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SUMMARY

The etiology of non-alcoholic fatty liver disease (NAFLD), the most common form of chronic 

liver disease, is poorly understood. To understand the causal mechanisms underlying NAFLD, we 

conducted a multi-omics, multi-tissue integrative study using the Hybrid Mouse Diversity Panel 

(HMDP), consisting of ~100 strains of mice with various degrees of NAFLD. We identified both 

tissue-specific biological processes as well as processes that were shared between adipose and 

liver tissues. We then used gene network modeling to predict candidate regulatory genes of these 

NAFLD processes, including Fasn, Thrsp, Pklr, and Chchd6. In vivo knockdown experiments of 

the candidate genes improved both steatosis and insulin resistance. Further in vitro testing 

demonstrated that down regulation of both Pklr and Chchd6 lowered mitochondrial respiration and 
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led to a shift towards glycolytic metabolism, thus highlighting mitochondria dysfunction as a key 

mechanistic driver of NAFLD.

eTOC BLURB

Chella Krishnan and Kurt et al. apply integrative genetics approaches to delineate “key driver” 

genes regulating NAFLD using multi-omics data from ~100 mouse strains. In vivo modulation of 

these genes rescued animals from steatosis and insulin resistance. Follow-up bioenergetics studies 

highlight mitochondrial dysfunction as a key mechanistic driver of NAFLD.
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INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) has become a very common chronic liver 

disease, affecting 20–30% of Western populations (Hui et al., 2015; Ratziu et al., 2010; 

Vernon et al., 2011). It can progress through different stages of hepatic abnormalities, from 

hepatocellular lipid accumulation (steatosis) to non-alcoholic steatohepatitis (NASH) 

involving inflammation and fibrosis, to cirrhosis and hepatocellular carcinoma (Adams et al., 

2005; Browning et al., 2004; Kopec and Burns, 2011). The disease is highly associated with 

metabolic disorders such as obesity and insulin resistance (de Alwis and Day, 2008; 

Browning et al., 2004; Marchesini et al., 2003; McCullough, 2004), and there are no directly 

established pharmacological treatments for NAFLD other than reducing these risk factors 

such as weight reduction, using insulin sensitizers and lipid-lowering agents.
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Thus far, only a handful of genes (PNPLA3, SAMM50, PARVB, GCKR, LCP1, LYPLAL1, 
PPP1R3B, TM6SF2, TRIB1) have been identified by human genome-wide association 

studies (GWAS) (Chambers et al., 2011; Kitamoto et al., 2013; Kozlitina et al., 2014). An 

important complication in human genetic studies is the very significant role of NAFLD 

environmental factors in the disorder. Rodent models allow a better control of environmental 

factors when examining the genetic contributors of NAFLD and also enable the collection of 

molecular traits from the relevant tissues to help elucidate tissue-specific mechanisms. To 

this end, we recently conducted a study (Hui et al., 2015) to examine hepatic steatosis and its 

relevant clinical and molecular traits in more than 100 distinct inbred mouse strains 

belonging to the Hybrid Mouse Diversity Panel (HMDP). The HMDP mice were fed a high 

fat and high sucrose (HF/HS) diet to induce hepatic triglyceride (TG) accumulation, a 

hallmark of NAFLD.

Using the HMDP, we produced a rich multi-omics data resource for NAFLD including dense 

genotyping of common genetic variants, liver and adipose transcriptome data, and the 

corresponding tissue-specific expression quantitative trait loci (eQTLs) that reflect genetic 

regulation of gene expression. In the present study, we applied an integrative genomics 

approach to fully incorporate the whole spectrum of NAFLD genetic association with 

functional genomics information from liver and adipose eQTLs, and from gene networks 

constructed using liver and adipose transcriptome data from HMDP as well as from a 

multitude of additional existing genomic studies. This multi-omics integration revealed 

coordinated gene-gene interactions in liver and adipose tissues that are perturbed by 

polygenic risks of NAFLD and uncovered hidden biology missed by traditional genomic 

analysis. This data-driven integrative approach further predicted potential regulators of the 

NAFLD processes, leading to the identification of both known (e.g., Fasn and Thrsp) and 

novel (e.g., Pklr and Chchd6) regulators. Further in vivo and in vitro experimental validation 

of the predicted novel regulators revealed mitochondria dysfunction as a key driving 

mechanism in NAFLD.

RESULTS

Integrative genomics framework

As detailed in Figure 1, we modeled NAFLD gene networks using the multi-omics HMDP 

data along with additional public gene expression datasets to identify pathways and predict 

potential “key driver” genes underlying hepatic TG accumulation. Briefly, we first 

constructed gene co-expression networks based on liver and adipose expression data across 

the HMDP strains and then integrated these networks with GWAS analyses of hepatic TG 

levels as well as liver and adipose eQTL information using the Mergeomics platform 

(Arneson et al., 2016; Shu et al., 2016). This integration led to the identification of tissue-

specific co-expression modules (groups of co-expressed genes) and biological pathways that 

are enriched for NAFLD GWAS signals. Subsequently, we mapped the NAFLD-associated 

network modules and pathways to gene regulatory Bayesian networks of liver and adipose 

tissues that are based on numerous genetic and gene expression datasets (details in Method 

Details section) to predict potential key regulators, termed key drivers (KDs), of the NAFLD 
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processes. We then prioritized the resulting predicted KD genes for experimental validation 

and mechanistic studies in mice. The details of these operations are described below.

