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SUMMARY

Large datasets describing the quantitative effects of mutations on protein function are becoming 

increasingly available. Here, we leverage these datasets to develop Envision, which predicts the 

magnitude of a missense variant’s molecular effect. Envision combines 21,026 variant effect 

measurements from nine large-scale experimental mutagenesis datasets, a hitherto untapped 

training resource, with a supervised, stochastic gradient boosting learning algorithm. Envision 

outperforms other missense variant effect predictors both on large-scale mutagenesis data and on 

an independent test dataset comprising 2,312 TP53 variants whose effects were measured using a 

low-throughput approach. This data set was never used for hyperparameter tuning or model 

training, and thus serves as an independent validation set. Envision prediction accuracy is also 

more consistent across amino acids than other predictors. Finally, we demonstrate that Envision’s 

performance improves as more large-scale mutagenesis data is incorporated. We precompute 

Envision predictions for every possible single amino acid variant in human, mouse, frog, zebrafish, 

fruit fly, worm and yeast proteomes (https://envision.gs.washington.edu/).

eTOC BLURB

We present Envision, an accurate predictor of protein variant molecular effect trained using large-

scale experimental mutagenesis data.
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INTRODUCTION

Mutations have the power to reshape protein structure, stability or activity and can have 

drastic effects on evolutionary fitness, protein function and human health. For example, 

mutations were used to improve the pharmacokinetic and pharmacodynamic properties of 

insulin (Vigneri et al., 2010). Moreover, a recent survey of genetic variation in humans 

revealed that each individual harbors ~50 private missense variants, most of which are of 

unknown effect (Karczewski et al., 2017; Zou et al., 2016). This example highlights how 

DNA sequencing advances have facilitated detection of genetic variation. However, in both 

laboratory and clinical settings, determining the impact of a missense variant on a protein’s 

function remains a challenge (MacArthur et al., 2014).

Experiments can reveal a variant’s molecular effect, and recent advances in multiplex assays 

have enabled the assessment of large numbers of variants (Fowler and Fields, 2014; 

Gasperini et al., 2016). However, we are far from having a comprehensive atlas of missense 

variant effects in the human proteome, and such an atlas is a distant goal for model 

organisms. Thus, variant effect predictors such as PolyPhen2 (Adzhubei et al., 2010), SIFT 

(Sim et al., 2012), SNAP2 (Hecht et al., 2015), Evolutionary Action (Katsonis and 

Lichtarge, 2014), CADD (Kircher et al., 2014) and a host of others (Tang and Thomas, 

2016) will continue to be widely used to predict missense variant effects. Some predictors 

are products of sophisticated supervised machine learning algorithms, and are developed 

using features and training data that make them suited for a particular type of prediction 

problem. For instance, the PolyPhen2 HumDiv model is a support vector machine trained on 

thousands of human Mendelian disease-associated and neutral variants, and is thus 

optimized to predict the clinical variant effects (Adzhubei et al., 2010). SNAP2, an ensemble 

of neural network models, is trained on human pathogenic and neutral variants as well as 

variants that impact molecular function (Hecht et al., 2015). Given the breadth of training 

data, SNAP2 predictions encompass both the clinical and molecular effects of missense 
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variants. Conversely, SIFT and Evolutionary Action are not products of machine learning, 

but instead rely on evolutionary patterns to predict variant effects. Despite their simplicity, 

SIFT and Evolutionary Action perform similarly to PolyPhen2 and SNAP2 (Katsonis and 

Lichtarge, 2014), which highlights the importance of evolutionary information to successful 

variant effect prediction. A recently described unsupervised method, EVmutation, leverages 

evolutionary signatures of epistasis to predict variant effects, and has demonstrated enhanced 

accuracy over SIFT and PolyPhen2 for both molecular and clinical effect prediction (Hopf et 

al., 2017). These tools are all used to prioritize variants in clinical and laboratory settings.

Current predictors face two major limitations. First, most are optimized to predict 

categorical variant effects (e.g. damaging vs. benign), and cannot accurately predict effect 

magnitude. This limitation arises primarily from the structure of variant effect databases 

used to train predictors. For example, the Human Gene Mutation Database (Stenson et al., 

2012), Online Mendelian Inheritance of Man (Amberger et al., 2015), and ClinVar (Landrum 

et al., 2013) all categorize variants as clinically deleterious or benign. Swiss-Prot and the 

Protein Mutant Database contain categorical measures of variant effects in laboratory assays. 

Second, most predictors focus on predicting the clinical effect of human variants rather than 

the molecular effects on protein function (Adzhubei et al., 2010; Sim et al., 2012). However, 

the relationship between molecular effect and clinical effect is complex, and most predictors 

do not deal well with this complexity. For example, both gain- and loss-of-function variants 

of BRAF can be pathogenic (Rodriguez-Viciana et al., 2006; Wan et al., 2004). Variants of 

PTEN variants can drive carcinogenesis when they occur somatically, or can cause autism or 

a tumor syndrome when they occur in the germline (Mester and Eng, 2013). Thus, we 

suggest that accurate clinical effect prediction should start with accurate, quantitative 

predictions of molecular effect whose subsequent interpretation is guided by specific 

knowledge about gene-disease associations.

Here we address the need for an accurate, quantitative predictor of molecular effect by 

leveraging deep mutational scanning data. In a deep mutational scan, selection for protein 

function among a library of nearly all possible single amino acid variants of a protein is 

coupled to high-throughput DNA sequencing (Fowler and Fields, 2014; Fowler et al., 2014). 

Sequencing reveals how each variant’s frequency changes during selection, yielding 

quantitative scores that describe the functional effect of each variant in the library. The 

resulting large-scale mutagenesis datasets have a distinct advantage over traditionally-used 

variant effect predictor training datasets like HumDiv/HumVar, HGMD and the Protein 

Mutant Database. Traditional datasets contain a large number of proteins, each with a 

median of four to six variant effect measurements. A large-scale mutagenesis dataset 

contains deep and unbiased information, capturing the effects of most variants at every 

position in a single protein. We hypothesize that large-scale mutagenesis datasets contain 

informative and generalizable patterns that can be used to predict variant effects in disparate 

proteins.

