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Abstract

The tumor microenvironment is an integral component in promoting tumor development. Cancer-

associated fibroblasts (CAFs), which reside in the tumor stroma, produce Hepatocyte Growth 

Factor (HGF), an important trigger for invasive and metastatic tumor behavior. HGF contributes to 

a pro-tumorigenic environment by activating its cognate receptor, c-Met, on tumor cells. Tumor 

cells, in turn, secrete growth factors that upregulate HGF production in CAFs, thereby establishing 

a dynamic tumor-host signaling program. Using a spatiotemporal multispecies model of tumor 

growth, we investigate how the development and spread of a tumor is impacted by the initiation of 

a dynamic interaction between tumor-derived growth factors and CAF-derived HGF. We show that 

establishment of such an interaction results in increased tumor growth and morphological 

instability, the latter due in part to increased cell species heterogeneity at the tumor-host boundary. 

Invasive behavior is further increased if the tumor lowers responsiveness to paracrine pro-

differentiation signals, which is a hallmark of neoplastic development. By modeling anti-HGF and 

anti-c-Met therapy, we show how disruption of the HGF/c-Met axis can reduce tumor invasiveness 

and growth, thereby providing theoretical evidence that targeting tumor-microenvironment 

interactions is a promising avenue for therapeutic development.
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1. Introduction

The tumor microenvironment consists of vascular endothelial cells, pericytes, immune 

inflammatory cells, and cancer associated fibroblasts (CAFs), all which contribute to the 

hallmarks of cancer (Hanahan and Weinberg, 2011; Hanahan and Coussens, 2012). CAFs 

include both tissue-derived fibroblasts and recruited myofibroblasts, and promote tumor 

invasion and metastasis via secretion of growth factors and extracellular matrix (ECM) 

components (Kalluri and Zeisberg, 2006; Bhowmick et al., 2004). CAF-derived Hepatocyte 

Growth Factor, HGF, contributes to a pro-tumorigenic environment by activating its cognate 

receptor, c-Met. High HGF/c-Met activity has been identified in a large number of cancers 

and is correlated with more severe tumor grade and poor patient survival (Christensen et al., 

2005; Matsumoto and Nakamura, 2006; Organ and Tsao, 2011). The signaling cascades 

triggered by c-Met include the PI3K/AKT, ERK/MAPK, NF-κB, Wnt/β-catenin, and 

STAT/JNK pathways, among others. These and other cascades contribute to a complex 

phenotypic response to HGF, which also depends on the cell type and culture conditions. 

Nevertheless, common responses of tumor cells include increased anchorage-independent 

growth, motility, and proliferation. Indeed, HGF was first termed Scatter Factor for its 

scattering effect on epithelial cells (Stoker and Perryman, 1985). Moreover, epithelial 

tubulogenesis is also observed in some cell types (Birchmeier et al., 2003; Trusolino et al., 

2010; Organ and Tsao, 2011). Tumor cells secrete growth factors, including PDGF, TNFα, 

bFGF, and others (depending on tumor-type) that upregulate HGF production in CAFs (De 

Luca et al., 2010; Matsumoto and Nakamura, 2006), thereby establishing a dynamic tumor-

host signaling program.

An additional heterogeneity in tumors results from intratumoral cell hierarchies, which are 

generally less robustly controlled and more heterogeneous than in normal tissues (Schatton 

et al., 2009; Medema, 2013). In vitro research on both primary tumor cells and established 

cancer cell lines has resulted in emergence of cancer stem cells (CSCs) as potential targets 

of new cancer therapeutics (Jordan et al., 2006). CSCs are currently regarded as a highly 
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dynamic population, whose behavior is determined by both genetic and environmental 

factors, and may be, instead of a specific cell type amenable to therapeutic targeting, a 

phenotype that a large population of cancer cells can achieve in the appropriate 

environmental conditions (Zeuner et al., 2014; Kreso and Dick, 2014).

Mathematical models of tumor growth now compose several classes, including continuous, 

discrete, and hybrid; single compartment and multi-compartment (see (Byrne, 2010; 

Lowengrub et al., 2010; Deisboeck et al., 2011; Wang et al., 2015), for comprehensive 

reviews of the aforementioned model types). Incorporation of the microenvironment into 

these models involves adding an extra layer of complexity to an underlying model structure. 

Angiogenesis, macrophage infiltration, and stromal-mechanical perturbations have all been 

modeled by one or more of the previous model classes (Anderson et al., 2006; Eikenberry et 

al., 2009; Rejniak and McCawley, 2010; Eftimie et al., 2011; Katira et al., 2013; Frieboes et 

al., 2013; Welter and Rieger, 2013; Yan et al., 2016, 2017). Many of these modeling studies 

also include simulation of drug action in the complex milieu of the microenvironment. For 

example, Eikenberry et al. (2009) developed a partial differential equation model to 

investigate how surgical resection of a primary melanoma, along with its associated immune 

cells, would impact the stability of local metastases by disrupting the immune suppression 

induced by the primary tumor-resident immune cells. The model incorporated tumor-

immune interactions into a spatially explicit system that could elucidate how therapy would 

impact the complex interplay of primary and satellite tumor cells with the immune response.

Despite the prevalence of tumor and tumor-microenvironment models, based on our current 

knowledge, no tissue-level models of CAF-tumor interactions have been developed that 

specifically addresses the HGF/c-Met and tumor-derived growth-factor signaling pathway 

dynamics. Using, as a starting point, a spatiotemporal, multispecies model of tumor growth 

that accounts for feedback signaling between CSCs and non-CSCs (Youssefpour et al., 2012; 

Yan et al., 2016, 2017), we investigate how the development and spread of a tumor is 

impacted by a dynamic interaction between tumor-derived growth factors and CAF-derived 

HGF, and the physiological effect of therapies directed at reducing the strength of this 

feedback mechanism.

2. The Mathematical Model

2.1. Overview

A multispecies continuum model of tumor growth with lineage dynamics and feedback 

regulation was developed by Youssefpour et al. (2012), who investigated two-stage lineages 

primarily in two dimensions and Yan et al. (2016), who investigated three-stage lineages in 

three dimensons. One-way coupling of HGF to tumor dynamics was investigated by Yan et 

al. (2017), where a non-monotonic effect of external HGF treatment on tumor shape was 

shown: a low dose increased morphological asymmetry, whereas a higher dose resulted in a 

larger, but more morphologically stable tumor. In this work, we extend the investigation of 

HGF-mediated tumor growth by developing a model that incorporates a dynamic, two-way 

coupling between the tumor and HGF-producing CAFs (Figure 1). The tumor tissue is 

modeled to be composed of three cell types: stem, terminal, and dead. While many cell 

lineage models also include committed progenitor cells as an intermediate phenotype 
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between stem and terminal cells, our model classifies both committed progenitor and cancer 

stem cells in the stem cell category. We do this in order to lower the parameter burden and to 

simplify the model. In future work, we will consider these two compartments separately.

