defined 

based on clustering analyses performed in the original study.
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Calculation of immune cell relative expression profiles

Our framework uses the relative gene expression profiles of reference immune cells to 

determine infiltration levels in human tumors. To calculate these profiles, the absolute 

expression values from each gene in the processed ImmGen dataset are median normalized 

across all cell types. These values are then z-transformed so that the expression profile for 

each cell type follows a standard normal distribution. As a result of this step, each cell now 

has an associated z-score profile where, for a given cell type, values >0 indicate higher 

relative expression, while values <0 indicate the opposite. At this stage, replicate cell types 

are collapsed into an average by taking the mean z-score of each replicate and then 

renormalizing via z-transformation. To input these profiles into the binding association with 

sorted expression (BASE) algorithm that drives our framework (25), each cell’s z-score 

profile is then split into an up- and down-regulated profile. Each cell’s up-regulated profile is 

comprised of all genes where the z-score is >0, with genes with z-scores <0 being set to 0. 

The down-regulated profile is comprised of the opposite. The up- and down-regulated 

profiles for each cell type are then each converted to p-values and −log10 transformed to add 

more weight to each cell’s differentially expressed genes. The resulting transformed values 

>10 are trimmed to 10 to avoid outliers, and then divided by the maximum value in the 

dataset to rescale values from 0 to 1. R code for this process as well as the weight profiles 

for four representative cell types from the ImmGen dataset are contained with this 

manuscript (Supplementary Software S1, Supplementary Table S3).

Calculation of the infiltration score

Calculation of the infiltration score is performed using the BASE algorithm, which has been 

previously described (25). R code for the BASE algorithm is available in a prior publication 

(16) and here as well (Supplementary Software S2). BASE infers immune infiltration by 

integrating the transformed reference immune cell profiles with patient gene expression data. 

Each reference immune cell’s up- and down-regulated profile is used as a weight vector, w = 

[w1, w2, w3 … wj … wn]; where wj = the transformed expression value for gene j and n = 

the # of genes in the reference profile. Patient gene expression profiles are quantile-

normalized and then ranked from high to low. BASE defines these normalized profiles as a 

gene expression vector g = [g1, g2, g3 … gj … gn]; where gj = a patient’s normalized 

expression value for their jth ranked gene. Following this step, RNAseq and one-channel 

array datasets undergo an additional median normalization step. BASE uses these two 

vectors to calculate a pre-cell lineage score (pCLS) for the up-regulated (pCLSup) and down-

regulated (pCLSdn) profiles from a given cell type. These scores are later used to calculate 

the overall infiltration score.

To obtain the pCLSup and pCLSdn, the BASE algorithm determines the absolute maximal 

deviation between a foreground function and a background function calculated using the g 
and w vectors. The foreground function represents the cumulative distribution of a given 

patient’s gene expression values weighted by the corresponding transformed immune cell 

expression values:
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1

The background function represents a given patient’s gene expression values weighted by 

the corresponding genes’ complementary transformed immune cell expression values (1 − 

w):

2

To obtain the maximal deviation between these two functions, the maximum difference 

between the foreground and background function (pCLS+) must be compared to the minimal 

(most negative) difference between the foreground and background function (pCLS−). The 

pCLSup/dn with the largest absolute difference becomes the final pCLSup/dn:

3

4

5

The resulting statistics provide a measure of similarity between a patient’s gene expression 

profile and the relative expression profiles of different immune cells. A high pCLSup is the 

result of a large absolute deviation between the foreground and background function. This 

occurs when a given immune cell’s lineage-specific genes, which are given high weights, are 

also ranked toward the top of a patient’s gene expression profile. This causes there to be a 

sharp increase early and then a late plateau in the foreground function, and the opposite in 

the background function. In the case of the pCLSdn, higher weights correspond to negative 

differential expression in a given cell type, and thus the role of the background and 

foreground function will be swapped compared to the pCLSup calculations. Thus, a more 

negative pCLSdn is indicative of high similarity between a patient and cell type’s down-

regulated genes.

The resulting pCLSup and pCLSdn are normalized through a permutation-based method 

where the gene labels in vector g are permuted 1000 times resulting in 1000 permuted gene 

expression vectors (g1, g2, …, g1000). A pCLSup/dn is then calculated using each permuted 

expression vector to obtain a null pCLSup/dn distribution. The original pCLSup and pCLSdn 
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are then divided by the mean of the absolute value of their respective null pCLSup/dn 

distribution, yielding the normalized CLSup and CLSdn. The two scores are then integrated 

together by subtracting the CLSdn from the CLSup. This final term, referred to as the cell 

lineage score (CLS) or infiltration score, represents immune infiltration of a given cell type 

in a patient’s tumor.