Here, we use the molecular effects of 21,026 variants of eight proteins, determined through 

deep mutational scans, to train Envision, a decision tree ensemble-based quantitative variant 

effect predictor. Envision uses a stochastic gradient boosting learning algorithm, which 

excels at analyzing nonlinear interactions between features and has performed well in a 
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myriad of regression tasks (Friedman, 2002). To maximize Envision’s generalizability, 

proteins in the Envision training set have disparate structures and functions, and are drawn 

from diverse organisms. We demonstrate the generality of Envision’s predictions by 

iteratively training models that exclude a single protein dataset and then comparing the 

resulting model’s predictions to the observed variant effects for the excluded protein. We 

also assess performance using independent variant effect data that was not generated by deep 

mutational scanning nor included in Envision’s training. Envision’s predictions are generally 

more accurate than other state-of-the-art predictors. Envision’s prediction accuracy is also 

consistent across different amino acids, unlike other predictors that perform well on some 

amino acids and poorly on others. We pre-computed Envision predictions for all possible 

single amino acid variants of proteins in the human, mouse, fruit fly, clawed frog, zebrafish, 

worm, and yeast proteomes. We provide a web-based tool allowing users to visualize and 

explore predicted protein sequence-function maps, which can be used to prioritize variants. 

Envision is available at https://envision.gs.washington.edu.

RESULTS

Data collection and curation

We collected previously published, large-scale mutagenesis datasets with quantitative 

measures of variant effect on protein function. Exploratory analysis led to the following 

inclusion criteria: 1) the experiment must have measured single amino acid variant effects, 

rather than averaging across different genetic backgrounds; 2) the experiment must have 

been on a natural protein instead of a designed protein; and 3) the experiment must have 

quantitated effects for at least ~50% of all possible variants of the mutagenized region. 

Ultimately, deep mutational scans of ten proteins from twelve studies comprising 28,545 

single amino acid variant effects met these criteria (Figure 1A, Supplementary Table 1). 

Variant coverage ranged from ~50% for the Ube4b domain of murine E3 ligase to 100% for 

the IgG-binding domain of influenza protein G and the PDZ domain of human PSD-95 

(Figure 1B). Variant coverage depended on experimental details like the protocol used for 

library generation (e.g., doped oligomer (Matteucci and Heyneker, 1983) vs. site saturation 

mutagenesis (Jain and Varadarajan, 2014)), the number of clones generated and the 

sequencing depth. The proteins in the dataset were distinct, coming from different 

organisms, having different structures and having functions ranging from catalysis to peptide 

binding (Supplementary Table 1). To make datasets comparable, we normalized variant 

effect scores in each dataset such that variants that were more active than wild-type had a 

variant effect score greater than one, wild-type-like variants had a score of one and variants 

that were less active than wild-type had a score less than one (Supplementary Figure 1, 

Figure 1C).

Next, we annotated each variant with 27 biological, structural and physicochemical features. 

The biological features captured evolutionary constraints using both site-specific and co-

varying conservation metrics. The structural features included local density and solvent 

accessibility, while the physicochemical features describe properties of amino acids, such as 

polarity and size. Physicochemical and biological features were available for nearly all 

variants, but structural features were not (Figure 1D, Supplementary Table 2).
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Predicting quantitative variant effects

We first tested whether a stochastic gradient boosting regression algorithm could model the 

relationships between our 27 features and quantitative variant effect scores for each protein, 

individually. To train each single-protein model, hyperparameters, such as the number of 

decision trees in the ensemble and tree depth were tuned using tenfold cross-validation. 

After hyperparameter tuning, we reserved 20% of mutations for testing, allowing us to 

estimate the generality of each model to unseen variants. Nine of the twelve models 

performed well (median Pearson’s R = 0.83, Spearman’s ρ = 0.80, Figure 2A), while three, 

the BRCA1 RING domain BARD binding, BRCA1 RING domain E3 activity and E4B 

ubiquitin ligase models, performed poorly (median R = 0.22, ρ = 0.35).

Experimental noise cannot account for these models’ poor performance, since the 

correlation of model predictions with the training and testing data is much lower than the 

correlation between replicate experiments (Supplementary Table 1). We hypothesized that 

poor performance arose because correlations between the features and variant effect scores 

were low (Supplementary Figure 2). Low correlation might occur because the assays did not 

test every function of these proteins. For instance, BCRA1 RING domain variants were 

assayed for E3 ligase activity and BARD binding. However, BRCA1 has many functions and 

interacts with >25 other proteins (Deng and Brodie, 2000; Kerrien et al., 2012). Another 

possibility is that these two datasets were missing some structural features. However, the 

YAP65 WW domain dataset, missing the same features, resulted in an accurate model. Thus, 

we could not identify the cause of poor performance in the BRCA1 RING domain and E4B 

ubiquitin ligase models. We excluded these three datasets from subsequent analyses.

For most proteins, our feature set and learning procedure generated accurate models of 

variant effect. Beyond validating our approach, these single protein models enabled us to 

complete each large-scale mutagenesis dataset by predicting missing variant effect scores 

(Supplementary Table 3). For example, we used the Pab1 model (R = 0.86; ρ = 0.79) to 

predict the ~20% of scores that were missing, completing the Pab1 dataset (Figure 2B).

Next, we trained a global model with the 21,026 empirically-derived variant effect scores in 

the nine large-scale mutagenesis datasets. We tuned hyperparameters using a leave-one-

protein-out approach designed to avoid protein-specific overtraining (Supplementary Figure 

3, Supplementary Table 4). Once hyperparameters were tuned, we trained Envision with all 

available data, except for a random 5% of variant effect scores that we withheld for testing 

and to assess overfitting. Training and testing data root mean squared errors were similar at 

each model training iteration, indicating that the model is not overfitted to the training data 

(Supplementary Figure 4). Envision predicted the training data well (R = 0.79, ρ = 0.76; 

Figure 3A).