Stem cells have a probability of self-renewal, P0, and a division rate, λMSC, that are 

dependent upon negative feedback from TGFβ family members produced by terminal cells 

and positive feedback from products of the c-Met signaling cascade. Stem cell scatter and 

motility are also increased by c-Met (not shown in Figure 1). Additionally, c-Met is inhibited 

by stem-cell produced c-Met inhibitors. Cancer-associated fibroblasts, CAFs, reside in the 

host tissue, and interact with the tumor by secreting HGF, which is stimulated by release of 

stroma-acting growth factors (SGF) by the stem and terminal cells. HGF, in turn, promotes 

production of c-Met products. Terminal cells die at a rate λATC, and dead cells are 

eventually converted to water (Figure 1).

2.2. Cell species conservation, HGF-induced cell spread, and cell velocity

Local area fractions of the cell species (ϕCSC,TC,DC), host (ϕH), and water (ϕW) make up the 

dependent variables, which sum to 1. Assuming that that the total solid and water fractions 

are constant allows us to determine the water component via solid component dynamics. A 

conservation equation of the form

(1)

is assumed for each cell type, where ∗ denotes tumor cell species. A Helmholtz free energy 

of global adhesion is given by (Wise et al., 2008; Youssefpour et al., 2012)

(2)

where Ω is the domain occupied by the tumor and host, ϕT = ϕCSC + ϕTC + ϕDC is the total 

solid tumor area fraction, F(ϕT) models energy from local adhesion, ε models longer range 

component interactions, and γ is a global measure of cell-cell adhesion (incorporating both 

local and longer-range contributions to adhesion). Generalized diffusion for tumor 

components is represented by −∇·J*, where J* = −Mbϕ*∇μ. For the host, we have JH = 

MbϕT∇μ. Here, Mb is mobility and μ is the chemical potential,

(3)

Since the first discovery of HGF as a scatter factor for epithelial cells, HGF has been shown 

to have a pro-migratory effect on cells in the contexts of development, wound healing, and 

cancer (Birchmeier et al., 2003). The pro-migratory effect is mediated by several pleiotropic 

effects of activated c-Met on cell physiology. The c-Met-activated Ras cascade has been 
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shown to be critical for disassembly of adherens junctions between tumor cells (Potempa 

and Ridley, 1998; Ueoka et al., 2000). Additionally, activated c-Met results in increased 

production of the proteolytic enzyme urokinase-type plasminogen activator (uPA) and its 

receptor (uPAR) (Jeffers et al., 1996; Nishimura et al., 2003). uPA catalyzes ECM 

degradation and remodeling, and is correlated with increased malignancy in several cancers 

(Sidenius and Blasi, 2003; Duffy, 2004; Ulisse et al., 2009). In MDCK cells, HGF-activated 

c-Met was found to further promote cell dispersal by enhancing cell-ECM interactions via 

modification of cellular transmembrane integrin protein activity (Trusolino et al., 2000).

We model the effect of c-Met on cell spread by having it act on the local interaction energy, 

F(ϕT), as follows. First, we model F as a double-well potential and represent it as a sum of 

its convex and concave parts, which model cell-cell repulsion (and attraction to ECM), and 

cell-cell attraction, respectively, with cell-cell adhesion arising from a balance between the 

two (Wise et al., 2008). We can model the effect of HGF as shifting this balance via its effect 

on c-Met. Accordingly, we introduce a weighting function g(CM) and modify F as follows,

(4)

(5)

(6)

where Ẽ > 0 is an energy scale and CM is the concentration of c-Met. When Ẽ(CM) = g(CM) 

= 1, the original F is recovered. As g(CM) decreases, F tends towards a single-well potential 

at ϕT = 1/2. By taking g(CM) as in (6), where δ1 is the strength of c-Met effect on g, we can 

obtain a shift towards the single-well potential with increasing c-Met. This allows us to 

model the breakdown of cell-cell adhesion and increase in cell-matrix adhesion promoted by 

c-Met. Additionally, by taking Ẽ as in (5), where δ2 indicates strength of c-Met action on Ẽ, 

we can model the local effect of c-Met on ECM remodeling, since an increased Ẽ increases 

the driving force of the components independently of whether F is a single- or double-well 

potential.

The cell velocity, us, is assumed to satisfy the generalized Darcy’s law, which is a 

constitutive equation that models fluid flow through a porous media (Wise et al., 2008; 

Lowengrub et al., 2010),

(7)
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where κ reflects combined effects of cell-cell and cell-matrix adhesion, p is the solid 

pressure generated by cell proliferation, and μ is the chemical potential (3). We can sum the 

conservation equations to obtain an equation for velocity

(8)

with the assumption that the host is under homeostatic conditions (SrcH = 0). The pressure p 
can be obtained by solving Equations (7) and (8).

At the far-field boundary, Σ∞, of the domain, Ω, we impose no-flux, homogeneous Neumann 

boundary conditions: ∇ϕT,CSC,TC = ω∞ = 0, where ω∞ is the outwards-pointing normal 

vector on Σ∞. Chemical potential, μ, and pressure, p, have homogeneous Dirichlet 

conditions μ = p = 0 on Σ∞, allowing the tumor to move across the outer boundary (Wise et 

al., 2008).

2.3. The mass-exchange equations

Src* represents the mass-exchange terms, which incorporate mitosis, differentiation, death, 

and species conversion. The self-renewal rate of the CSCs is P0, and both the self-renewal 

and mitosis rates are proportional to the concentration of oxygen and nutrients, represented 

by a single variable CO. The source terms are as follows:

(9)

(10)

(11)

where mitosis, cell death, and lysis rates are denoted by λM*, λA, and λL, respectively, 

where ∗ indicates cell type. Proliferation is cut off at sufficiently low concentration by 

G(ϕ*), specifically, we take (Wise et al., 2008; Youssefpour et al., 2012)

(12)
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2.4. Stem cell self-renewal and division

HGF/c-Met induces cellular proliferation via multiple signaling cascades, including Ras/Raf, 

PI3K/Akt, NF-κB, and Wnt/β-catenin (Birchmeier et al., 2003; Trusolino et al., 2010; Organ 

and Tsao, 2011; Muller et al., 2002; Li et al., 2015). Moreover, HGF/c-Met has been 

implicated in CSC development and maintenance in colon cancer (Vermeulen et al., 2010), 

glioblastoma (Li et al., 2011; Joo et al., 2012) and head and neck squamous cell carcinoma 

(HNSCC) (Lim et al., 2014). For example, Vermeulen et al. (2010) showed that HGF-

induced β-catenin nuclear localization and activation of canonical Wnt signal was associated 

with increased cellular clonogenicity in primary colon cancer spheroid cultures, implicating 

the cascade in promoting the CSC phenotype. Similarly, Lim et al. (2014) have shown that 

in HNSCC HGF/c-Met promoted HNCSCC CSC marker expression and cell sphere-forming 

capacity. When c-Met was knocked down, the cells showed increased radiosensitivity and 

decreased ability to form tumors in a mouse xenograft model. HGF has also been shown to 

have an effect on reducing cell death rates (Xiao et al., 2001).