Modeling of functional gene-gene relationships in the HMDP using tissue-specific co-
expression networks

To capture gene-gene relationships in NAFLD-relevant tissues in a data-driven manner, we 

first constructed gene co-expression networks of liver and adipose tissues using the 

Weighted Gene Co-expression Network Analysis (WGCNA) (Langfelder and Horvath, 

2008) and the Multiscale Embedded Gene Co-expression Network Analysis (MEGENA) 

(Song and Zhang, 2015) (details in Method Details). The networks were constructed based 

on the transcriptome data from liver and adipose tissue samples of 228 HMDP mice from 

113 mouse strains that were fed an 8-week HF/HS diet to induce hepatic steatosis (Hui et al., 

2015). The two network modeling methods are complementary in that WGCNA generates 

networks comprised of larger modules, which together fit a scale-free topology at a single 

scale, whereas MEGENA produces multi-scale networks comprised of more compact 

modules (detailed comparison in Methods). Using WGCNA, we identified a total of 40 and 

26 co-expression modules in liver and adipose tissue, respectively. Using MEGENA, we 

identified 204 and 79 co-expression modules in liver and adipose tissue, respectively. We 

listed all member genes of each module for each tissue in Table S1. These co-expression 

modules from WGCNA and MEGENA mainly serve to group genes based on their 

coordinated co-regulation patterns, which have been shown to be a powerful data-driven way 

to define functionally related genes (Langfelder and Horvath, 2008; Song and Zhang, 2015). 

Indeed, the majority of modules showed enrichment of specific pathways or biological 

processes (Table S2 and Figure S1), indicating functional coordination of genes in the co-

expression modules identified.

We evaluated the preservation of the modules between the MEGENA and WGCNA methods 

(details in Method Details). We observed that all of the WGCNA liver and adipose modules 

were conserved in the MEGENA liver and adipose modules (Figure S2A–D). Similarly, 97% 

and 86% of MEGENA liver and adipose modules, respectively, were conserved within the 

corresponding liver and adipose WGCNA modules. Hence, these two methods capture 

largely conserved co-expression patterns while the multi-scale algorithm in MEGENA can 

reveal additional modules. Additionally, the varying module sizes from the two methods 

confer a broad range of statistical power and various degrees of functional coherence among 

the module genes, which allows for comprehensive screening in the downstream analyses to 

capture biologically relevant pathways and genes in NAFLD.

Co-regulation of genes is most likely attributable to the sharing of common regulators such 

as transcription factors or microRNAs, which act in trans to regulate large numbers of 

downstream target genes. Therefore, we would expect that the tissue-specific modules to 

reflect tissue-specific trans-eQTLs, in a manner that the module genes share trans-eQTLs to 

loci that control the activities of their upstream regulators. Such trans-eQTLs, however, are 

intrinsically weak and are difficult to reliably detect in practice (Van Nas et al., 2010). To 

date, the eQTLs that can be reproducibly identified are mainly cis-eQTLs (including those 

used in the current study). These are responsible for local control of individual genes and, 
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when the genes under cis-regulation encode transcriptional regulators expressed in a tissue-

specific manner, can contribute to tissue-specific co-expression by perturbing the expression 

of sets of genes in trans. Because of the difficulty in capturing trans-eQTLs, we are not able 

to directly assess whether the tissue-specific modules reflect tissue-specific eQTLs, although 

in theory tissue-specific trans-eQTLs underlie the tissue-specific modules.

Identification of co-expression modules that show correlation with NAFLD phenotypes

To investigate which co-expression modules are associated with NAFLD, we correlated the 

module eigen-gene of each module with hepatic TG (see Method Details). We found 105 

MEGENA modules (65 from liver and 40 from adipose) and 17 WGCNA modules (14 from 

liver and 3 from adipose) to be correlated with hepatic TG at Pearson correlation P<1E-3, 

which is determined based on a permutation test (see Method Details). The hepatic-TG 

associated liver co-expression modules are mainly related to lipid metabolism, cell cycle, 

and peroxisomal pathways. The hepatic TG associated adipose co-expression modules are 

mainly related to immune system, cell cycle, citric acid (TCA) cycle, and insulin signaling 

pathways (Table S2).

Biological pathways and co-expression modules that show genetic association with 
NAFLD

To infer potential causal processes in NAFLD, we incorporated genetic information into our 

analysis to retrieve groups of genes that together show evidence of genetic association with 

NAFLD. This is in contrast to conventional GWAS, which focus on individual genetic 

variants and have limited statistical power to detect moderate and subtle genetic signals as 

well as gene-gene interactions. Specifically, we integrated the full spectrum of GWAS 

results (not just the top genome-wide significant hits) of hepatic TG levels (Hui et al., 2015), 

with the liver and adipose co-expression modules defined above as well as canonical 

pathways taken from several pathway databases (BIOCARTA, KEGG, REACTOME). To 

connect the GWAS signals in the form of single nucleotide polymorphisms (SNPs) to genes 

in the modules or pathways, we used the liver and adipose eQTLs (details in Methods), each 

containing one or more expression SNPs (eSNPs) associated with gene expression, from the 

same HMDP cohort (Hui et al., 2015). eSNPs capture the potential functional relationships 

between GWAS SNPs and expressed genes in a tissue-specific manner. Integration of 

GWAS, eQTLs (in the form of eSNPs), and networks/pathways was performed using the 

Marker Set Enrichment Analysis (MSEA) from the Mergeomics pipeline (Shu et al., 2016) 

(Figure 1; details in Method Details) to test for over-representation of stronger GWAS 

signals among the eSNPs mapped to individual pathways or co-expression modules 

compared to random sets of genes. We provide a detailed Table S3 to list the member genes 

in each module from each tissue, the corresponding eSNPs of each member gene that have at 

least one eQTL in the matched tissue, and P-value of each eSNP in disease GWAS.