Assessing Envision’s performance

To evaluate Envision’s performance, we employed a jack-knife leave-one-protein-out 

(LOPO) approach. Here, we repeated the training procedure described above, leaving one 

protein completely out of the hyperparameter tuning and model training process. Then, we 

used the resulting model to predict variant effect scores for the left-out protein and 
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determined performance. We repeated this procedure for all nine proteins. Variant effect 

scores for left-out proteins were predicted with Pearson’s R ranging from 0.38 to 0.69 and 

Spearman’s ρ ranging from 0.30 to 0.74 (Figure 3B; Supplementary Figure 5). To determine 

the effect of our variant effect score normalization scheme on model training and 

performance, we compared LOPO models trained using either normalized or non-

normalized variant effect scores. Models trained using normalized data predicted variant 

effect scores for the left-out protein better than models trained using non-normalized data 

(median R = 0.56 vs 0.39, median ρ = 0.51 vs 0.35; Supplementary Figure 6). This result 

highlights the utility of our normalization scheme.

Next, we compared our LOPO models’ performance to other predictors. PolyPhen2 is 

trained to predict the categorical clinical effect of variants, but also generates a numerical 

score. This score is the naïve Bayes posterior probability that a variant is damaging, and, 

although quantitative, it is not designed to predict the magnitude of a variant’s molecular 

effect. As expected, for the only human protein in our dataset, YAP65 WW domain, our 

LOPO model outperformed PolyPhen2 when predicting WW domain variant effect scores 

(R = 0.46 vs. 0.17; ρ = 0.36 vs. 0.19). Like PolyPhen2, SIFT also generates categorical 

predictions and scores for human proteins. SIFT scores represent the scaled probability of a 

missense variant being tolerated, and are also not expected to capture the magnitude of 

variant molecular effects. The WW domain LOPO model also outperformed SIFT scores (R 

0.46 vs. 0.03; ρ = 0.36 vs. 0.04). PolyPhen2 and SIFT were not designed to predict variant 

effect magnitude, and our results confirm that they should not be used to do so.

SNAP2, EVmutation and Evolutionary Action were developed to predict variant effect 

magnitude (Hecht et al., 2015; Hopf et al., 2017; Katsonis and Lichtarge, 2014). 

Evolutionary Action scores could not be obtained by batch query, preventing us from 

including them in our analysis. SNAP2 predicted variant effect scores much better than 

PolyPhen2 or SIFT, but not as well as our LOPO models, which outperformed SNAP2 on 

seven of nine datasets (median R 0.56 vs. 0.44; Figure 3C). EVmutation predicts variant 

effect magnitude using either an epistatic or an independent conservation-based 

unsupervised statistical model. Our LOPO models outperformed EVmutation’s epistatic 

model on six out of nine datasets (median R 0.56 vs. 0.47) and EVmutation’s independent 

model on seven of nine (mean R 0.56 vs. 0.48; Figure 3C). An equivalent analysis using 

Spearman’s ρ revealed similar results (Supplementary Figure 7). Across all datasets, our 

LOPO models’ predictions are 4%, 14% and 21% more correlated with the observed variant 

effect scores than predictions from EVmutation epistatic, EVmutation independent and 

SNAP2, respectively.

Next, we analyzed what factors led to our improved performance. Envision’s features are 

similar to those used by SNAP2 and PolyPhen2, so the improvement we observed is not 

likely due to feature choice. Instead, we hypothesized that our use of deep mutational 

scanning data and our cross-validation approach, designed to yield a generalizable model, 

are the two attributes that led to improved performance. The lack of a large database of 

quantitative variant effects measured by means other than deep mutational scanning made it 

impossible to evaluate the performance advantage conferred by using deep mutational 

scanning data. However, we quantified the impact of our cross-validation approach by 
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comparing the performance of models trained using standard tenfold cross-validation to 

models trained using our LOPO scheme. We found our LOPO approach improved 

performance by ~10–20% over all protein datasets compared to tenfold cross-validation 

(median R = 0.56 vs. 0.45, ρ = 0.50 vs. 0.45; Supplementary Figure 8). We suggest that our 

LOPO approach, designed to yield generalizable models, was especially important given that 

our training data set contained relatively few proteins.

Our leave-one-protein-out analysis demonstrated that Envision provided improved 

quantitative predictions of variant effects measured using deep mutational scanning. 

However, Envision’s performance advantage might have arisen because it learned deep 

mutational scanning-specific patterns in the data. To ensure that Envision was not overfitted 

to deep mutational scanning data, we obtained a TP53 tumor suppressor mutagenesis dataset 

where the effects of 2,312 variants on TP53 transactivation were measured individually 

using a fluorescent reporter (Kato et al., 2003). We predicted these TP53 variant effect 

scores using Envision, which was trained on all nine large-scale mutagenesis data sets. The 

TP53 data were never used, directly or indirectly, in the training procedure. Despite the fact 

that the TP53 dataset was not acquired using deep mutational scanning, Envision predicted 

the TP53 variant effect scores well (R = 0.58, ρ = 0.53; Figure 3C, D). Importantly, Envision 

outperformed SNAP2 (R = 0.53; ρ = 0.50), whose training dataset included the effects of 

~400 human TP53 mutations, and EVmutation (epistatic R = 0.45, ρ = 0.49; independent R 

= 0.49, ρ = 0.52; Figure 3C). Thus, Envision learned patterns of the molecular effects of 

variants that do not depend on the measurement method.

Next, we sought to determine whether Envision performance depended on the identity of 

either the mutant or wild type amino acid. We evaluated performance on the TP53 dataset to 

enable comparison to EVmutation and SNAP2. We found that Envision prediction 

performance did not depend much on the identity of the mutant amino acid (Figure 3E, 

Supplementary Figure 9A). However, EVmutation and SNAP2 showed large biases in 

performance. For instance, EVmutation predicted mutations to phenylalanine with high 

accuracy (R = 0.69, ρ = 0.70), but predicted mutations to leucine with low accuracy (R = 

0.24, ρ = 0.33). SNAP2 performance was also biased in favor of mutations to tryptophan and 

methionine and against mutations to alanine. These biases are also apparent for the wild-

type amino acid, where EVmutation predicted mutations from wild type cysteine well (R = 

0.82, ρ = 0.71) and wild type aspartic acid poorly (R = 0.02, ρ = 0.05; Supplementary Figure 

9B). Consequently, in addition to greater overall accuracy, Envision performance was more 

consistent.