TGFβ is a potent growth inhibitor (Huang and Huang, 2005) and differentiation promoter 

(Watabe and Miyazono, 2009) for many cell types and early-stage tumors. We model the 

effect of c-Met and TGFβ on stem cell self-renewal and proliferation below. To lower the 

parameter burden, we maintain a low, and constant, apoptotic rate in the Src* equations that 

is not dependent on the growth factors. We take

(13)

(14)

where CTGFβ is the concentration of TGFβ, and Pmin,max and are the minimum 

and maximum rates of self-renewal and CSC division rates, respectively. The strength of the 

c-Met effect on P0 and λMSC is represented by ξ0 and ξ1, respectively, while the strength of 

the inhibitory TGFβ action on P0 and λMSC is represented by ψ0 and ψ1, respectively.

2.5. Chemical Species

2.5.1. Oxygen/Nutrients—The combined effect of oxygen and nutrients is denoted as O. 

Uptake is assumed to be negligible in the host in comparison to the tumor species, and 

diffusion rapid in comparison to the rate of cell proliferation (Wise et al., 2008; Youssefpour 

et al., 2012). Hence, the corresponding concentration CO can be modeled using a quasi-

steady state equation,

(15)

Konstorum and Lowengrub Page 7

J Theor Biol. Author manuscript; available in PMC 2019 February 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where νUOCSC, νUOTC are the uptake rates by the CSCs and TCs, respectively, and DO is 

the diffusion coefficient. The rate of O entering the microenvironment is modeled by νPO, 

and the concentration of O in the medium sufficiently far from the tumor is given by , 

which is also taken to be the boundary condition on Σ∞, . The host domain is 

approximated by Q(c), an interpolating function from the tumor (Q = 0) to the host (Q = 1), 

and is taken to be (Wise et al., 2008)

(16)

where c = 1 − ϕT.

2.5.2. TGFβ—A diffusible differentiation promoter, produced by the terminal cells, is 

modeled by the variable TGFβ, which represents the TGFβ superfamily (Moses and Serra, 

1996; Lombardo et al., 2011). Although in later stages of cancer TGFβ may be produced by 

other cells (namely stroma and immune), we do not model that here since this progression 

coincides with inactivation of certain TGFβ downstream signaling components and results in 

a phenotypically distinct role of TGFβ from its tumor-suppressing effects (Massagué, 2008). 

We model the loss of responsiveness to TGFβ in Section 3.3 and discuss approaches to 

modeling the ‘TGFβ paradox’ (i.e. its tumor-promoting actions) in Section 4.

Rapid diffusion is assumed for TGFβ due to the long-range action of some of its family 

members, such as Activin (Jones et al., 1996), which is directly involved in regulating 

epithelial tumorigenesis (Le Bras et al., 2014), or BMP4, which can have an effective long-

range gradient due to long-range diffusion of its inhibitors (Jones and Smith, 1998; Dale and 

Wardle, 1999). Hence, we use a quasi-steady reaction-diffusion equation for CTGFβ,

(17)

where νUTGFβ is the uptake rate by CSCs, νDTGFβ is the decay rate, νPTGFβ is the 

production rate by TCs, and DTGFβ is the TGFβ diffusion coefficient. The boundary 

condition for CTGFβ is taken to be Dirichlet (CTGFβ = 0) on Σ∞.

2.5.3. c-Met and c-Met inhibitors—A generalized Geirer-Meinhardt-Turing system is 

used to model the interaction of the activator c-Met and its downstream products with their 

inhibitors (Turing, 1952; Gierer and Meinhardt, 1972). Such a system, with Wnt/Dkk as the 

activator/inhibitor pair has been suggested in hair follicle development (Sick et al., 2006), 

crypt generation (Zhang et al., 2012), and tumor development (Youssefpour et al., 2012). 

The large number of cross-activating downstream signaling components of c-Met, some of 

which include positive feedback loops amongst themselves (Verma et al., 2015; Syed et al., 

2011), motivate a nonlinear c-Met activation term. Inhibitors of c-Met and the downstream 

effectors activated by induced c-Met include the autocrine-acting c-CBL (Petrelli et al., 

2002), paracrine-acting Delta (Stella et al., 2005), and the secreted factor Dkk. Since c-Met 

products are autocrine or paracrine effectors, we take c-Met products to have a short-range, 

and c-Met inhibitors a long-range, diffusion coefficient. The functional correlation between 
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cancer stem cells and enhanced c-Met activity has been discussed in Section 2.4, hence we 

model c-Met and c-Met inhibitor production to be limited primarily to CSCs. We also 

include low-level background production of c-Met by all viable tumor cell types. Since HGF 

activates c-Met products and induces c-Met production, we model the effect of HGF on c-

Met by its positive effect on the production rate of c-Met. Finally, production is made 

dependent on nutrient (O) levels (in this model, we do not consider hypoxia-dependent c-

Met upregulation (Trusolino et al., 2010)). We take

(18)

(19)

(20)

(21)

(22)

where CM and CMI are the concentrations of c-Met products and c-Met inhibitors, 

respectively, DM is the diffusion coefficient for downstream c-Met effectors, which is 

assumed to be small relative to the diffusion coefficient for c-Met inhibitors, DMI. The 

strength of positive feedback of HGF on c-Met is represented by , ηM represents 

background production of c-Met products, νPM, νDM are the respective production and 

decay rates of c-Met-activated proteins and νPMI, νDMI are the respective production and 

decay rates of c-Met inhibitor proteins. The production rate of c-Met-activated proteins, 

νPM, is taken to be the sum of ν0, the auto-activation rate of M, and .