MSEA was conducted using the eQTLs and networks from liver and adipose tissues 

separately to infer tissue-specific perturbations in NAFLD. Among the 1823 pathways and 

122 TG-correlated co-expression modules (79 from liver and 43 from adipose) tested, at 

false discovery rate (FDR) <5%, we found 35 pathways and 9 co-expression modules from 

the liver-specific analysis and 24 pathways and 8 co-expression modules from the adipose-
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specific analysis to be significantly enriched for GWAS signals of NAFLD in the HMDP 

(Table S4). Among the NAFLD-associated pathways and co-expression modules identified 

from each tissue, we found that certain modules or pathways had genes highly overlapping 

with other modules or pathways (e.g., a liver co-expression module contained mostly the 

same set of genes captured in the “lipid metabolism” pathway from KEGG). To reduce the 

redundancy, we merged the overlapping gene sets to derive “supersets” each comprised of 

one or more overlapping pathways/modules associated with NAFLD (details in Method 

Details), and confirmed that these supersets retained significant genetic association to 

NAFLD as shown by their constituents (Table S5). Comparison between tissues revealed 9 

supersets to be liver-specific (e.g., peroxisome, oxidative phosphorylation, NOTCH 

signaling), 13 adipose-specific (e.g., innate immunity, insulin signaling, branched chain 

amino acid metabolism), and 8 common to both tissues (e.g., adaptive immune system, 

multiple lipid metabolism processes, apoptosis/cell cycle, gene expression regulation; Figure 

2). Therefore, these gene sets informed by hepatic TG GWAS captured a broad range of 

molecular processes that are likely perturbed by genetic factors associated with NAFLD.

Comparison of the NAFLD-associated supersets identified in the mouse HMDP with 
previously known NAFLD genes and pathways

We compared our data-driven findings from the HMDP mouse study with 107 previously 

identified NAFLD-associated genes (listed in Table S6) from the DisGeNET database 

(Piñero et al., 2015), which manually curates gene-disease associations from a multitude of 

quality controlled databases such as the GWAS Catalog, ClinVar, Comparative 

Toxicogenomics Database, and Genetic Association Database (details in Method Details). 

The 107 known NAFLD genes contained nine human GWAS candidate genes (PNPLA3, 
SAMM50, PARVB, GCKR, LCP1, LYPLAL1, PPP1R3B, TM6SF2, TRIB1). Notably, 5 of 

the NAFLD GWAS genes (PNPLA3, GCKR, LYPLAL1, PPP1R3B, TM6SF2) and 60 of the 

other 97 previously studied NAFLD genes were among the pathways and co-expression 

modules identified in our HMDP analysis. To assess consistency at the pathway level, we 

used a one-tailed Fisher’s exact test to identify the canonical pathways enriched for the 107 

known genes (Table S7) and compared the significant pathways to our findings from the 

HMDP mouse study. This analysis showed replication of numerous pathways (highlighted in 

Table S5 and S7) including fatty acid, lipid, and lipoprotein metabolism, apoptosis, immune 

system, insulin signaling, drug metabolism, and a cancer pathway. These analyses suggest 

that our data-driven integrative analysis of a single mouse HMDP study captures previously 

known NAFLD genes and processes. Moreover, our study highlighted several novel 

processes such as oxidative phosphorylation, extracellular matrix (ECM), branched-chain 

amino acid (BCAA) metabolism, and the cell cycle.

Identification of key drivers (KDs) of the NAFLD-associated gene supersets

We identified potential regulatory genes, termed KDs, within the NAFLD-associated 

supersets using tissue-specific gene regulatory networks and the Key Driver Analysis (KDA) 

in Mergeomics (Shu et al., 2016). The main concept behind the KDA is to project disease-

associated gene sets onto an independently derived gene regulatory network and 

subsequently pinpoint KDs whose network neighbors are enriched for disease genes. To 

identify the KDs for the NAFLD-associated gene supersets, we leveraged liver and adipose 
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Bayesian Networks (BNs) (Zhu et al., 2008) constructed from a number of existing human 

and mouse studies (Derry et al., 2010; Emilsson et al., 2008; Schadt et al., 2008; Tu et al., 

2012; Wang et al., 2007; Yang et al., 2006; Zhong et al., 2010), as listed in the "key resource 

table" in the STAR methods section, and utilized the union BN for each tissue to capture 

gene-gene interactions under different pathophysiological conditions (see Method Details). 

As BNs are constructed based on gene expression patterns, genetic information, and causal 

inference, they capture causal regulatory relationships between genes and the KDs derived 

from such BNs are potential regulators of the NAFLD genes and the disease itself. We 

identified a number of KDs for each NAFLD superset at FDR<5% (Table S8), among which 

Fasn is a particularly consistent KD identified across multiple supersets in both liver and 

adipose tissues, suggesting its critical role in NAFLD. Other notable KDs include Hmgcr, 
the target of statin drugs, and Pparg, the target of glitazones, supporting the current therapies 

involving lowering metabolic risks of NAFLD. We also found that 17 of the KD genes 

predicted in our study were among the 107 previously reported NAFLD genes curated in 

DisGeNET (highlighted in bold in Table S8). As shown in Figure 3, the top KDs of each 

NAFLD superset orchestrate tightly connected subnetworks of NAFLD pathways and 

processes in a tissue-specific manner (Figure 3A for liver and 3B for adipose).