Finally, we assessed the utility of Envision scores for clinical effect prediction, evaluating 

performance by constructing ROC curves using variants annotated as either pathogenic or 

benign in ClinVar. Envision predictions were better than random guessing (AUROC = 0.72), 

but not as good as PolyPhen2, CADD and SIFT (AUROCs = 0.86, 0.85, 0.84; 

Supplementary Figure 10). This result is not surprising because Envision was not designed 

or optimized for this task, and because comparison of predictor performance on clinical data 

is difficult given that many predictors are trained on or optimized to predict these data 

(Grimm et al., 2015). Furthermore, the relationship between the magnitude of a variant’s 

molecular effect and disease phenotype is likely to be different for each disease-associated 
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protein. For example, a weakly damaging variant in some proteins may be sufficient to cause 

disease, whereas only strongly damaging variants lead to disease in other proteins. Finally, 

we note that the rate at which training datasets grow in the coming years may be much 

greater for deep mutational scans than for clinical variants.

Feature importance and future improvements

Features known to be predictive of variant effects, including solvent accessibility and 

evolutionary conservation, were the most highly represented in the Envision decision tree 

ensemble (Figure 4A; Supplementary Table 5) (Kumar et al., 2009; Saunders and Baker, 

2002). However, unlike for other feature-driven predictors (Adzhubei et al., 2010; Hecht et 

al., 2015), we found that the mutant amino acid identity was informative. This amino acid 

identity effect was largely driven by proline. Proline variants are generally disruptive of 

protein function and, indeed, proline variants were the most damaging substitutions in the 

large-scale mutagenesis datasets (proline mean effect score = 0.60 vs. all AA mean = 0.81; 

paired t-test P ≪ 0.001, n = 8; Supplementary Figure 11). Envision predicted the effects of 

proline variants about as accurately as the effects of other variants (Supplementary Figure 

12). Thus, rather than simply predicting that all proline variants were strongly damaging, 

Envision predicted the degree to which proline variants maintain or disrupt function.

Structural and evolutionary features are important for Envision’s predictions but are not 

always available. Thus, we quantified predictive performance when these features were 

missing by masking them for each of the nine LOPO models when they predicted the left-

out protein’s variant effect scores. As expected, models performed worse without structural 

features. For example, the β-lactamase LOPO model predicted β-lactamase variant effect 

scores 15% worse when structural features were masked (R = 0.69 vs 0.59; Supplementary 

Figure 13). Similarly, the β-lactamase LOPO model predicted β-lactamase variant effect 

scores 13% worse when evolutionary features were masked (R = 0.69 vs 0.60). Across the 

nine LOPO models, we found that masking structural features degraded performance by 

39% and masking evolutionary features degraded performance by 18%. Thus, we strongly 

encourage users to consider feature completeness when using Envision’s predictions. 

Feature information is available, along with predictions, on the Envision website. We note 

that all feature-driven predictors suffer when key features are unavailable.

Finally, we determined how the number of proteins in our training dataset affected Envision 

performance. We trained versions of Envision with different numbers of proteins and tested 

on the left-out proteins. We found that model performance increased as more proteins were 

used in training, suggesting that accumulation of more data will improve Envision’s 

predictive performance (Figure 4B).

Availability of Envision predictions

Envision predictions are available for proteins from seven commonly studied organisms: 

human (N = 20,130), mouse (N = 16,836), fruit fly (N = 3,375), clawed frog (N = 1,704), 

zebrafish (N = 2,982), worm (N = 3,802), and yeast (N = 8,322). We provide predictions for 

all 19 alternative amino acids at each position, with batch query and download options 

available. Along with predictions, features are also available for download.
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DISCUSSION

We developed Envision, the first variant molecular effect predictor trained on large-scale 

mutagenesis data. Envision accurately predicts variant effects in large-scale mutagenesis 

data withheld from training as well as variant effects from low-throughput experiments. 

Overall, Envision outperforms other quantitative predictors like SNAP2 and EVmutation in 

predicting experimentally measured molecular effects. In particular, the quality of Envision 

predictions is relatively uniform across different amino acid substitutions, whereas other 

predictors’ accuracy is driven by high performance on some substitutions and poor 

performance on others. The promise of using large-scale mutagenesis data to develop variant 

effect predictors is highlighted by the fact that Envision was trained from deep mutational 

data on only nine proteins, but can outperform established methods that are trained using 

sparse mutational data on thousands of proteins. As more large-scale mutagenesis data 

becomes available, Envision will continue to improve.

Envision also has limitations. Envision’s predictions are provided as quantitative scores that 

range from ~0 to ~1, where scores less than one are damaging as compared to wild-type. 

Envision can predict the scores of strongly damaging and wild type-like mutations well, but 

predicts mutations of intermediate effect less well (Supplementary Figure 5). Envision also 

relies on structural and evolutionary features that are not available for every protein, and 

predictive performance degraded when these features were missing. Thus, while Envision 

predictions are available for millions of variants, we recommend caution when key features 

are missing. The Envision web tool reveals missing features for each prediction.

To train Envision, we employed large-scale mutagenesis data from two types of deep 

mutational scans. One type is based on a generalized selection for protein function whereas 

the other type is based on selection for a specific protein function. Specific selections could 

fail to capture the effect of variants on other functions of the protein like binding to a 

different substrate or catalysis. Envision’s was trained using data from both generalized and 

specific deep mutational scans, and did not distinguish between them. Therefore, Envision 

predicts generalized variant effects, and does not distinguish between specific molecular 

effects like enzymatic activity for one substrate or another, or binding versus catalysis. 

Collection of more large-scale mutagenesis data for the specific molecular effects of variants 

may enable the development of predictors that capture these specific functional effects.

We anticipate that Envision will be useful for identifying candidate variants that tune protein 

activity levels. Envision’s predictions of molecular effect may also be useful when the 

relationship between protein function and disease is clear. Furthermore, Envision will 

continue to improve as new datasets become available.