We note that we have two HGF-dependent actions on c-Met production, with respective 

strengths  and , due to the multi-modality of HGF action on c-Met and its 

downstream effectors. In order to better understand how each HGF-dependent action on c-

Met affects c-Met product levels and tumor phenotype, we developed a reduced, 

homogenous model of the system and performed a Turing analysis on it in Appendix A.
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We assume no flux, homogeneous Neumann, boundary conditions for c-Met and c-Met 

inhibitor chemical fields, hence we take ω∞·∇CM = ω∞·∇CMI = 0 on Σ∞.

2.5.4. HGF and stroma-acting growth factors (SGF)—Cancer cells secrete growth 

factors and cytokines such as TNFα, bFGF, and PDGF, which induce upregulation of HGF 

production in stroma-resident fibroblast cells (Gohda et al., 1994; Roletto et al., 1996; De 

Luca et al., 2010; Matsumoto and Nakamura, 2006). Because of the lack of definitive data, 

we cannot currently specify whether the CSCs preferentially release these growth factors, 

and if increased c-Met signal results in an increased release of these factors, thus we model a 

positive effect of the growth factors from all viable tumor tissue on HGF production by 

fibroblasts in the stroma. The fibroblasts are considered to be homogeneously, and densely, 

distributed within the stroma (Karagiannis et al., 2012), although there is evidence that ECM 

remodeling occurs at the tumor-host boundary to allow for tumor spread (Friedl and Wolf, 

2008), we account for this phenomenon not via changing the host phenotype but by making 

tumor cells more motile (see Section 2.2)).

Additionally, there is substantial evidence that TGFβ is a negative regulator of HGF 

production in stroma-resident fibroblasts, and thus we include its inhibitory effect in the 

model (Gohda et al., 1992; Harrison et al., 2000; Matsumoto and Nakamura, 2006):

(23)

(24)

where CHGF is the concentration of HGF, νPHGF and νDHGF are the respective production 

and decay rates of HGF, and ζ is a value close to zero added to regularize the equation. The 

interpolation function Q(ϕT) ≈ 1 − ϕT is given by Equation (16), and DHGF is the diffusion 

coefficient for HGF. DHGF is taken to be smaller than the diffusion coefficients for the other 

growth factors due to its high molecular weight (Nakamura et al., 1989). The production 

rates of SGF by the stem and terminal cell fractions are νSGFS and νSGFT, respectively. The 

decay rate is νDSGF and DSGF is the diffusion rate of the growth factors. In the main text, we 

let νSGFS = νSGFT, and test the cases where SGF production is significantly higher for the 

CSC or terminal cell compartment in the Supplementary Material, Section S3.

2.6. Nondimensionalized Equations

The equations are nondimensionalized following (Wise et al., 2008; Youssefpour et al., 

2012): we take the O diffusion scale, , and the mitosis time scale 

, where  represents the mean of  and . The 

diffusion length scale, l, is estimated to be l ≈ 150μm and the mitosis time scale to be τ ≈ 1 

day following (Frieboes et al., 2006). The nondimensionalization procedure and parameters 
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are described in Supplementary Material, Section S1 and Section 2.7, respectively. Below 

we show the equations that change after nondimensionalization, where the others are 

identical with the dimensional forms, except that variables and parameters are redefined, as 

explained in the Supplementary Material Section S1 and Section 2.7.

The nondimensionalized equations for O and TGFβ, respectively, are

(25)

(26)

The nondimensionalized equations for c-Met and c-Met inhibitors are

(27)

(28)

(29)

(30)

(31)

2.7. Nondimensionalized Model Parameters

The nondimensional parameter values used in the model are presented in Tables 1–2, for 

brevity, c-Met is shortened to M and c-Met inhibitors to MI. Since this model is an extension 

of the Youssefpour et al. (2012) model, with earlier versions published in Konstorum et al. 

(2013a,b), a majority are derived from these references, as identified by (*) for Youssepour 

et al. (2012) and (**) for Konstorum et al. (2013b), in the References column of Tables 1 – 

2. Choices of other parameters are discussed in the main text. The reader is referred to the 

part of the text that address the specific parameter under the References column of Tables 1 

– 2.
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3. Results

An adaptive finite difference nonlinear multigrid method (Wise et al., 2008, 2011; 

Youssefpour et al., 2012) is used to solve the governing equations efficiently on a 

computational domain of [−20, 20]2. We solve for ϕT = ϕCSC + ϕTC + ϕDC, then we can 

calculate ϕTC = ϕT − (ϕCSC + ϕDC). To remove the high-order time step constraint incurred 

by an explicit method, we use an implicit 2nd order accurate time discretization of Crank-

Nicholson type, and spatial derivatives are discretized using 2nd order accurate central 

difference approximations. In regions of large gradients, block structured Cartesian 

refinement is used to provide enhanced local resolution. For further details, see Wise et al. 

(2011) or Youssefpour et al. (2012).

We initialize the tumor with an asymmetrical shape and a 45/50/5 homogenous fractional 

distribution of SCs, TCs, and DCs (respectively). We note that changing the initial fractional 

distribution of cell compartments does not have a qualitative effect on the simulations. The 

initialized asymmetrical shape can be visualized in the inset in Figure 2(a), its mathematical 

formulation is described in the Supplementary Material, Section S2. This initial condition 

provides a diffuse interface representation of an asymmetrical tumor centered at the origin 

with maximum radius of . Choice of a different asymmetrical initial shape does not 

influence the results in a qualitative manner.

We take initial conditions for CM and CMI, the concentrations of c-Met and c-Met inhibitor, 

as identical to those for CW and CWI, the concentrations for Wnt and Wnt inhibitors, 

respectively, in Youssefpour et al. (2012) in order to maintain continuity with the former 

model in the sense that we want the control condition to be qualitatively similar to the model 

presented therein. We elaborate on our choice of initial conditions for CM, CMI, as well as 

for CSGF and CHGF in the Supplementary Material, Section S2. We note that other initial 

conditions for c-Met, c-Met inhibitor, HGF, and SGF produce qualitatively similar results. 

Since CO and CTGFβ satisfy quasi-steady diffusion equations, we need not take initial 

conditions for these fields.