Network and correlation analyses

The immune cell co-infiltration network was constructed using a Spearman correlation 

matrix that assessed the relationship between all possible ImmGen immune cell pairs. All 

correlations were adjusted for tumor purity through partial correlations between infiltration 

scores of each cell type and consensus purity estimates (20). Only immune cells anti-

correlated with tumor purity at the pan-cancer level (Rho < −0.1) were included in this 

analysis. An edge between two nodes in the network represented two immune cells whose 

infiltration scores were correlated at Rho > 0.45. To obtain genetic similarity measurements 

between the reference cell types, gene expression values from the ImmGen dataset were 

median normalized across all cell types and then each profile was z-transformed. A genetic 

similarity matrix was then constructed of pairwise Spearman correlations between the z-

score profiles of all possible immune cell pairs. These genetic similarity scores were used to 

color the edges between each node in the co-infiltration network. The network was 

visualized using the “Organic yFilesLayout” in Cytoscape v3.4.0.

Survival analyses

Survival meta-analyses were performed using gene expression data obtained from PRECOG. 

For each PRECOG dataset, infiltration scores for all cell types were fit to a univariate Cox 

proportional hazards model using the “coxph” function from the R “survival” package. Two-

sided p-values calculated using a Wald test were derived from each Cox proportional 

hazards model and converted to z-scores. The hazard ratio from each Cox proportional 

hazards model was used to determine the sign of the z-score, with a hazard ratio > 1 

corresponding to a z-score > 0 and a hazard ratio < 1 corresponding to a z-score < 0. Meta-z-

scores were calculated by applying Stouffer’s method to z-scores from datasets of the same 

cancer type (26). Survival distributions for different cell types were visualized using Kaplan-

Meier curves created by the “survfit” function from the R “survival” package. The 

thresholds for each Kaplan-Meier plot were determined based on each dataset’s unique 

infiltration score distribution. Differences between the survival distributions in each Kaplan-

Meier plot were calculated using a log-rank test through the “survdiff” function from the R 

“survival” package.

Code availability

The R code for the BASE algorithm and immune cell weight calculation can be found in 

Supplementary Software S1 and S2.

Results

To quantify the levels of tumor-infiltrating immune cells in human cancer, we applied our 

integrated framework (16), which utilizes the whole transcriptome of 220 murine 
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hematopoietic cell types generated by ImmGen (27) as a reference to infer relative levels of 

immune infiltration in human cancer patients. The ImmGen dataset provides a rich resource 

of reference hematopoietic gene expression profiles that have been carefully collected and 

analyzed through rigorous standardized procedures. The high degree of global conservation 

between human and mouse hematopoietic gene expression profiles make this dataset an 

excellent tool for probing immune cell interactions in the tumor microenvironment (28). The 

first step of our framework is to assign weights to the genes of each reference profile 

according to how differentially they are expressed compared to other reference cell types. 

Genes that are up-regulated relative to background become part of the up-regulated set, 

while down-regulated genes make up the down-regulated set. We then input these two sets of 

weights, along with patient gene expression profiles, into our BASE algorithm (25). For a 

given reference cell type, BASE functions by calculating two rank-ordered cumulative 

distributions representing the product between the value of each gene in a patient expression 

profile and that gene’s respective up- and down- weights in the reference cell type. It then 

takes the maximal difference between the two distributions, similarly to a Kolmogorov-

Smirnov test. This difference is then normalized relative to a null distribution to obtain the 

final score, which represents the level of infiltration for that cell type.

Quantification of immune infiltration in human cancer

We have previously shown that the scores generated by our algorithm are negatively 

correlated with expression-based tumor purity (29) and positively correlated with 

histological lymphocytic infiltration (30) in human breast tumors. We have additionally 

shown that the murine profiles of ImmGen could serve as proxies for human immune cell 

profiles (16). To assess the performance of our algorithm on individual cell subsets, we 

applied it to previously generated gene expression data from human peripheral blood 

mononuclear cell flow cytometry experiments (15). For most reference profiles, the scores 

generated by our algorithm were significantly positively correlated with the flow cytometry 

fraction of their respective cell type and weakly associated with unrelated cell types, 

indicating good specificity (Supplementary Table S4). To confirm that our method could be 

extended into tumors, we applied it to RNAseq data from 23 TCGA tumor types 

(Supplementary Table S3) and correlated the resulting infiltration scores with tumor purity 

for the 21 tumor types with available consensus purity estimates (20) (Supplementary Table 

S5). At the pan-cancer level, 60% of the ImmGen cell type infiltration scores were 

negatively correlated with tumor purity (Rho < −0.1), indicating that the majority of 

reference profiles could distinguish between tumor-specific and lymphocyte-specific signals. 