STAR METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Douglas Fowler (dfowler@uw.edu).

Gray et al. Page 9

Cell Syst. Author manuscript; available in PMC 2019 January 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



METHOD DETAILS

Training data collection—Published large-scale mutagenesis datasets were used as 

training data if they met several criteria. First, we required that at least 50% of all possible 

single amino acids were substituted at each mutagenized position. Thus, alanine and proline 

scans did not qualify for this study. Second, we only accepted mutational scans of native 

proteins assayed for native biological function. Third, we excluded scans in which the 

complete variant sequence was unknown. We also removed variants with more than one 

mutation. In total, we accepted twelve datasets comprising ~30,000 missense mutations. 

These scans were performed on proteins from different organisms: human, mouse, rat, S. 
cerevisiae, and bacteria (Supplementary Table 1).

Normalization—Each large-scale mutagenesis dataset was generated using a distinct 

experimental assay, which resulted in different variant effect score distributions. To enable 

meaningful comparison between datasets, we normalized them. For each dataset, every 

variant effect score was normalized to the wild type score and then log2 transformed. Next, 

we subtract the median effect of synonymous variants, if available. Synonymous variants 

were unavailable for the PSD95 (Pdz3 domain), Protein G (IgG domain), UBE4B (U-box 

domain) and BRCA1 datasets, so we instead subtracted 0 from each score in those datasets. 

Lastly, we divided each score by the negative median score of the bottom 1% of mutations 

of each dataset and added one. Our normalization scheme is expressed as Snormalized = 

(Sreported i − Smedian synonymous)/( −Smedian bottom 1%)+1, where S signifies score. This 

normalization scheme results in variants that are more active than wild type having scores of 

greater than one, wild type-like variants having scores of one, and damaging variants having 

scores of less than one.

Variant annotation—Mutations were annotated with three general types of descriptive 

annotations: evolutionary, biochemical and structural (Supplementary Table 2). Several 

evolutionary features used in our model were obtained using the PolyPhen2 annotation 

pipeline (Sunyaev et al., 1999). We also derived a measure of average mutational covariance 

between a given position and all other positions in a multiple sequence alignment from 

EVfold (Hopf et al., 2017). To obtain structural information, we use DSSP (http://

www.cmbi.ru.nl/dssp.html) (Kabsch and Sander, 1983) and PDB files from the Protein Data 

Bank (http://www.rcsb.org/pdb/home/home.do) (Rose et al., 2011). Our biochemical 

annotations include measures of amino acid size, weight, volume, isoelectric point, and 

Grantham scores (Grantham, 1974).

Machine learning—Stochastic gradient boosting is a method of machine learning that 

uses an ensemble of weak prediction models (e.g., decision trees) for classification or 

regression problems (Friedman, 2002). We constructed stochastic gradient boosting tree 

regression models using the GraphLab Create framework from Turi (https://turi.com/

products/create/). Hyperparameters were optimized using a grid search. For each predictive 

model, we tuned six parameters in a stepwise fashion. First, we optimized for the number of 

decision trees in the ensemble. Next, we tuned the maximum depth of a decision tree and the 

minimum number of observances allowed in a terminal node of a tree. Then, we determined 

the value that the squared-loss must be reduced by in order to add an additional node to a 
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tree. Finally, we identified the optimal proportion of variant effect scores and features used 

to train each tree. Once hyperparameters were tuned, we reduced the learning rate from 0.1 

to 0.01 and increased the number of decision trees by fivefold. All tuned and trained models 

treat missing feature data as such, i.e., no imputing procedures were performed. Instead, 

during training, the algorithm uses variants with missing features to determine how feature 

missingness should handled by the model at each tree node (Chen and Guestrin, 2016).

Single protein models—To filter out datasets that are noisy or contain variant effects that 

cannot be explained by our evolutionary, structural or physicochemical features, we 

performed gradient boosting machine learning on a randomly selected 80% of variant effect 

scores from each protein dataset. This resulted in a model for each protein, which we used to 

predict the 20% of variant effect scores withheld from model training. Proteins whose 

specific models performed poorly on withheld data (Pearson’s R < 0.5) were excluded from 

the LOPO and global models.

Training Envision—Envision was trained using the same approach as our single protein 

models with an added leave-one-protein-out cross-validation procedure, where, at each 

round, a different protein was removed from the training set and used for validation 

(Supplementary Figure 3). Thus, after each round of training, a model’s generality was 

tested on variant effect scores from a protein not used to train the model. This cross-

validation procedure allowed us to test an array of hyperparameters to see which parameter 

sets yielded the most generalizable models. Here, model generality was determined by 

measuring the root mean squared error between model predictions and variant effect scores 

from a left-out protein. Once all hyperparameters were optimized (Supplementary Table 4), 

we trained Envision with all available data except for a randomly selected 5% of which we 

excluded to evaluate model generality and ensure that the model was not overfitted. The 

resulting model was used to make all the Envision predictions available on our website.

Leave-one-protein-out (LOPO) models—To estimate Envision’s performance on 

proteins not used in model training, we generated nine LOPO models. These models were 

trained using the same protocol as Envision, except that in each case a different protein was 

left completely out of the hyperparameter tuning and final model training procedures. These 

LOPO models were used to estimate Envision’s performance on proteins not included in the 

training set.

Downsampling analysis—To evaluate the effect of additional training data on model 

performance, we trained models with 2, 4, 6 or 7 of the available nine protein datasets. 

Model training was performed as described in the Training Envision section above. Each 

model was used to predict variant effects in proteins that were not used during the training 

phase. Confidence intervals were generated by repeated rounds of randomly selecting 

proteins to use in the training phase (n = 8).
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QUANTIFICATION AND STATISTICAL ANALYSIS

The details of the statistical test we conduct, as well as definitions of center and correlation 

can be found in the main text. Criteria for inclusion of deep mutational scanning data sets 

are described in the METHOD DETAILS section of the STAR Methods.

DATA AND SOFTWARE AVAILABILITY

All data and software in this study are freely available. The training data set and all code 

used to train the models and generate the figures presented in this manuscript are available at 

https://github.com/FowlerLab/Envision2017. Envision predictions, along with feature 

annotations, are available at https://envision.gs.washington.edu/.