3.1. Tumor progression with varying HGF feedback

We begin by simulating HGF dynamics in a tumor in its early stages, when response to 

inhibitory growth feedback is relatively strong. We do this by setting the TGFβ self-renewal 

feedback parameter, ψ0, to ψ0 = 1. In Youssefpour et al. (2012), the authors showed that a 

growing tumor with no HGF feedback and ψ0 = 1 grows slower and is more stable than a 

tumor with ψ0 = 0.5. In Section 3.3, we will show how HGF feedback alters tumor behavior 

with lowered response to TGFβ. We incorporate different strengths of HGF feedback (see 

below) at time T = 10 (recall T is measured in CSC cell cycles) in the simulation. We do this 

since we expect a delay between tumor initialization and microenvironmental recruitment, 

although there is evidence that in certain cases, mutations in microenvironmental 

components may drive tumorigenesis (Trimboli et al., 2009). In our system we consider the 

tumor as the initiator of the microenvironment-tumor interaction. We note that we do not 

observe qualitative differences between the choice of early T at which to start the HGF 

dynamics and the resulting tumor phenotype1.
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Since the strength of the dynamic relationship between HGF and SGF feedback is unknown, 

we simulate growth of the tumor in four distinct conditions: none, low, intermediate (int), 

and high HGF feedback. To change the strength of feedback, we focus on three parameters 

found in equations (23) and (24), νPHGF, νSGFS, and νSGFT. The strength of SGF action on 

HGF is represented by νPHGF, and νSGFS,T are the respective production rates of SGF by the 

stem and terminal tissue fractions. For low (respectively, int, high) HGF, we set νPHGF = 

νSGFS = νSGFT = 5 (respectively 10, 15). With HGF dynamics initiated at T = 10, the stem 

cell fractions from the resulting simulations for T = 50, 100, and 150 are shown in Figure 

2(a). The outline of the tumor body is clearly visible in all simulations, and is highlighted in 

green for the no HGF, T = 50 case. We see that as HGF dynamics increase from none to int, 

the number of stem cell spots increases, and there is a change to a more asymmetrical 

morphology. As HGF dynamics further increase to the high mode, the number of spots 

decreases, but the spot size increases, and there is a large change in the morphology with an 

increase in invasive fingering and tumor fragmentation (T = 150).

We observe that the rate of increase of total tumor area is positively correlated with 

increasing HGF strength (Figure 2(b)(i)), whereas the different cell fractions remain similar 

over all HGF strengths (Figure 2(b)(ii)). Indeed, it has been observed that cancer stem cells 

constitute a stable fraction of the tumor population (Dalerba et al., 2007). In order to 

measure the changes in morphology induced by HGF dynamics, we consider the shape 

factor, SF, for an object, which is calculated by

(32)

where P and A are the object perimeter and area, respectively. The shape factor for a circle is 

SF = 1, and increases as the shape of the object deviates from a circle. The shape factor 

tends to increase over time in all cases, but increases more drastically as HGF dynamics 

increase (Figure 2(b)(iii)), supporting the experimental results that HGF can induce 

branching and invasive morphology in exposed tissues and tumors, respectively (Brinkmann 

et al., 1995; Ikari et al., 2003; Wong et al., 2000).

We fix T = 100 in order to more closely observe other variables associated with the 

simulations, namely concentrations of c-Met, HGF, and SGF (Figure 3(a)) and total tumor, 

terminal cell, and dead cell fractions (Figure 3(b)). c-Met levels in the spots increase with 

increasing HGF dynamics, and there is an increase in HGF concentration at the tumor-host 

boundary and SGF concentration within the tumor (Figure 3(a)). A large fraction of all the 

cases contain terminal cells, with a smaller co-localized percentage of dead cells, and with 

both cell types concentrated outside of the areas with stem cell spots (Figure 3(b)).

1An exception to this statement occurs if we include HGF dynamics at T < 2. During very early time, initial pattern formation occurs, 
and we have observed that the resulting phenotype becomes highly sensitive to parameter values and specific time of HGF dynamic 
initialization, whereas the system is much more robust if HGF dynamics are incorporated at T ≥ 2. Since we hypothesize that a time 
delay does occur between tumor initiation and formation of the HGF feedback loop, we present results of simulations when the HGF 
dynamic is initialized at T ≥ 2.
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3.2. HGF, cell scatter, and pattern formation

In order to better understand how HGF dynamics influence spot formation, we examine the 

early and late-time dynamics of the simulations with and without c-Met-induced cell scatter 

(the latter case is simulated by setting δ1,2 = 0 in Equations (5) and (6)). For brevity, we call 

the case with δ1,2 = 0, ‘ScOff’, and the case with δ1,2 = 0.02, ‘ScOn’. The values for δ1,2 

were chosen to simulate a moderate, but observable effect, of HGF on cell-cell and cell-

ECM interactions. We observe that c-Met-induced cell scatter results in loss of stem cell 

spots and an increase in invasive fingering (Figure 4(a)). We can quantify these effects by 

measuring the shape factor (SF, Equation (32)) and the stem scatter fraction (SSF) of the 

ScOn and ScOff simulations during the simulation runtime. We calculate the SSF by first 

measuring the concentration of stem cells in the host tissue, which is taken to be the area of 

stem cells in the host region normalized to the area of stem cells in the entire domain,

(33)

We find SSF and SF are increased for the ScOn compared to the ScOff case (Figure 4). This 

increase in SSF is due to the increased cell scatter, whereas the increase in SF is due to the 

increased heterogeneity of cell types and behavior at the tumor-host boundary.

Pattern formation is also impacted by the respective strengths of  in Equations (18), 

(20), and (21). In Figure 5, we observe that if , then as  increases, we 

eventually see a continuous strip of stem cells at the tumor host boundary. Alternatively, 

setting  and increasing  does not result in the increase in spot number, but 

each spot is bigger, has higher c-Met and c-Met inhibitor concentrations, and gives rise to 

larger tumor fingers.

To obtain an analytical understanding of the effect of HGF action with respect to these two 

parameters, we performed a Turing Analysis on a reduced system of two equations modeling 

a nonlinear reaction-diffusion system with a forcing term (Appendix A). In the reduced 

system (A1), we find that an increase in the term νa, which is linearly proportional to 

, results in increased steady state ā and , which correspond to CM and CMI, 

respectively, in the original system, and no effect on the critical wavenumber, qmin, 

(Equation A6) or maximum eigenvalues (Equation A8) of Aq, as defined in Equation (A7). 

This system corresponds to the simulations with , where x is positive, 

as shown in the bottom row of Figure 5, where we indeed see no change in the number of 

stem cell spots, but do see an increase in both CM and CMI. Alternatively, the Turing 

Analysis on system (A9) shows that increasing the term Ea, which corresponds to 

 in the original system, leads to a decrease in the critical wavenumber qmin and 

maximal eigenvalues of Aq (Figure A1). We would expect such a system to eventually 

become more stable with increasing Ea, especially at low νa, since the decrease in maximal 

eigenvalues indicates that the growth rates of the perturbations will decrease with increasing 

Ea. Although qmin is decreasing, which signals that we may find more unstable wave 
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numbers, a very low perturbation growth rate suggests that pattern formation will not occur. 