The cell types demonstrating positive tumor purity correlations were primarily from stem 

cells, pre- and pro- B cells, thymal T cells, and CD8+ effector T cells in the early stages of 

activation (12 hours – 8 days post-activation), which are known to exhibit high expression of 

genes involved in tumor-related processes such as dedifferentiation and cell proliferation 

(31,32). We thus excluded these cell types from the remainder of our analyses, even though 

many of them exhibited high specificity during flow cytometry analysis.

From the remaining reference profiles, we selected four cell types, CD8+ T cells 45 days 

post-activation (T.8MEM.SP.OT1.D45.LISOVA), newly-formed B cells (B.FRE.BM), 

splenic natural killer (NK) cells (NK.DAP12neg.SP), and lung-resident macrophages 
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(MF.LU), that best represented human CD8+ T cells, B cells, NK cells, and macrophages, 

respectively. Each of these cell types was significantly correlated with the flow cytometry 

fraction of its corresponding human cell type (R = 0.45, 0.77, 0.75, and 0.71, P all < 0.05; 

Fig. 1A) and negatively correlated with tumor purity for all tumor types, with one exception 

(B cells in kidney renal clear cell carcinoma, R = 0.07; Fig. 1B). We additionally compared 

our representative macrophage cell’s expression profile to the expression profiles of 29 

different macrophages that had each been exposed to a different activation condition (24). 

Expression profile correlation analysis revealed that our representative macrophage was 

more M2-like than M1-like (P = 0.01, Wilcoxon sum-rank test; Supplementary Figure S1A 

and S1B), though it exhibited positive associations across all 29 different macrophage 

conditions. To determine if our representative macrophage could detect immunosuppressive 

signals from other myeloid cell types, we correlated the resulting infiltration scores from the 

TCGA data with the expression of genes from a literature-curated myeloid-derived 

suppressor cell (MDSC)-specific gene signature (14) (Supplementary Figure S1C). We 

found that 79% of MDSC-specific genes were significantly positively correlated with our 

macrophage score in a pan-cancer manner, including the traditional MDSC marker gene 

ITGAM (pan-cancer Rho = 0.54). Based on these results, it is likely that our macrophage 

infiltration score may better represent immunosuppressive myeloid cell activity than 

macrophage infiltration, specifically.

Immune cell co-infiltration network reveals a high confidence T cell-myeloid cell module

Immune cells of different lineages are often found to co-populate the tumor 

microenvironment, suggesting potential co-infiltration patterns in solid tumors. By rapidly 

quantifying cell-type-specific infiltration levels, our framework enables the analysis of 

potential co-infiltration patterns between immune cell types. However, reference profiles 

from transcriptionally analogous cell types tend to yield similar scores that may result in 

artificially high co-infiltration associations between cells. To account for this, we determined 

the genetic concordance between our reference immune cells by performing pairwise 

Spearman correlations on their relative expression profiles. As expected, cells from the same 

lineage tended to have high transcriptomic similarity, whereas cells of distinct subclasses 

were more discordant. We next calculated pan-cancer co-infiltration scores by performing 

purity-adjusted pairwise Spearman correlations between the infiltration levels from each pair 

of cells assessed by our framework. Comparing these two sets of scores revealed several 

cell-cell pairs that were positively correlated despite having discordant gene expression 

profiles, suggesting true co-infiltration (Fig. 2A).

To further characterize the landscape of immune cell co-infiltration, we constructed an 

immune network using the co-infiltration scores (Fig. 2B). Each node in the network 

represented an ImmGen immune cell, while the edges formed between two nodes were 

indicative of a co-infiltration score greater than 0.45. Shorter edges represented higher co-

infiltration scores. Genetic similarity was not accounted for during edge formation, thus the 

most immediate modules represented transcriptionally similar cell types including myeloid-

derived cells, T cells, and B cells. However, 134 edges existed that linked nodes representing 

CD8+ T cells and NK cells to those of the myeloid-derived cell module. Of these edges, 

Varn et al. Page 8

Cancer Res. Author manuscript; available in PMC 2018 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



22% were between two cell types with a genetic similarity score less than 0, indicating high-

confidence co-infiltration between cytolytic cell types and myeloid-derived cells.