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Bacterial and Virus Strains

Biological Samples

Chemicals, Peptides, and Recombinant Proteins

Critical Commercial Assays

Deposited Data

Experimental Models: Cell Lines

Experimental Models: Organisms/Strains
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REAGENT or RESOURCE SOURCE IDENTIFIER

Oligonucleotides

Recombinant DNA

Software and Algorithms

Python/2.7.3 Python https://www.python.org/

Numpy/1.13.1 Walt et al. (2011) http://www.numpy.org/

GraphLab/2.1 Low et al. (2012) https://turi.com/

Scipy/0.19.1 Jones et al. (2014) https://www.scipy.org/

scikit-learn/0.17.0 Pedregosa et al. (2011) http://scikit-learn.org/stable/

R version 3.2.3 R https://cran.r-project.org/

ggplot2/2.2.1 Wickham (2016) http://ggplot2.org/

reshape2/1.4.2 Wickham (2016) https://cran.r-project.org/web/packages/reshape2/index.html

DSSP Kabsch and Sander(1983) http://swift.cmbi.ru.nl/gv/dssp/

Polyphen2 (annotations and predictions) Adzhubei et al. (2010) http://genetics.bwh.harvard.edu/pph2/dokuwiki/downloads

SIFT predictions Ng and Henikoff (2002) http://sift.jcvi.org/

EVmutation predictions Hopf et al. (2017) https://marks.hms.harvard.edu/evmutation/

SNAP2 predictions Hecht M, Bromberg Y & 
Rost B (2015)

https://rostlab.org/services/snap2web/

Envision This study https://github.com/FowlerLab/Envision2017

Other

TEM1 β-lactamase Firnberg PubmedID: 24567513

Yap65 (WW domain) Fowler 20711194

PSD95 (Pdz3 domain) McLaughlin 23041932

Brca1 (RING domain)- E3 ligase activity Starita 25823446

Brca1 (RING domain)- Bard1 binding Starita 25823446

Aminoglycoside kinase Melnikov 24914046

E4B (U-box domain) Starita 23509263

Hsp90 Mishra 27068472

Ubiquitin Roscoe 23376099

Pab1 (RRM domain) Melamed 25671604

Ubiquitin - E1 activity Roscoe 24862281

Protein G (IgG domain) Olson 25455030

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Gray et al. Page 13

Cell Syst. Author manuscript; available in PMC 2019 January 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.python.org/
http://www.numpy.org/
https://turi.com/
https://www.scipy.org/
http://scikit-learn.org/stable/
https://cran.r-project.org/
http://ggplot2.org/
https://cran.r-project.org/web/packages/reshape2/index.html
http://swift.cmbi.ru.nl/gv/dssp/
http://genetics.bwh.harvard.edu/pph2/dokuwiki/downloads
http://sift.jcvi.org/
https://marks.hms.harvard.edu/evmutation/
https://rostlab.org/services/snap2web/
https://github.com/FowlerLab/Envision2017


Acknowledgments

We thank Bill Noble and Christine Queitsch for insightful comments. This research was supported by research 
grants from the National Science Foundation to V.E.G. [DGE-1256082], the National Institutes of Health to J.S. 
[DP1HG007811], and D.M.F. [R01GM109110]. R.J.H. is a Damon Runyon Fellow supported by the Damon 
Runyon Cancer Research Foundation [DRG-2224-15].

References

Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev 
SR. A method and server for predicting damaging missense mutations. Nat Methods. 2010; 7:248–
249. DOI: 10.1038/nmeth0410-248 [PubMed: 20354512] 

Amberger JS, Bocchini CA, Schiettecatte F, Scott AF, Hamosh A. OMIM. org: Online Mendelian 
Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucl Acids 
Res. 2015; 43:789–798. DOI: 10.1093/nar/gku1205

Chen, T., Guestrin, C. XGBoost: A Scalable Tree Boosting System, the 22nd ACM SIGKDD 
International Conference; New York, New York, USA: ACM; 2016. 

Deng CX, Brodie SG. Roles of BRCA1 and its interacting proteins. Bioessays. 2000; 22:728–737. 
DOI: 10.1002/1521-1878(200008)22:8<728::AID-BIES6>3.0.CO;2-B [PubMed: 10918303] 

Fowler DM, Fields S. Deep mutational scanning: a new style of protein science. Nat Methods. 2014; 
11:801–807. DOI: 10.1038/nmeth.3027 [PubMed: 25075907] 

Fowler DM, Stephany JJ, Fields S. Measuring the activity of protein variants on a large scale using 
deep mutational scanning. Nat Protoc. 2014; 9:2267–2284. DOI: 10.1038/nprot.2014.153 [PubMed: 
25167058] 

Friedman JH. Stochastic gradient boosting. Comput Stat Data Anal. 2002; 38:367–378. DOI: 10.1016/
S0167-9473(01)00065-2

Gasperini M, Starita L, Shendure J. The power of multiplexed functional analysis of genetic variants. 
Nat Protoc. 2016; 11:1782–1787. DOI: 10.1038/nprot.2016.135 [PubMed: 27583640] 

Grantham R. Amino acid difference formula to help explain protein evolution. Science. 1974; 
185:862–864. DOI: 10.1126/science.185.4154.862 [PubMed: 4843792] 

Grimm DG, Azencott CA, Aicheler F, Gieraths U, MacArthur DG, Samocha KE, Cooper DN, Stenson 
PD, Daly MJ, Smoller JW, Duncan LE, Borgwardt KM. The evaluation of tools used to predict the 
impact of missense variants is hindered by two types of circularity. Hum Mutat. 2015; 36:513–523. 
DOI: 10.1002/humu.22768 [PubMed: 25684150] 

Hecht M, Bromberg Y, Rost B. Better prediction of functional effects for sequence variants. BMC 
Genomics. 2015; 16:1–12. DOI: 10.1186/1471-2164-16-S8-S1 [PubMed: 25553907] 