We checked the genetic regulation of the predicted KDs. We found that the majority of the 

KDs did not have significant cis-eQTLs (Table S8). Among the 69 unique liver KDs, 6 genes 

(9%) have cis-eQTLs in liver, whereas among 88 unique adipose tissue KDs, 4 genes (5%) 

have cis-eQTLs in adipose tissue. As the robust eQTLs we included in our analysis are cis-

eQTLs, the lack of cis-eQTLs among the KDs implies that they are likely regulated in trans.

Selection of candidate KDs for validation: Fasn, Thrsp, Pklr, and Chchd6

We selected 4 predicted liver KDs to test their potential regulatory role in NAFLD. Genes 

encoding fatty acid synthase (Fasn) and thyroid hormone responsive (Thrsp), and pyruvate 

kinase, liver and red blood cell (Pklr) are the 2nd, 3rd, and 10th KDs, respectively, predicted 

for the superset representing fatty acid, triacylglycerol, and ketone body metabolism 

pathways. However, in terms of gene-trait (hepatic TG level) correlation in liver tissue, Pklr 
is the most significant KD of this pathway (Pearson correlation coefficient r=0.47, 

P=1.36E-07). The 4th KD selected for validation encodes coiled-coil-helix-coiled-coil-helix 

domain containing 6 (Chchd6), chosen from a liver co-expression module related to the 

mitotic cell cycle, G2-M checkpoints, and DNA damage response. Also, Chchd6 was ranked 

as the 25th most correlated gene with hepatic TG levels (Pearson correlation coefficient 

r=0.54, P=1.27E-09) in the HMDP liver transcriptome data. While Fasn (Kawano and 

Cohen, 2013) and Thrsp (Wu et al., 2013) have been implicated in NAFLD and can serve as 

positive controls, Pklr and Chchd6 are novel predictions from our study.

As shown in the sub networks of the 4 select KDs (Figure 3C), they are hub genes 

surrounded by many genes in the NAFLD-associated pathways or co-expression modules 

identified in our study. Fasn, Thrsp, and Pklr subnetworks are interconnected and partner 

with many lipid and cholesterol metabolism genes such as Acacb, Elovl6, Hmgcr, Mvk, 
Pltp, Me1, Dhcr7, and Acly, whereas Chchd6 forms a separate subnetwork surrounded by 

cell cycle genes as well as fatty acid related genes Cd36 and Pparg. Notably, human NAFLD 
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GWAS candidate genes PNPLA3, PPP1R3B, LCP1, TRIB1, and SAMM50 are within the 

subnetworks. PNPLA3 is directly connected to Fasn and indirectly connected to the other 

selected KDs, Thrsp, Pklr, and Chchd6, via one gene for each KD. These subnetworks 

support the relevance of the selected KDs in NAFLD. Interestingly, the NAFLD GWAS 

genes themselves were not predicted to be KDs. This agrees well with the consistent 

observations from us and others that human GWAS genes tend to be peripheral nodes in 

gene regulatory networks whereas key regulatory genes likely do not contain GWAS signals 

due to evolutionary constraints (Boyle et al., 2017; Mäkinen et al., 2014; Shu et al., 2017; 

Zhao et al., 2016).

Validation of candidate key driver genes as causal genes for hepatic steatosis

To assess the in vivo effects of the candidate KD genes, we knocked down hepatic 

expression of Fasn, Thrsp, Pklr, and Chchd6 by adenoviral expression of shRNA in 8-week-

old C57BL/6J mice (see Method Details and Figure S3A). The control groups received 

adenovirus expressing an empty vector while the test groups received adenovirus expressing 

the respective shRNAs against each of the 4 candidate genes. Three shRNAs were tested 

against each candidate gene in vitro and the strongest shRNA was used in in vivo studies. 

One day after injection, all animals were subjected to a HF/HS diet for 14 days followed by 

euthanization and tissue extraction. Knockdown of these KD genes led to significant 

lowering of liver mass as well as the mass of certain adipose depots compared with the 

control group post HF/HS treatment (Figure 4A–D). Analysis of hepatic lipids revealed 

significant reductions in both hepatic TG and total cholesterol (TC) levels (Figure 4E–F) but 

no change in hepatic unesterified cholesterol and phospholipid levels between the groups 

(Figure S4A–B). We also noted that the plasma glucose levels were unchanged between the 

control and test animal groups (Figure S4C). However, plasma insulin levels were lowered in 

groups with candidate gene knockdown, accompanying improved insulin sensitivity as 

measured by HOMA-IR (Figure 4G–H). Quantitative PCR analyses of liver tissues also 

revealed that knockdown of these KD genes led to a reduction in genes associated with de 
novo lipogenesis (and lipid uptake, to a lesser extent) relative to control groups (Figure 

S3C). To further validate the key driver genes as regulators of the predicted gene networks, 

we randomly selected 11 nodes connected to either Pklr or Chchd6 in their respective 

networks and tested their expression via quantitative PCR analyses of liver tissues. As 

control, we randomly selected 3 nodes that were 3-edges away from the respective key 

driver genes. Compared to the control groups, knockdown of either Pklr or Chchd6 affected 

the expression of most of their neighborhood genes (Figure 5A and C). However, distant 

genes were unaffected (Figure 5B and D).