While the previous analyses were performed in a pan-cancer manner, we also sought to 

examine the distribution of immune infiltration across different cancer types. To accomplish 

this, we stratified the TCGA dataset by cancer type and compared the distribution of 

immune cell infiltration scores for our four representative cell lineages (Fig. 2C). Tumors 

with high CD8+ T cell infiltration included kidney renal clear-cell carcinoma, lung adeno- 

and squamous cell carcinoma and cervical squamous cell carcinoma, which have all been 

previously noted for their high cytolytic activity (12), as well as pancreatic adenocarcinoma 

and thyroid carcinoma. NK cell and macrophage infiltration followed similar trends to that 

of CD8+ T cells while B cells did not, indicating that the trends depicted by the co-

infiltration network are a universal feature of cancer. Taken together, these results suggest 

that some tumor types, such as kidney renal clear-cell carcinoma, are more predisposed to 

immune infiltration from several different immune cell types, while others may have factors 

that prevent immune infiltration from occurring, such as in glioblastoma with the blood-

brain barrier (33).

Mutation burden is associated with infiltration of multiple immune cell types at the pan-
cancer level

The differences in immune infiltration across tumor types led us to examine the factors that 

drive tumor immunogenicity. Neoantigens created by nonsynonymous somatic mutations 

have been linked to higher levels of T cell infiltration and response to immunotherapy in 

several tumor types (4,6,34–36). To further explore this relationship, we examined the 

association between the median CD8+ T cell infiltration level and the median mutational 

burden of each TCGA cancer type and found a weak, positive association between them (R 

= 0.17, P = 0.44). Notably, five cancer types, kidney renal clear-cell carcinoma, pancreatic 

adenocarcinoma, thyroid carcinoma, skin cutaneous melanoma, and uterine carcinosarcoma 

deviated substantially from the remaining tumor types. Dropping these five tumor types 

considerably improved the relationship between mutation burden and CD8+ T cell 

infiltration (R = 0.69, P = 1e-3; Fig. 3A). This result supported the link between mutation 

burden and CD8+ T cell infiltration, though additional factors took precedence in some 

tumor types.

We next examined the relationship between mutation load and CD8+ T cell infiltrate within 

specific tumor types (Fig. 3B). Of the 23 tumor types examined, only colon 

adenocarcinoma, uterine carcinosarcoma, and cervical squamous cell carcinoma had 

significant relationships between CD8+ T cell level and mutation load (P < 0.10, Spearman 

correlation). Two of these tumor types, colon adenocarcinoma and uterine carcinosarcoma, 

exhibit high incidences of microsatellite instability (MSI), an indicator of genome instability. 

To investigate the role of MSI in determining immunogenicity, we inferred the MSI status of 

each colon adenocarcinoma and uterine carcinosarcoma sample using MSIsensor, an 

algorithm that derives MSI status from paired tumor-normal sequence data (19). For each of 

these cancer types, MSI+ samples had significantly higher levels of CD8+ T cell infiltration 

compared to MSI− samples (P = 1.6e-8 and 0.01, Wilcoxon sum-rank test). Combining 
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colorectal adenocarcinoma samples with closely related rectal adenocarcinoma samples and 

uterine carcinosarcoma samples with their uterine corpus endometrial carcinoma 

counterparts revealed even stronger differences (P = 1.4e-9 and 7e-5, Wilcoxon sum-rank 

test; Fig. 3C). Together, these results supported previous findings of a relationship between 

MSI status and CD8+ T cell infiltrate in colorectal cancer (37), and demonstrated that this 

relationship holds in endometrial tumor types.

We next extended our mutation analyses to additional cell types by looking at their 

association with median mutation load across cancer types. (Supplementary Figure S2). Of 

the three remaining representative cell types, only B cells were significantly associated with 

median mutation load (R=0.51, P=0.01), with NK cells and macrophages exhibiting positive 

but insignificant relationships. Removal of the outlier tumor types identified in the T cell 

analysis improved the correlations for B cells (R = 0.69, P = 2e-3), NK cells (R = 0.37, P = 

0.13), and macrophages (R = 0.56, P = 0.02). Stratifying and reanalyzing patients by tumor 

type revealed that only colon adenocarcinoma exhibited a significant positive relationship 

between mutation burden and infiltration for each cell type tested (Supplementary Table S6), 

agreeing with previous findings reporting an association between neoantigen load and 

overall lymphocytic infiltration of the tumor in colon cancer (38). Interestingly, differences 

between MSI+ and MSI− colon adenocarcinoma samples were less dramatic for B cells, NK 

cells, and macrophages compared to CD8+ T cells (P = 0.04, 8e-4, and 0.09 for B cells, NK 

cells, and macrophages, respectively, Wilcoxon sum-rank test). These associations indicated 

that mutation burden is a driver of general immune infiltration, but other factors are likely 

more relevant in some tumor types.