In the original system, when we take , with x positive, we indeed see a 

uniform band of stem cells forming when  is large enough (Figure 5).

3.3. Effect of negative feedback on tumor growth

A common characteristic of tumors that progress from pre-neoplastic lesions to neoplasms is 

that they lose the ability to respond to negative growth feedback signals (Hanahan and 

Weinberg, 2011). For example, in colorectal cancer, resistance to TGFβ by mutation of a 

cognate receptor is associated with progression from adenoma to malignant carcinoma 

(Grady et al., 1998). The TGFβ pathway can also be inactivated by a mutation of the TGFβ 
receptor TGFβR2 or by inactivation of downstream signaling components SMAD2, 

SMAD3, or SMAD4 (Markowitz and Bertagnolli, 2009).

Loss of response to members of the TGFβ family is correlated with poorer prognosis in a 

clinical setting (Pickup et al., 2013). Therefore, to model the effect of HGF dynamics in a 

tumor that has progressed beyond the initial stages, we reduce the strength of TGFβ 
feedback on stem cell self-renewal from ψ0 = 1.0 to ψ0 = 0.5. When compared to the the 

case with ψ0 = 1.0, the simulation results with reduced response to negative feedback have a 

greater total area and shape factor, indicating the enhanced invasive potential of such tumors 

(Figure 6).

3.4. Therapy

Therapies targeting various aspects of the HGF/c-Met axis, including antibodies against 

HGF and c-Met, HGF-competitive analogs, tyrosine kinase inhibitors (TKIs) targeting c-

Met, and downstream pathway inhibitors are currently in development (Knudsen and Vande 

Woude, 2008; Blumenschein et al., 2012). Over 20 drugs are currently in Phase I–III clinical 

trials (Cecchi et al., 2012), indicating strong interest by the biomedical community in 

translating the accumulated knowledge of the HGF/c-Met axis into cancer therapeutics. We 

model targeted therapy by changing ν0, the strength of c-Met auto-activation, and , 

the strength of HGF-induced c-Met activation, in Equations (20) and (21). Lowering 

and  models drugs that act by inhibiting HGF (class T1), while lowering ν0 represents 

drugs that specifically disrupt c-Met auto-catalysis. Drugs that inhibit c-Met or its 

downstream effectors lower both auto-catalysis rates and the ability of HGF to upregulate c-

Met products (class T2). Therefore, activity of such drugs should be modeled by lowering all 

three parameters. We model class T1 and T2 drugs as follows, at T = 50 we apply either 

therapy T1, which lowers  and  from 0.5 to 0.05 or therapy T2, which lowers 

 and  to 0.005 and ν0 from 1.0 to 0.1 (Figure 7). We choose these two therapies 

as they represent two different classes of drugs as described above, and they also represent 

the two classes of therapy results that were observed when both parameters were 

systematically lowered for high HGF (Figure S2). Therapy is applied until the last time 

point, T = 150. We find that therapy class T1 results in decreased total area and shape factor, 

but it is the T2 class that results in a shape factor close to 1, indicating that the invasive 

morphology has been significantly reduced along with total tumor size. It has been shown 
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that very strong inhibition of c-Met phosphorylation (> 90%) is required for significant 

inhibition of tumor growth (> 50%) in a tumor xenograft mouse model (Yamazaki et al., 

2008), which is consistent with our simulation results. Additionally, we find that when 

therapy is terminated prematurely, the tumor grows back rapidly (Figure S2), indicating that 

ultimate tumor eradication requires combination therapy and/or surgical resection alongside 

anti-HGF/c-Met drugs. We note that in Yamazaki et al. (2008), mice were euthanized 

maximally 24 hours after the last therapy dose, which lasted between 9-11 days, hence it is 

not known what the tumor behavior would have been for a longer period after therapy 

cessation.

4. Discussion

By incorporating tumor-produced SGF and the HGF/c-Met axis into a multispecies model of 

tumor growth, we have shown that establishment of a dynamic interaction between the 

tumor and its microenvironment results in increased tumor growth and morphological 

instability, the latter due in part to increased cell-species heterogeneity at the tumor-host 

boundary. Indeed, such a phenomenon has been investigated by Cristini et al. (2005). Using 

both experimental and simulation results, Cristini et al. (2005) showed that spatially 

heterogeneous cell proliferation, alongside disruption of cell-cell adhesion, results in 

invasive fingering and migration of cell clusters. In their model, the heterogeneity occurred 

due to heterogeneous distribution of oxygen, nutrients, and pH levels caused by atypical 

tumor vasculature and other disruptions to diffusion in the tumor. Similarly, in a hybrid 

cellular automata and PDE tumor growth model, Sottoriva et al. (2010) showed that a tumor 

that has a 100% CSC fraction yields a sphere-like morphology whereas tumors with low 

CSC fractions (in this model, CSCs differ from differentiated cells, DCs, in that CSCs have 

unlimited replicative potential, can migrate and mutate unlike the DCs), show invasive 

fingering with highly irregular shape. In our model, the heterogeneity occurs due to 

formation of stem cell spots at the tumor-host boundary via a Turing mechanism of c-Met 

and c-Met inhibitors. This heterogeneity is exacerbated by the presence of HGF-SGF 

signaling cross-talk since the effect of HGF on cell scatter results in a more irregular spot 

distribution at the tumor-host boundary, and the effect of HGF on proliferation/self-renewal 

increases the size of the remaining spots. Thus, when the effect of HGF on cell scatter is 

removed from the model, the tumor becomes more stable due to a more uniform distribution 

of stem cell spots at the tumor-host boundary, even though there are more such spots than in 

the original model (Figure 4). Cristini et al. (2005) propose that suppression of morphologic 

instability via homogenization of cell proliferation and increase in cell-cell adhesion will 

result in a more compact, noninvasive tumor morphology. Our therapy results support their 

conclusions: when we block the HGF/c-Met axis sufficiently enough to reduce the highly 

proliferative spot size, the tumor does not only grow more slowly, but it grows in a more 

compact manner (Figure 7).