Knockdown of novel KD genes altered mitochondrial metabolic profile

To further explore the mechanisms underlying the phenotypic effects of the two novel 

candidate KD genes, Pklr and Chchd6, we focused on the mitochondria function as 

measured by oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) 

using an XF24 analyzer. We focused on mitochondrial function because both the product of 

Pklr (pyruvate) and fatty acids are oxidized in the mitochondria, also Chchd6 is known to 

affect mitochondrial cristae morphology where the electron transport chain complexes are 

assembled (Ding et al., 2015). We used siRNAs to knockdown each of the KDs in AML12 
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cells grown in the presence of exogenous oleic acid (see Method Details and Figure S3B) 

and observed a significant reduction in the overall OCR profile (Figure 6A). Specifically, 

both mitochondrial and non-mitochondrial respiration was reduced, with Chchd6 
knockdown leading to lowering of ATP-linked respiration and Pklr knockdown resulting in 

lowered proton leak (Figure 6B–E). Conversely, we observed a significant increase in the 

ECAR profile (Figure 6F). Specifically, knockdown of both of these KD genes increased 

both basal and maximum ECAR (Figure 6G–H). Taken together, the lowered basal OCR but 

increased ECAR in Pklr and Chchd6 knockdown experiments suggested that these cells 

shifted away from oxidative metabolism to a more glycolytic metabolism (Figure 6I). 

Further ex vivo studies using isolated liver mitochondria from mice injected with either 

adenovirus carrying empty vector or respective shRNAs against Pklr and Chchd6, revealed 

that both complex I- and II-mediated OCR were affected by knockdown of these genes 

(Figure 6J).

DISCUSSION

Unlike previous studies focusing on individual genes influencing NAFLD progression (Hill-

Baskin et al., 2009; Montgomery et al., 2013), our study utilized an integrative genomics 

approach to capture the genetically perturbed molecular processes by integrating genomic, 

transcriptomic, and phenotypic data derived from a large panel of inbred mouse strains. This 

comprehensive multi-omics integration revealed potential causal molecular mechanisms in 

NAFLD that are informed by aggregate actions of genetic risk factors in GWAS that affect 

gene expression, pathways and gene networks. The diverse and complex pathogenic 

pathways captured in our analysis of HMDP, a single mouse study, encompassed numerous 

causal NAFLD processes established through decades of research such as lipid metabolism 

and the immune system, and provided evidence for the causal involvement of processes such 

as insulin and growth factor signaling, the ECM, and the BCAA metabolism pathways. In 

addition, we identified candidate regulatory genes governing these NAFLD processes and 

experimentally validated four predicted key regulator genes, Fasn, Thrsp, Pklr, and Chchd6. 

These validation experiments highlight mitochondrial dysfunction as a core process in 

NAFLD. Of note, the current study focused on steatosis, the early stage of NAFLD captured 

in our HF/HS-induced fatty liver model. Later stages of NAFLD such as inflammation and 

liver fibrosis do not occur to a significant extent in even the most susceptible strains when 

fed a high fat/high sucrose diet for 8 weeks.

The use of liver and adipose eQTLs and transcriptome data in conjunction with GWAS in 

our integrative study revealed tissue-specific pathways as well as common processes shared 

between tissues. Although both adipose and liver tissues have been implicated in NAFLD 

pathogenesis (Hardy et al., 2016), the diverse processes revealed by our study significantly 

expand the scope of mechanistic drivers of this disease in these tissues. For instance, 

previous studies have mainly positioned the adipose tissue as a source of free fatty acid and 

inflammatory signals that initiate and propagate liver steatosis, inflammation, and injury 

(Hardy et al., 2016). In contrast, our study indicates a much broader role of adipose tissue in 

NAFLD, as reflected by the numerous adipose-specific processes including interferon and 

cytokine signaling, BCAA degradation, TCA cycle, respiratory electron transport, ECM 

receptor interaction, and signaling by insulin, TGF beta, Wnt, MAPK, and 
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phosphatidylinositol. Similarly, we found numerous liver-specific pathways including 

oxidative phosphorylation, peroxisome, lysophospholipid, cytochrome p450s, complement 

and coagulation cascades, and trans-membrane transport of small molecules.

Shared pathways in both liver and adipose tissues include lipid metabolism (lipoprotein, 

fatty acid, triacylglycerol, and phospholipids), B cell receptor signaling, growth factor 

signaling, cell cycle, and apoptosis. Our finding on the B cell signaling, a component in 

adaptive immunity, in both liver and adipose, for NAFLD pathogenesis extends the previous 

notion that the innate immune system is a key process in NAFLD. Apoptosis and cell cycle 

pathways, previously known for NAFLD liver injury and scaring (Nolan and Larter, 2009), 

are also associated with steatosis. Although many of the pathways have previously been 

correlated with NAFLD, the use of genetic data from GWAS in our study to guide the 

extraction of these pathways supports their putative causal roles in NAFLD, as the 

expression levels of the genes in these pathways were perturbed by the same genetic variants 

that are associated with hepatic TG accumulation.

Previously, we also have developed an HMDP panel fed with a chow diet (Bennett et al., 

2010), and co-expression modules from the chow HMDP panel may also be informative for 

NAFLD pathogenesis. We compared the chow and HF/HS modules and found that the chow 

modules were mostly preserved in the HF/HS modules and did not add additional value to 

inform on NAFLD processes (Figure S2E–I). Therefore, the HF/HS-modules used captured 

sufficient biological information.