Immune infiltration has varying effects on patient survival across tumor types

Immune cells have been linked to patient survival in several cancer types, with some cells, 

such as CD8+ T cells and NK cells, associated with favorable outcomes due to their 

tumoricidal properties (39). We examined the clinical effect of CD8+ T cell infiltration in a 

pan-cancer manner by applying our method to the PRECOG meta-dataset, a collection of 

166 independent datasets, 125 of which are from solid tumors (21). Importantly, each of 

these datasets contain overall survival information, enabling large-scale meta-analyses of 

survival rates across cancer types. Before continuing further, we ensured the pairwise co-

infiltration structure between CD8+ T cells and other cell types was consistent between 

TCGA and PRECOG data by comparing the median pairwise CD8+ T cell co-infiltration 

scores across all TCGA and solid tumor PRECOG datasets (Spearman correlation R = 0.83, 

P = 1e-34, Supplementary Figure S3). We then assessed the relationship between CD8+ T 

cell infiltration and patient survival in each PRECOG dataset using univariate Cox 

regression. To compare associations across datasets, we derived a z-score from each Cox 

model and combined the z-scores from datasets representing the same tumor types into a 

meta-z-score. These meta-z-scores provide a convenient, single metric for performing pan-

cancer survival comparisons as has been done previously (21). Using these meta-z-scores, 

we found that CD8+ T cell infiltration was significantly protective in 9 tumor types and 

showed protective trends in many others that may have not been powered enough to show a 

significant association (Fig. 4A). Two-class comparisons of individual datasets from 

PRECOG (cutoff thresholds in Supplementary Figure S4) showed clear differences in 
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survival time, with high CD8+ T cell infiltration patients experiencing significantly longer 

overall survival than low CD8+ T cell infiltration patients (Fig. 4B). These results indicate 

the involvement of CD8+ T cells in the protective anti-tumor immune response and agree 

with several reports over a wide range of cancer types (40–43).

We extended our analysis to infiltration from other cell types, including our representative B 

cells, NK cells, and macrophages (Supplementary Table S7, Supplementary Figure S5). 

Infiltration from our representative B cell lineage was positively associated with survival in 4 

tumor types, while negatively associated with breast cancer survival. However, infiltration 

from other ImmGen B cell subsets was universally protective, suggesting distinct roles 

between different B cell populations. NK cell infiltration proved to be protective or showed 

protective trends in every cancer type examined. Most interestingly, macrophage infiltration 

was associated with poor patient prognosis in 9 cancer types and showed trends toward 

negative survival associations in several other cancer types. Similar associations were found 

in other myeloid-derived cells, suggesting immunosuppressive myeloid cell activity.

Co-infiltrating myeloid cells modulate the protective effect of CD8+ T cells in the tumor 
microenvironment

The disparate effects of macrophage and CD8+ T cell infiltration on patient survival 

suggested that they may act antagonistically. To investigate this, we stratified samples from 

each PRECOG dataset into four classes based on their levels of CD8+ T cell and 

macrophage infiltration: high CD8+ T cell/high macrophage, high CD8+ T cell/low 

macrophage, low CD8+ T cell/high macrophage, and low CD8+ T cell/low macrophage. 

Cutoffs for each class were made based on the dataset’s median infiltration score for each 

cell type. We repeated our z-score based survival meta-analysis, this time comparing each 

class to the three remaining classes using univariate Cox regression (Fig. 5A). In 9 tumor 

types, patients of the CD8+ T cell high/macrophage low group had significantly longer 

survival times compared to the other three groups. Interestingly, breast cancer was the only 

disease where CD8+ T cell high/macrophage high class patients experienced good clinical 

outcomes relative to the other three classes, contradicting previous findings (44). Patients in 

the CD8+ T cell low/macrophage high and CD8+ T cell low/macrophage low groups had 

significantly worse survival time relative to the other three groups in 9 and 8 tumor types, 

respectively.