We find that invasive behavior is further increased if the tumor lowers responsiveness to 

tumor-derived pro-differentiation signals, which is a traditional hallmark of neoplastic 

development (Hanahan and Weinberg, 2000). We have not addressed a portion of the 

pleiotropic effects of TGFβ that constitute the ‘TGFβ paradox’. Namely, our model does not 

consider that in certain cases, TGFβ can increase cellular motility, as well as hasten the 

Konstorum and Lowengrub Page 16

J Theor Biol. Author manuscript; available in PMC 2019 February 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Epithelial-to-Mesenchymal Transition (EMT) of tumorigenic epithelial cells (Pickup et al., 

2013). Moreover, it has been found that in advanced cancers, immune components and 

fibroblasts can produce TGFβ, which has tumor-promoting effects (Massagué, 2008). In this 

study, we only model the anti-proliferative effects of TGFβ, with its production localized to 

terminal cells. Incorporation of the tumor-promoting action of TGFβ may be best done using 

a specific cancer model and data, since such effects show greater diversity among different 

cancers than the other growth factors modeled in this study.

By modeling anti-HGF and anti-c-Met therapy, we show how disruption of the HGF/c-Met 

cascade can lower tumor invasiveness and growth, thereby providing theoretical evidence 

that targeting tumor-microenvironment dynamics is a promising avenue for therapeutic 

development. An important consideration in clinical development of anti-HGF/c-Met 

therapies is patient selection and stratification. Studies on efficacy of HGF/c-Met targeted 

therapies have consistently shown that patients with high c-Met expression levels respond 

best to these therapies (Graveel et al., 2013), indicating that patient pre-selection based on 

tumor biomarkers of HGF/c-Met axis activation can improve therapy outcomes 

(Blumenschein et al., 2012). As our model assumes c-Met as a main driver in stem cell self-

renewal and division rate, it is most directly applicable to patients with high c-Met activity.

Many of our assumptions and results are based upon quantification of specific features of the 

tumor and its microenvironment, including the spatially-distributed stem cell fraction of the 

tumor, and chemical diffusion, uptake, and activity coefficients. In order to better align our 

model with experimental observations, it is necessary to use an experimental system that is 

capable of recapitulating and capturing some of the complexities of the tumor 

microenvironment. In their review of emerging technologies in this field, Guldner and Zhang 

(2015) noted that new technology is necessary to explore the tumor microenvironment that 

incorporates spatial and temporal dynamics of tumor-microenvironmental interactions, and 

can measure cell-type specific behavior. They discuss emerging technologies that can aide in 

this goal, including deep tissue optical sectioning, intravital microscopy (IVM, the imaging 

of live animal tissue), and in situ cell-type specific genetic isolation. For example, Tanaka et 

al. (2012) used IVM in a liver metastatic xenograft system where RFP-labeled human 

colorectal cells were injected into GFP-expressing nude mice to obtain a time-series of of 

the phenotypic changes in tumor and host during liver metastasis and with and without 

chemotherapy. In addition, development of sophisticated 3D-culture systems where protein 

and drug diffusion and uptake rates can be measured via techniques such as FRAP or FLIM-

FRET, which are already in use (Conway et al., 2014; Talukdar and Kundu, 2012). 

Therefore, it is possible to construct an appropriate experimental system to test the 

hypotheses generated by our model regarding quantifiable tumor behavior with an activated 

HGF/c-Met axis, such as increased invasiveness and formation of areas with high stem-cell 

concentration at the tumor-host boundary.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A Turing Analysis of Nonlinear Activator-Inhibitor dynamics with 

additional forcing term

A.1 Simplifed nonlinear activator-inhibitor model

In Equations (18) – (22) (nondimensionalized in Equations (27) – (31)), we model the effect 

of HGF on c-Met activation using two parameters,  and . To better understand 

how each parameter affects pattern formation, we develop a simplified nonlinear model of 

activator-inhibitor dynamics and perform a Turing analysis on it. We begin with the system

(A1)

where a is the activator and b is the inhibitor, νa and νb are the respective production rates of 

a and b, and da and db are the respective decay rates of a and b. This system represents 

 and νa as linearly proportional to . Taking  and 

f2(a, b) = νba2−dbb, we find a stationary state without diffusion for (A1), i.e. we identify 

 such that (f1, f2) = (0, 0). There is one solution,

(A2)

We note that ā is proportional to νa. Thus, we expect that if  is negligible in the 

original system, then an increase in  should result in higher steady state c-Met 

concentration.

In order to simplify stability analysis of the system, we take Da = 1 and Db = 25, analogous 

to nondimensionalized values for the parameters DM and DMI, respectively. The Jacobian of 

the system is

(A3)

Then, taking , we have

(A4)

In order for a and b to be stable in the absence of diffusion, we must have
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• a11 + a22 < 0,

• a11a22 − a12a21 > 0,

which occurs if da − db < 0 and −dadb + 2dadb = dadb > 0. Diffusion will destabilize the 

system when the wavenumber, q, is near

(A5)

In our case, we obtain

(A6)

We find that qmin does not depend on νa. Moreover, the growth rate of perturbations to the 

steady state is given by the eigenvalues of the matrix

(A7)

The eigenvalues of Aq are

(A8)

Importantly, the eigenvalues also do not depend on νa.

We can thus conclude that in an activator-inhibitor reaction of this type, the steady state of a 
will be directly proportional to νa, but pattern formation will not be influenced.

A.2 Simplified nonlinear activator-inhibitor model with an additional forcing 

term

We now introduce the additional term Ea to system (A1) to represent non-trivial  as 

follows:

(A9)

Taking  and f2(a, b) = νba2−dbb, there is one real solution to the 

system (f1, f2) = (0, 0), but it is unwieldy analytically. Therefore, we find , A, qmin, and 
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eiqenvalues of Aq for specific values of νa and Ea. We take νa = {5, 10, 15, 20} and Ea = {5, 

10, 15, 20}. We also take da = db = νb = 1. We find the real-valued  using the ‘solve’ 

function in Matlab for (f1, f2) = (0, 0).

In Figure A1(a,b), we observe that while increasing νa leads to an increase in both ā and , 

the effect of Ea on ā and  is much less pronounced.

As before, we find A = (aij), the Jacobian of the system (f1(a, b), f2(a, b)) at  and νb = 

da = db = 1,

(A10)

We note that for the values of νa and Ea considered, the conditions for stability of the system 

without diffusion (∗) are satisfied.

We use equation (A5) to calculate qmin for discrete values of νa and Ea (Figure A1c). We 

note that qmin decreases as Ea increases, and this decrease is stronger at lower values of νa. 

Moreover, taking Aq as in Equation (A7), with q = qmin, the maximum eigenvalue decreases 

with increasing Ea and decreasing νa (Figure A1(d)).