To further prioritize genes that play critical roles in regulating these NAFLD-associated 

pathways/networks and thus to help identify therapeutic targets, we used a gene network-

driven modeling approach and predicted potential KDs including Fasn, Thrsp, Pklr, and 

Chchd6. Many of the top KDs are connected to known NAFLD-associated genes such as 

Pnpla3, Pparg, and Cd36, supporting their relevance and importance to NAFLD. Both Fasn 
and Thrsp have been well supported by previous studies as critical genes involved in 

NAFLD pathogenesis (Chakravarthy et al., 2009; Wu et al., 2013). Their prominent 

consistency and high ranks in our network analysis and our subsequent gene knockdown 

experiments confirmed their importance in NAFLD. KDs Pklr, and Chchd6, however, 

represent novel predictions from the current study. Pklr is abundantly expressed only in liver, 

while Chchd6 is expressed in all other tissues. However, in the context of diet-induced 

NAFLD studied over 100 mice strains, Chchd6 was predicted and validated to be a KD only 

in liver but not in adipose tissue.

Pklr was a top KD of the fatty acid, triacylglycerol, and ketone body metabolism pathway 

and catalyzes the transphosphorylation of phosphoenolpyruvate into pyruvate and ATP. The 

Pklr-centered subnetwork (Figure 3C) includes many genes related to lipid metabolism, such 

as Acly and Acacb. The other novel candidate gene, Chchd6, is a KD of a co-expression 

module overrepresented with genes involved in cell cycle and “ataxia telangiectasia and rad3 

(ATR)” pathways. The known function of this gene is that CHCHD6/MIC25 along with 

CHCHD3/MIC19 and Mitofilin/MIC60 forms the ‘core’ of the mitochondrial contact site 

and cristae organizing system, which is predominantly associated with the mitochondrial 

inner membrane (Huynen et al., 2016; van der Laan et al., 2016). Depleting Chchd6 has 
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substantial effects on mitochondrial cristae morphology leading to fewer cristae junctions 

and lower cristae density (Ding et al., 2015). In our network model, genes such as Cd36 and 

Pparg are both linked to Chchd6 (Figure 3C), and the subnetwork centered at Chchd6 is 

connected to the Fasn and Pklr subnetworks via PNPLA3, a validated human GWAS gene 

for NAFLD. Our in vivo validation results show that the knockdown of either Pklr or 

Chchd6 perturbed genes predicted to be in their subnetworks and was significantly 

associated with NAFLD-related phenotypes including liver mass, hepatic TG, and plasma 

insulin levels, supporting our predictions made based on network modeling. One of the 

limitations in our study was using a single shRNA against each of the KDs tested as it may 

elicit concerns of off-target effects. However, our phenotypic and network validation 

analyses make this concern very unlikely. It is to be noted that shRNA validation and follow-

up adenoviral packaging is a time-consuming and expensive process, thus limiting the use of 

multiple shRNAs for each gene in vivo (Hui et al., 2015).

To further explore the potential mechanisms underlying the connection of Pklr and Chchd6 
to NAFLD, we focused on mitochondrial function. There are over 800 mitochondria in each 

hepatocyte. Several studies have shown that mitochondrial dysfunction is closely associated 

with and, in fact, precedes both insulin resistance and NAFLD (Begriche et al., 2006; 

Pessayre and Fromenty, 2005). Both human and animal studies have shown that during 

insulin resistance and NAFLD, when the liver is overwhelmed with free fatty acid flux due 

to increased hepatic fatty acid transport and augmented hepatic de novo lipogenesis, several 

mitochondrial abnormalities including ultrastructural lesions, depletion of mitochondrial 

DNA, decreased activity of respiratory chain complexes, and impaired mitochondrial β-

oxidation occur (Begriche et al., 2006; Pessayre and Fromenty, 2005; Sobaniec-Lotowska 

and Lebensztejn, 2003). Genetic polymorphisms in genes encoding PPAR alpha, leptin, 

adiponectin, or adipokine receptors that affect the mitochondria’s ability to oxidize lipids 

can affect NAFLD susceptibility (Begriche et al., 2013). Our bioenergetics study shows that 

knockdown of either Pklr or Chchd6 reduced respiration with a shift towards glycolysis; 

thereby confirming the critical role of mitochondria dysfunction in NAFLD and revealing 

previously uncharacterized regulatory genes of mitochondrial function such as Pklr and 

Chchd6. This shift could be the reason for the observed in vivo insulin sensitivity in Pklr or 

Chchd6 knockdown animals. In fact, the four KD genes validated here, as well as numerous 

other KD genes found in our current study, were linked to mitochondrial and other 

molecular metabolic pathways leading to hepatic triglyceride accumulation in multiple ways 

(glycolysis, fatty acid uptake, beta oxidation, oxidative phosphorylation, de novo lipid and 

cholesterol biosynthesis), as summarized in Figure 7.

A shift towards a more glycolytic profile in Pklr knockdown cells was somewhat unexpected 

and counterintuitive since pyruvate kinase was one of the key glycolytic enzymes catalyzing 

the final step. This phenomenon can be explained either by compensatory pyruvate 

production by other enzymatic reactions or through redirection of glycolytic intermediates to 

other pathways. Examples for the former include substrates such as glutamine and malate 

being used for compensatory pyruvate production via glutaminolysis and Me1 (malic 

enzyme) respectively. The latter could be explained by channeling glycolytic intermediates 

upstream of pyruvate (such as glucose-6-phosphate, fructose-6-phosphate and 

glyceraldehyde-3-phosphate) into biosynthesis of nucleotide, amino acid and NADPH 
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production. As of now, we do not know the mechanism(s) of this phenomenon. A more 

detailed metabolic flux analyses using labelled substrates for the above-mentioned metabolic 

pathways (glucose, glutamine and others) combined with transcriptomics data can enable us 

to delineate the global metabolic alterations that contribute to the development of NAFLD.