To examine the differences between individual classes, we made two sets of pairwise 

comparisons using univariate Cox regression (Fig. 5B). In the first set, we examined the 

difference in survival time between CD8+ T cell high/macrophage low patients and patients 

from each remaining class. In each comparison, CD8+ T cell high/macrophage low patients 

exhibited significantly longer survival time in multiple tumor types. Most interestingly, in 4 

tumor types, CD8+ T cell high/macrophage low patients had significantly longer survival 

times relative to CD8+ T cell high/macrophage high class, suggesting antagonistic 

interactions between the two cell types. In the second set of comparisons, we examined the 

CD8+ T cell low/macrophage high class and found that in multiple cancer types, this class 

had a shorter survival time relative to each of the remaining classes, suggesting myeloid cell-

mediated tumor growth.
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These relationships held at the level of individual datasets, where samples were stratified 

into the four classes based on their CD8+ T cell and macrophage infiltration levels (Fig 5C; 

Supplementary Figures S6 and S7). CD8+ T cell high/macrophage low patients 

demonstrated the longest survival times relative to the other classes in bladder cancer, 

glioma, and lung adenocarcinoma. Breast cancer was again notable as there was no 

difference in survival distribution between the two CD8+ T cell high classes. Additionally, 

while there was minimal separation between the survival distributions of the two CD8+ T 

cell low classes in bladder cancer, glioma, and breast cancer, patients from the CD8+ T cell 

low/macrophage high class exhibited shorter survival times than the CD8+ T cell low/

macrophage low class in lung adenocarcinoma. To confirm that these survival distributions 

were not unique to the individual datasets tested, we replicated these results in three 

additional datasets (Supplementary Figures S8 and S9).

Discussion

As immunotherapeutic approaches to cancer treatment become more widespread, it will be 

increasingly critical to understand the interplay of immune cells in the tumor 

microenvironment. We have demonstrated, using our computational framework, the utility of 

using patient gene expression profiles to dissect these interactions in multiple tumor types. 

Furthermore, we have shown that the presence of infiltrate from a single immune cell type is 

often not informative with regards to patient survival time. In some cases, the effect of an 

infiltrating immune cell type may be diminished by other cell types that act antagonistically. 

While much research has been done to identify the stimulatory and suppressive cell types 

present in the tumor microenvironment, our approach is the first to our knowledge that has 

used genomic data to demonstrate clinical differences between patients when adjusting for 

infiltration of multiple cell types.

Our co-infiltration analyses found that several different immune cell subsets tend to co-

populate the tumor microenvironment together. However, using expression data to study 

cell-cell interactions in the tumor microenvironment can be biased by several confounders. 

To avoid classifying related cell types as co-infiltrating pairs, we assessed the similarity 

between our reference gene expression profiles and excluded all correlations that included 

pairs that were similar at a threshold of Rho > −0.1. Additionally, tumor purity is tied to 

immune infiltration, meaning that at some level infiltration of all immune cell types will be 

positively correlated. To address this, we adjusted for tumor purity and only claimed high 

confidence cell-cell co-infiltration if they were correlated with each other at a level of Rho > 

0.45. These rigorous thresholds likely resulted in the exclusion of many true positive cell-

cell interactions, but the remaining interactions were likely low in false positives, giving us a 

high-confidence set of interactions to study further. We recommend that future genomic-

based analyses of tumor immune infiltration keep these confounders in mind and correct for 

them accordingly.

Our expression-based immune infiltration scores can be easily applied to examine the factors 

underlying tumor immunogenicity. While mutation load was previously linked to CD8+ T 

cell infiltration (10) and an overall decrease in tumor purity (20), links between mutation 

load and other immune cell subsets remained unclear. Our initial pan-cancer analyses found 
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that only B cells were significantly associated with somatic mutation count. However, when 

excluding five outlier tumor types from our analysis, we found that mutation load was 

correlated with infiltration by CD8+ T cells, B cells, NK cells, and macrophages, 

implicating a role for mutation load in the overall tumor immune response. Notably, the five 

tumor types we excluded each deviated from this relationship in a unique way. We could not 

identify any commonalities between these tumor types that could explain this deviation, 

suggesting that there could be many additional drivers of tumor immunogenicity that may 

take precedence over mutation load in certain contexts. In support of this finding, we found 

that in nearly all cancer types, patients sharing a diagnosis did not exhibit an association 

between mutation load and immune infiltration. Exceptions to this were in colorectal and 

endometrial cancers, where MSI-based genomic instability was associated with increased 

immune infiltration. Going forward, it will be important to identify the immunogenic 

determinants specific to each tumor type, as current immunotherapeutic approaches are 

dependent on the presence of immune cells at the tumor microenvironment.