Figure A1. 
Effect of increasing νa and Ea in System A1 on (a) ā, (b) , (c) qmin, and (d) max(λ), where 

ā and  give stationary states for the system without diffusion, qmin is the critical 

wavenumber for the system, and max(λ) is the maximum eigenvalue of Aq, where Aq is 

taken as in Equation (A7) with q = qmin.
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Highlights

• A multispecies continuum model is developed to investigate tumor-stroma 

interactions.

• HGF, produced by stroma in response to tumor signals, promotes tumor 

instability.

• Tumor instability occurs due to tumor cell species heterogeneity at the 

boundary.

• Simulated therapies targeting this interaction can stabilize the tumor.
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Figure 1. 
Tumor-CAF interaction model. Tumor components (water and stem, terminal, and dead 

cells) are in blue, the host component (CAF) is in red, and associated growth factors and 

proteins (c-Met (M), c-Met inhibitors (MI), HGF, SGF, TGFβ, and SGF) are in black. 

Critical parameters are in green, red arrows represent tumor species interconversion, and 

blue arrows represent chemical production and action. Stem cells renew with probability P0 

and divide with rate λMSC. Terminal cells die at a rate λATC and dead cells are converted to 

water. P0 is promoted by products of the c-Met signaling cascade (M) and HGF, and lowered 

by TGFβ, which is produced by the terminal cells. c-Met production, in turn, is promoted by 

itself and HGF, and lowered by c-Met inhibitors (MI). HGF production by CAFs is 

promoted by SGF, which are produced by stem and terminal cells.
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Figure 2. 
HGF feedback increases tumor growth rates and enhances invasiveness. (a) Stem cell 

fractions for increasing HGF dynamics and T = 50, 100, 150. Inset in top right corner shows 

initial tumor shape via visualization of the stem cell fraction for all HGF dynamics at T = 0. 

(b) Area, area fraction, and shape factor. (i) Total area and (ii) area fraction for no (red), low 

(blue), int (green) and high (black) HGF. Area fraction is shown for different cell types: 

terminal, dash; stem, dot; dead, dash-dot). (iii) Shape factor (SF) results for the four 

treatment types.
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Figure 3. 
Chemical species (a) and cell species (b) concentrations for increasing HGF dynamics at T = 

100.
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Figure 4. 
Effect of c-Met-mediated cell scatter on spot formation, tumor growth, and invasive 

morphology in high HGF conditions. (a) Stem cell distributions in HGF high conditions and 

without (ScOff, δ1,2 = 0.0) or with (ScOn, δ1,2 = 0.02) HGF-induced effect on cell scatter. 

(b) Quantification of stem scatter fraction (SSF) and shape factor (SF) for ScOff and ScOn 

simulations. Time-course data was smoothed using Moving Average Filtering in Matlab 

R2014b.
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Figure 5. 

Isolating the effects of  and  in Equations (18), (20), and (21) on stem cell 

distributions and concentrations of c-Met and c-Met inhibitors. Stem cell distribution is 

shown for T = 150 and ( , ) as indicated. The bottom right-hand corner of each 

simulation shows the maximum concentration of c-Met and c-Met inhibitor that is reached 

(the short-hand M(X) = max(X) is used). Note that δ1 and δ2 in Equations (5) and (6) are set 

to 0 to control for the HGF-induced effect on cell scatter.
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Figure 6. 
Tumor evolution under decreased negative feedback. From the baseline simulation, ψ0 in 

Equation (13) is lowered from 1.0 to 0.5. (a) Stem cell distributions for increasing HGF 

dynamics. (b) Comparison of total area (top panel) and shape factor (SF) (bottom panel) 

between ψ0 = 1 (blue) and ψ0 = 0.5 (red) simulations at T = 150.
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Figure 7. 

Response of tumor to anti-HGF (T1,  and  lowered from 0.5 to 0.05) and anti-c-

Met (T2,  and  lowered from 0.5 to 0.005 and ν0 lowered from 1.0 to 0.1) therapy 

applied at T = 50. (a) Representative stem cell fraction and (b) total area and shape factor for 

no therapy, T1, and T2 applied to int and high HGF tumors.
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Table 1

Nondimensionalized cell-level parameters (Sections 2.2 – 2.4, 2.6).

Parameter Description Value Reference

γ Global adhesion −0.1 (*)

ε Diffuse interface thickness 0.05 (*)

Mb Mobility 10.0 (*)

δ1 Strength of M effect on F(ϕT), measure of cell scatter 0.02 Section 3.2

δ2 Strength of M effect on Ẽ, the energy scale 0.02 Section 3.2

κ Pressure-dependent cell motility 1.0 (*)

λMTC TC mitosis rate 0.1 (*)

λATC TC death rate 0.1 (*)

λL DC lysis rate 1.0 (*)

Pmin Min. CSC self-renewal rate 0.2 (*)

Pmax Max. CSC self-renewal rate 1.0 (*)

ξ0 Strength of M action on P0 1.0 (*)

ψ0 Strength of TGFβ action on P0 1.0 Section 3.1

Min. CSC mitosis rate 0.5 Estimated, (Frank, 2007, Chapter 12)

Max. CSC mitosis rate 1.5 Estimated, (Frank, 2007, Chapter 12)

ξ1 Strength of M action on λMSC 0.5 Estimated by simulation

ψ1 Strength of TGFβ action on λMSC 0.5 (**)
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Table 2

Nondimensionalized chemical species parameters (Sections 2.5, 2.6).

Parameter Description Value Reference

νUOTC Oxygen uptake rate by TCs 1.0 (*)

νPO Oxygen transfer rate 0.5 (*)

νUTGFβ TGFβ uptake rate by CSCs 0.05 (*)

νTGFβ TGFβ decay rate 0.0 (*)

νPTGFβ TGFβ production rate by TCs 0.1 (*)

DM Diffusion of M effectors 1.0 (*)

DMI Diffusion of MI effectors 25.0 (*)

ν0 Strength of HGF-independent M activation 1.0 (*)

Strength of HGF-induced M activation 0.5 Section 3.2

νDM M decay rate 1.0 (*)

ηM Background M production rate 0.2 (*)

νDMI MI Decay rate 1.0 (*)

R Reaction rate 50.0 (*)

νPHGF Strength of SGF on HGF activation {5,10,15} Sections 3.1, S3

νDHGF HGF decay rate 1.0 (**)

DHGF HGF diffusion rate 0.1 (**)

νSGFS SGF production rate by CSCs {5,10,15} Section 3.1, S3

νSGFT SGF production rate by TCs {5,10,15} Section 3.1, S3

νDSGF SGF decay rate 1.0 (**)

DSGF SGF diffusion rate 1.0 (**)
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