Prior to our study, Williams et al., studied variations in metabolism, mitochondrial function, 

and cardiovascular phenotypes using multi-omics data (transcriptome, metabolome, 

proteome) from 80 BXD mouse cohorts that were exposed to a chow diet and a high-fat diet 

(Williams et al., 2016). Among their key findings, we found the electron transport chain, 

BCAA, lipid, and energy metabolism pathways to be genetically associated with NAFLD in 

our study. We also confirmed the regulatory roles of Bckdha and Dbt in BCAA degradation 

and Echdc1 and Hmgcs1 in the lipid metabolism process. Both previously known cholesterol 

synthesis genes (e.g. Cyp51a1, Ebp, Fdps, Nsdhl, Pmvk, Sqle, Thrsp, Tm7sf2) and novel 

cholesterol genes (e.g. Acot1, Acot2, Elovl6, and Gpam) that were found by (Williams et al., 

2016) were also identified as KDs in our study for lipid and fatty acid metabolism and 

mitotic cell cycle-related pathways. Therefore, despite the differences in study design, the 

two studies converge on a number of key biological findings.

An important point to be considered is that all the findings presented here are based on 

animal studies using over 100 well-characterized inbred strains, the HMDP population. We 

acknowledge that mouse models have intrinsic differences from humans and not all findings 

from mice can be translated to humans. It is critical to compare the genes and networks 

derived from our study with those from human populations in the future to better assess the 

translational value of our findings. However, while this manuscript was being reviewed, Lee 

et al., have reported Pklr as one of the liver-specific targets for treating NAFLD and HCC 

based on human data (Lee et al., 2017). Additionally, a number of human NAFLD GWAS 

hits such as PNPLA3 were within our top pathways and networks. These lines of evidence 

support certain levels of consistency between our findings from animal models and those 

from human studies.

In summary, our data-driven and integrative genomics study coupling GWAS with tissue-

specific genetics of gene expression and network modeling enabled a comprehensive view of 

the molecular processes and key regulators involved in NAFLD. The novel insights offer 

new avenues for developing effective therapies by targeting the key regulators and pathways.

STAR METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Aldons J. Lusis (jlusis@mednet.ucla.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Ethics statement—All animal studies were performed in strict accordance with the 

recommendations in the Guide for the Care and Use of Laboratory Animals of the National 

Institutes of Health. All of the animals were handled according to approved institutional 

animal care and use committee (IACUC) protocols (#92–169) of the University of California 
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at Los Angeles and were housed in an IACUC-approved vivarium with daily monitoring by 

vivarium personnel.

Animals—The NAFLD HMDP study design was previously described in detail (Bennett et 

al., 2010; Hui et al., 2015). A hundred and thirteen mouse strains (listed in Table S11) were 

purchased from The Jackson Laboratory and bred at University of California, Los Angeles. 

Genotypes for 113 mouse strains were obtained from the Jackson Laboratories using the 

Mouse Diversity Array (Yang et al., 2009). The animals (all healthy male mice) used for this 

study were fed ad libitum a chow diet (Ralston Purina Company) until 8 weeks of age and 

then placed ad libitum on a high fat high sucrose diet (Research Diets-D12266B, New 

Brunswick, NJ) with 16.8% kcal protein, 51.4% kcal carbohydrate, 31.8% kcal fat for an 

additional 8 weeks (total 16 weeks of age). Mice were maintained on a 14-hr light/10-hr 

dark cycle (light is on between 6 a.m. and 8 p.m.). On the day of the experiment, the mice 

were sacrificed after 4 hour fasting.

Cell lines and culture media—Mouse hepatocyte cell line AML12 (male) was used for 

in vitro validation of shRNA and human embryonic cell line HEK293 (female) was used for 

adenovirus packaging and propagation. Both these lines were obtained from ATCC and were 

cultured in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% fetal 

bovine serum (FBS) and 1% penicillin-streptomycin solution at 37°C under a humidified 

atmosphere of 5% CO2. Additionally, 1% non-essential amino acids (NEAA) was added for 

AML12, while 2.5µg/mL anti-mycoplasma reagent (Plasmocin™) was added for HEK293 

cells. After reaching 70–80% confluence in plastic dishes, cells were used for experiments.

METHOD DETAILS

Liver lipid measurement—Liver lipids were extracted as described in (Folch et al., 

1957). Lipids extracted from about 60 mg of liver were dissolved in 1.8% (wt/vol) Triton 

X-100; and colorimetric assays from Sigma (St. Louis, MO) (triglyceride, total cholesterol 

and unesterified cholesterol) and Wako (Richmond, VA) (phospholipids) were used to 

measure respective lipid concentrations according to the manufacturer’s instructions.

Adipose and liver RNA isolation and gene expression analyses—Flash-frozen 

liver and epididymal adipose samples extracted from 113 strains were weighed and 

homogenized from which RNA was isolated according to the manufacturer’s protocol using 

RNeasy columns (Qiagen). Global gene expression was analyzed for the isolated RNA using 

Affymetrix HT_MG430A arrays and microarray data was filtered as previously described 

(Bennett et al., 2010). Then, ComBat method from the SVA Bioconductor package (Leek et 

al., 2012) was used to remove known batch effects on the gene expression data.