Studying the contribution individual immune cells make on patient survival can provide 

insights into the roles of each cell type in the context of the tumor microenvironment. 

However, the co-linear nature of immune cell infiltration can confound the effect a single 

cell type may have on patient survival. Despite this, our survival meta-analyses found that 

macrophage infiltration is associated with poor patient survival in many tumor types, while 

infiltration from CD8+ T cells and NK cells was highly protective. Furthermore, stratifying 

patients into four groups based on their levels of both T cell and macrophage infiltration 

revealed that these cell types act antagonistically in regards to patient survival. This result, 

combined with the negative survival associations we observed with other myeloid cell types 

and our macrophage phenotype analyses, suggests that the most prominent myeloid signals 

in the tumor microenvironment come from immunosuppressive myeloid cells and MDSCs. 

MDSCs have been characterized as potent inhibitors of the host immune response in cancer 

(45–48). Our results implicate their immunosuppressive role at a clinical level and we thus 

believe that future immunotherapeutic approaches should focus on inhibiting the myeloid 

compartment in the tumor microenvironment. Early success has been seen with the blockade 

of the protein V-domain Ig suppressor of T cell activation (VISTA). VISTA is constitutively 

and highly expressed in MDSCs and VISTA blockade has been shown to reduce their 

number, while also resulting in increased maturation of dendritic cells and stimulation of T 

cell-based anti-tumor immunity (49,50).

In this report, we have demonstrated the utility of genomic data for systematic 

immunological studies. However, this approach can be improved upon. The high expression 

of proliferation-associated genes by early stage effector CD8+ T cells led us to choosing a 

late-stage CD8+ T cell as a proxy for CD8+ T cell infiltration, even though early stage 

effectors are likely more representative of tumor-infiltrating CD8+ T cells. In addition, 

expression data provided limited resolution for distinguishing myeloid cells and other 

closely related cell types. To address these issues, future methods should maximize the 

differences between closely related cell types when defining weight profiles. Doing so will 

improve their accuracy, enabling a more comprehensive characterization of the tumor 

microenvironment. Another issue in this this study is that it does not account for the 

temporal nature of the tumor immune response. Longitudinal studies will be required to 
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detect the transient immune cell interactions that cannot be captured by a single time point. 

There are also caveats to consider when performing multi-class survival analyses. The co-

linear nature of immune infiltration requires that patients be stratified based on their 

infiltration levels for different cell types. However, doing so in the data currently available 

sometimes resulted in small numbers of patients in each class, limiting the power we have to 

detect associations. This may have explained the lack of survival difference between the 

CD8+ T cell high/macrophage low and CD8+ T cell high/macrophage high groups in breast 

cancer, as several studies have indicated that myeloid-based immune suppression of T cell 

responses takes place in this disease (44). Going forward, larger datasets containing both 

genomic and clinical information will be required to perform deeper analyses of the 

molecular interactions between immune cell types.

In conclusion, we have presented a rigorously controlled, comprehensive pan-cancer 

analysis that details the interplay between immune cells in the tumor microenvironment. 

Performing these analyses using high-dimensional data has helped delineate the role of 

individual immune cells across a large number of tumor types. Immune cells co-infiltrate 

solid tumors, and thus any analyses linking single cell types to patient survival should be 

carefully adjusted to account for the presence of other cell types. By doing so, we found that 

CD8+ T cells and myeloid cells exert antagonistic influences toward each other in the tumor 

microenvironment, emphasizing the importance of targeting the myeloid compartment in 

future immunotherapies. With the growing availability of genomic data and development of 

new computational approaches, our understanding of the tumor-immune interface will 

continue to expand, further improving our knowledge of basic tumor immunology and 

personalized immunotherapeutic approaches.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Flow cytometry and tumor purity validation. a Scatterplot of flow cytometry and infiltration 

score for the four indicated immune cell subsets from 20 subjects. b Spearman correlations 

between infiltration scores from four indicated immune cell subsets and consensus purity 

estimates for 21 different cancer types. TCGA abbreviations for each cancer type are listed 

in Supplementary Table S1.
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Figure 2. 
Immune cell co-infiltration analyses. a Scatterplot comparing the pairwise infiltration score 

Spearman correlation coefficients from all possible immune cell combinations (co-

infiltration score) to pairwise expression Spearman correlation coefficients from all possible 

immune cell combinations (genetic similarity score). Gray line represents the trend if the 

genetic similarity scores were equal to their corresponding co-infiltration scores (y = x). 