Hopf TA, Ingraham JB, Poelwijk FJ, Schärfe CPI, Springer M, Sander C, Marks DS. Mutation effects 
predicted from sequence co-variation. Nat Biotechnol. 2017; 35:128–135. DOI: 10.1038/nbt.3769 
[PubMed: 28092658] 

Jain PC, Varadarajan R. A rapid, efficient, and economical inverse polymerase chain reaction-based 
method for generating a site saturation mutant library. Anal Biochem. 2014; 449:90–98. DOI: 
10.1016/j.ab.2013.12.002 [PubMed: 24333246] 

Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-
bonded and geometrical features. Biopolymers. 1983; 22:2577–2637. DOI: 10.1002/bip.
360221211 [PubMed: 6667333] 

Karczewski KJ, Weisburd B, Thomas B, Solomonson M, Ruderfer DM, Kavanagh D, Hamamsy T, Lek 
M, Samocha KE, Cummings BB, Birnbaum D, Daly MJ, MacArthur DG. The Exome Aggregation 
Consortium. The ExAC browser: displaying reference data information from over 60 000 exomes. 
Nucl Acids Res. 2017; 45:D840–D845. DOI: 10.1093/nar/gkw971 [PubMed: 27899611] 

Kato S, Han SY, Liu W, Otsuka K, Shibata H, Kanamaru R, Ishioka C. Understanding the function-
structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution 
missense mutation analysis. Proc Natl Acad Sci. 2003; 100:8424–8429. DOI: 10.1073/pnas.
1431692100 [PubMed: 12826609] 

Gray et al. Page 14

Cell Syst. Author manuscript; available in PMC 2019 January 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Katsonis P, Lichtarge O. A formal perturbation equation between genotype and phenotype determines 
the Evolutionary Action of protein-coding variations on fitness. Genome Res. 2014; 24:2050–
2058. DOI: 10.1101/gr.176214.114 [PubMed: 25217195] 

Kerrien S, Aranda B, Breuza L, Bridge A, Broackes-Carter F, Chen C, Duesbury M, Dumousseau M, 
Feuermann M, Hinz U, Jandrasits C, Jimenez RC, Khadake J, Mahadevan U, Masson P, Pedruzzi 
I, Pfeiffenberger E, Porras P, Raghunath A, Roechert B, Orchard S, Hermjakob H. The IntAct 
molecular interaction database in 2012. Nucl Acids Res. 2012; 40:841–846. DOI: 10.1093/nar/
gkr1088

Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J. A general framework for 
estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014; 46:310–315. 
DOI: 10.1038/ng.2892 [PubMed: 24487276] 

Kumar S, Suleski MP, Markov GJ, Lawrence S, Marco A, Filipski AJ. Positional conservation and 
amino acids shape the correct diagnosis and population frequencies of benign and damaging 
personal amino acid mutations. Genome Res. 2009; 19:1562–1569. DOI: 10.1101/gr.091991.109 
[PubMed: 19546171] 

Landrum MJ, Lee JM, Riley GR, Jang W, Rubinstein WS, Church DM, Maglott DR. ClinVar: public 
archive of relationships among sequence variation and human phenotype. Nucl Acids Res. 2013; 
44:862–868. DOI: 10.1093/nar/gkt1113

MacArthur DG, Manolio TA, Dimmock DP, Rehm HL, Shendure J, Abecasis GR, Adams DR, Altman 
RB, Antonarakis SE, Ashley EA, Barrett JC, Biesecker LG, Conrad DF, Cooper GM, Cox NJ, 
Daly MJ, Gerstein MB, Goldstein DB, Hirschhorn JN, Leal SM, Pennacchio LA, 
Stamatoyannopoulos JA, Sunyaev SR, Valle D, Voight BF, Winckler W, Gunter C. Guidelines for 
investigating causality of sequence variants in human disease. Nature. 2014; 508:469–476. DOI: 
10.1038/nature13127 [PubMed: 24759409] 

Matteucci MD, Heyneker HL. Targeted random mutagenesis: the use of ambiguously synthesized 
oligonucleotides to mutagenize sequences immediately 5′ of an ATG initiation codon. Nucl Acids 
Res. 1983; 11:3113–3121. [PubMed: 6304623] 

Mester J, Eng C. When overgrowth bumps into cancer: the PTEN-opathies. Am J Med Genet. 2013; 
163:114–121. DOI: 10.1002/ajmg.c.31364

Rodriguez-Viciana P, Tetsu O, Tidyman WE, Estep AL, Conger BA, Cruz MS, McCormick F, Rauen 
KA. Germline mutations in genes within the MAPK pathway cause cardio-facio-cutaneous 
syndrome. Science. 2006; 311:1287–1290. DOI: 10.1126/science.1124642 [PubMed: 16439621] 

Rose PW, Beran B, Bi C, Bluhm WF, Dimitropoulos D, Goodsell DS, Prlić A, Quesada M, Quinn GB, 
Westbrook JD, Young J, Yukich B, Zardecki C, Berman HM, Bourne PE. The RCSB Protein Data 
Bank: redesigned web site and web services. Nucl Acids Res. 2011; 39:392–401. DOI: 
10.1093/nar/gkq1021

Saunders CT, Baker D. Evaluation of Structural and Evolutionary Contributions to Deleterious 
Mutation Prediction. J Mol Biol. 2002; 322:891–901. DOI: 10.1016/S0022-2836(02)00813-6 
[PubMed: 12270722] 

Sim NL, Kumar P, Hu J, Henikoff S, Schneider G, Ng PC. SIFT web server: predicting effects of 
amino acid substitutions on proteins. Nucl Acids Res. 2012; 40:452–457. DOI: 10.1093/nar/
gks539

Stenson PD, Ball EV, Mort M, Phillips AD, Shaw K, Cooper DN. The Human Gene Mutation 
Database (HGMD) and its exploitation in the fields of personalized genomics and molecular 
evolution. Hum Genet. 2012; 133:1–9. DOI: 10.1002/0471250953.bi0113s39

Sunyaev SR, Eisenhaber F, Rodchenkov IV, Eisenhaber B, Tumanyan VG, Kuznetsov EN. PSIC: 
profile extraction from sequence alignments with position-specific counts of independent 
observations. Protein Eng. 1999; 12:387–394. DOI: 10.1093/protein/12.5.387 [PubMed: 
10360979] 

Tang H, Thomas PD. Tools for Predicting the Functional Impact of Nonsynonymous Genetic Variation. 
Genetics. 2016; 203:635–647. DOI: 10.1534/genetics.116.190033 [PubMed: 27270698] 

Vigneri R, Squatrito S, Sciacca L. Insulin and its analogs: actions via insulin and IGF receptors. Acta 
Diabetol. 2010; 47:271–278. DOI: 10.1007/s00592-010-0215-3 [PubMed: 20730455] 

Gray et al. Page 15

Cell Syst. Author manuscript; available in PMC 2019 January 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Wan PTC, Garnett MJ, Roe SM, Lee S, Niculescu-Duvaz D, Good VM, Jones CM, Marshall CJ, 
Springer CJ, Barford D, Marais R. Cancer Genome Project. Mechanism of activation of the RAF-
ERK signaling pathway by oncogenic mutations of B-RAF. Cell. 2004; 116:855–867. DOI: 
10.1038/nrc1347 [PubMed: 15035987] 

Zou J, Valiant G, Valiant P, Karczewski K, Chan SO, Samocha K, Lek M, Sunyaev S, Daly M, 
MacArthur DG. Quantifying unobserved protein-coding variants in human populations provides a 
roadmap for large-scale sequencing projects. Nat Commun. 2016; 7:13293.doi: 10.1038/
ncomms13293 [PubMed: 27796292] 

Gray et al. Page 16

Cell Syst. Author manuscript; available in PMC 2019 January 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



HIGHLIGHTS

• Large-scale, quantitative mutagenesis data offers a novel source of training 

data

• Envision outperforms other missense variant effect predictors on independent 

data

• More mutagenesis data will improve Envision’s predictive performance

• Envision predictions are available for download: https://

envision.gs.washington.edu
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Figure 1. Large-scale mutagenesis data and descriptive features used to train Envision
The number of single mutants (A) collected from different protein or protein domain large-

scale mutagenesis datasets and the mutational completeness of each dataset (B) are shown. 

Mutational completeness was calculated by dividing the number of observed single mutants 

by the number possible single mutants. (C) The distribution of variant effect scores for each 

large-scale mutagenesis dataset is shown. For each dataset, variant effect scores were 

normalized such that a score of one is wild type-like and a score of zero is inactivating (see 

Supplementary Figure 1 for unnormalized score distribution). Each collected variant was 

annotated with 27 features, which describe physicochemical (dark blue), evolutionary (blue) 

or structural (green) variant attributes (Supplementary Table 2). (D) The proportion of 

variants in the collected large-scale mutagenesis datasets having each feature is shown (WT 

= wild type, MT = mutant).
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Figure 2. Protein-specific gradient boosting models can accurately predict variant effect scores
We trained a model for each protein using a randomly selected 80% of data, with 20% 

reserved for testing. (A) A radar plot of Pearson’s correlation coefficients between observed 

and predicted variant effect scores illustrates protein-specific model performance on both 

training (dark red) and testing data (light red). The PAB1 RRM domain-specific model 

predicts the effects of variants withheld from training well (Pearson’s R > 0.75), and was 

used to predict the 197 missing variant effect scores. (B) The completed Pab1 RRM domain 

sequence-function map is shown for positions 126–200. Each mutagenized position is a 

column, and each amino acid substitution is a row. Wild type-like variants are colored dark 

blue and inactive variants are colored light blue. Predicted effects are denoted by black 

borders.
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Figure 3. Envision outperforms other quantitative variant effect predictors
(A) A hexagonal bin plot shows the correlation between predicted and observed variant 

effect scores for all the large-scale mutagenesis data used to train Envision (Pearson’s R = 

0.79). To evaluate performance on data not used in training, models were retrained excluding 

each one of the nine proteins (see Supplementary Figure 3–4 for cross-validation scheme 

and training performance). (B) A radar plot shows the correlation (Pearson’s R) between 

predicted and observed variant effect scores when the indicated protein was left out (see 

Supplementary Figure 5 for scatter plots). (C) We also compared the leave-one-protein-out 

models to SNAP2 (left panel), EVmutation-epistatic (middle panel) and EVmutation-

independent (right panel). The log2 ratio of each leave-one-protein-out model’s Pearson’s R 

to another predictor Pearson’s R on the left-out data is shown. Hashed bars indicate relative 

performance on a set of 2,312 TP53 transactivation activity scores measured in a low-
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throughput assay and not used in training (see Supplementary Figure 7 for raw 

comparision). (D) A hexagonal bin plot shows the correlation between Envision predictions 

and TP53 activity scores (Pearson’s R = 0.58). (E) A violin plot illustrates the distribution of 

Pearson’s correlation coefficients for variant effect scores and Envision, SNAP2 and 

EVmutation predictions for different mutant amino acids. The dashed horizontal line 

indicates the median Pearson’s correlation coefficients for each predictor (see 

Supplementary Figure 9A–B for heatmap of correlations).
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Figure 4. Envision is an interpretable model that will improve with more training data
The number of times each feature is used in Envision’s decision tree ensemble is a measure 

of feature importance. (A) Feature importance for every physicochemical (dark blue), 

biological (blue) and structural (green) feature is shown (WT = wild type, MT = mutant). 

See Supplementary Figure 11–12 for proline feature analysis. (B) To assess the impact of 

adding more training data to Envision, we conducted a downsampling analysis. Models were 

trained with increasing numbers of randomly selected protein datasets, and tested on 

mutations from proteins withheld from training. The mean Pearson’s correlation coefficient 

between predicted and observed variant effects across testing datasets are shown, organized 

by the number of proteins included in the training set. Error bars indicate the standard 

deviation of correlation coeffcients obtained from ten random samplings of proteins to 

include in the training set. A naïve model (i.e. number of training proteins = 0) was also 

generated by randomizing feature values for all proteins and repeating the training 

procedure. The error bars for the naïve model indicate the standard deviation of correlation 

coefficients obtained from ten different feature randomizations. See Supplementary Figure 

13 for left-out feature analysis.
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