Warmer colors represent higher point density while cooler colors lower point density. b Co-

infiltration network representing correlation structure between each reference immune cell. 

Nodes represent reference immune cells. Edges represent co-infiltration scores > 0.45. 

Darker edges represent lower transcriptional similarity between reference cell types. c 
Boxplots comparing the distributions of immune infiltration in four indicated immune cell 

subsets. Each box spans quartiles with the lines representing the median correlation 

coefficient for each group. Whiskers represent absolute range excluding outliers. All outliers 

were included in the plot. TCGA abbreviations for each cancer type are listed in 

Supplementary Table S1.
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Figure 3. 
Mutation burden and CD8+ T cell infiltration. A, Scatterplot of median somatic mutation 

number per tumor sample across 23 cancer types (log10 scale) compared with each tumor’s 

corresponding median CD8+ T cell infiltration score. Pearson correlation coefficient and 

least-squares regression line presented were calculated excluding the five outlier tumor types 

in gray. B, Individual Spearman correlation coefficients representing the associations 

between somatic mutation number and CD8+ T cell infiltration score in 23 different tumor 

types. Black bars represent statistically significant associations (P < 0.1). C, Box plots 

comparing the CD8+ T cell infiltration score (CD8+ T cell IS) in MSI− versus MSI+ 

samples. Left boxplot makes comparison in colorectal adenocarcinoma (COADREAD) 

samples. Right boxplot makes comparison in combined cohort of uterine corpus endometrial 

carcinoma (UCEC) and uterine carcinosarcoma (UCS) samples. Each box spans quartiles, 

with the lines representing the median correlation coefficient for each group. Whiskers 

represent absolute range excluding outliers. All outliers were included in the plot. TCGA 

abbreviations for each cancer type are listed in Supplementary Table S1.
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Figure 4. 
Survival meta-analysis of CD8+ T cell infiltration. A, Meta-z-score absolute values 

indicating prognostic associations of CD8+ T cell infiltration in 23 different tumor types 

comprising 18,190 samples. Cancers were ranked by weighted meta-z-score. Dark gray bars 

indicate a weighted absolute meta-z-score >1.96, whereas light gray bars indicate a weighted 

meta-z-score whose absolute value is <1.96. B, Kaplan–Meier plots depicting the survival 

probability over time for samples with high (dark gray) and low (light gray) CD8+ T cell 

infiltration scores. Datasets tested include GSE16011 (glioma), GSE8401 (melanoma), 

GSE13213 (lung adenocarcinoma), and GSE5479 (bladder). For all Kaplan–Meier plots, 

samples were stratified into high and low groups based on their infiltration score 

distributions (thresholds available in Supplementary Figure S4). P values were calculated 

using the log-rank test. Vertical hash marks indicate censored data.
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Figure 5. 
Effect of CD8+ T cell and macrophage infiltration on patient survival. a Weighted meta-z-

scores from binary Cox proportional hazard models comparing the indicated class to the 

three remaining classes. b Weighted meta-z-scores from binary Cox proportional hazards 

models comparing CD8 T high/macrophage low (top) and CD8 T low/macrophage high 

(bottom) to the indicated classes. For all heatmaps, high/low status for each cell type was 

determined using median infiltration score for CD8+ T cells and macrophages. Red boxes 

indicate cancers where indicated class had significantly worse survival compared to other 
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classes (meta-z > 1.96), green boxes indicate significantly improved survival compared to 

other classes (meta-z < -1.96), and gray boxes indicate no statistical association. c Kaplan-

Meier plots depicting the survival distributions of all four classes: CD8+ T low/macrophage 

low (orange), CD8+ T high/macrophage low (blue), CD8+ T low/macrophage high (green), 

and CD8+ T high/macrophage high (red). Colors correspond to the classes as noted in a. 

Datasets tested include GSE5479 (bladder), GSE16011 (glioma), van de Vijver et al (breast), 

and GSE13213 (lung adenocarcinoma). For all Kaplan-Meier plots, samples were stratified 

into high and low groups based on their infiltration score distributions (thresholds available 

in Supplementary Figures S6 and S7). P-values were calculated using the log-rank test and 

indicate that at least one curve is significantly different from the rest. Vertical hash marks 

indicate censored data.
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