Adenovirus generation—Recombinant adenovirus expressing shRNA against the target 

key driver genes (Table S9) was generated as described previously (Bennett et al., 2013). 

Briefly, pBluescript KS-vector containing shRNA (three constructs per gene) driven by a U6 

promoter was first made. The shRNA cassette with highest knockdown efficiency (one 

construct per gene) was then cloned into the pAdTrack shuttle vector. This shuttle vector is 

then recombined into adenovirus backbone plasmid pAdEasy-1 in Escherichia coli BJ5183 
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cells. Linearized positive recombinants were then transfected into HEK293 cells for virus 

packaging and propagation. Adenoviruses were then purified by cesium chloride (CsCl) 

banding and stored at −80°C until use.

Animal knockdown studies—Eight-weeks old male C57BL/6J mice (7–12 mice per 

group pooled from a total of 2–3 independent experiments) were injected with adenovirus 

containing shRNA against target key driver genes (Table S9) or empty vector for control 

animals (~5×108 pfu in 200µL PBS). One day after the injection, the animals were kept on 

high fat/high sucrose (HF/HS) diet for fourteen days. The adenovirus is highly immunogenic 

and can evoke innate, humoral and cellular immunity in animal models (Crystal, 2014), 

which would limit the adenoviral-mediated shRNA expression to 1–2 weeks. For this reason, 

we chose to study the in vivo effects at 14 days. On the day of the experiment, the animals 

were fasted for 4h, followed by their sacrifice and tissue extraction. Retro-orbital blood was 

collected for hematology analyses; plasma for analyzing glucose and insulin analyses; liver 

tissues for lipid content analyses; three white adipose depots (subcutaneous, gonadal, and 

retroperitoneal) were collected for weight measurements. The HOMA-IR was calculated 

using the equation . Liver tissues were also used for 

quantifying expression values of genes (4–5 mice per group) associated with de novo 
lipogenesis and lipid uptake (Figure S3C), and for isolating mitochondria (2 mice per group) 

for bioenergetics studies. A separate cohort of animals (4–5 mice per group) that were kept 

on HF/HS diet for four days were sacrificed, liver tissues were extracted to determine 

percent knockdown of respective genes by quantitative PCR analyses (Figure S3A).

RNA isolation and quantitative polymerase chain reaction—Total RNA was 

isolated from frozen mouse liver tissues using QIAzol Lysis Reagent (Qiagen, Germantown, 

MD) following manufacturer’s RNA isolation protocol. First-strand complementary DNA 

(cDNA) was made from 2µg total RNA of each mouse according to the manufacturer’s 

protocol using High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems, 

Waltham, MA). Relative quantitative gene expression levels were measured by quantitative 

PCR using Kapa SYBR Fast qPCR kit (Kapa Biosystems, Inc., Wilmington, MA) on a 

LightCycler 480 II (Roche) and analyzed using the Roche LightCycler1.5.0 Software. All 

qPCR targets were normalized to B2M expression and percent knockdown was measured 

using the equation [(1 − 2−ΔΔCt) × 100%] (Figure S3A–B), while relative normalized 

expression was measured using the equation 2−ΔΔCt (Figure S3C). All qPCR primer 

sequences were designed using Primer-BLAST (Ye et al., 2012) and listed in Table S9.

Preparation of cells for bioenergetics experiments—AML12 cells previously 

seeded on 6-well plates were transfected with either scrambled (scr) or silencing (si) RNA 

against Pklr or Chchd6 purchased from Sigma (Table S9) using TransIT-X2® Dynamic 

Delivery System (Mirus Bio LLC, Madison, WI). After ~30h post-transfection, cells were 

pooled and seeded in a XF24 plate at ~40×104 cells/well in the presence of 250µM oleic 

acid and incubated for overnight. Separately, cells were seeded in a 6-well plate and were 

used to determine percent knockdown of the respective genes (Figure S3B) by quantitative 

PCR as described.
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Cellular bioenergetics—Cells seeded in a XF24 plate were analyzed in a XF24 analyzer 

(Agilent) as described (Wu et al., 2007). Briefly, oxygen consumption rate (OCR) and 

extracellular acidification rate (ECAR) were measured before and after the sequential 

injection of 0.75µM oligomycin, 2µM FCCP, and 0.75µM of rotenone/myxothiazol. Mixing, 

waiting, and measurement times were 3, 2, and 3 min, respectively. Measures were 

normalized by total protein.

Bioenergetics of isolated mitochondria—Isolated mitochondrial respiration was 

measured as described (Rogers et al., 2011). Briefly, livers of mice injected with either 

control or shRNA adenovirus were minced, rinsed in PBS and homogenized with a glass 

Dounce on ice, in mitochondrial isolation buffer (MSHE) containing 0.5% BSA. 

Mitochondria were obtained by dual centrifugation (800 and 8000g) and resuspended in 

mitochondrial assay solution (MAS). Ten microgram of mitochondrial protein in MAS 

buffer were seeded into a XF24 Seahorse plate by centrifugation at 2000g for 20 min at 

4 °C. The plate was warmed for 10 min at 37°C before the measures. For the complex I 

respiration, the measures were collected in presence of 10mM pyruvate, 2mM malate and 

4µM FCCP. Complex II respiration was measured with 10mM succinate and 2µM rotenone.

QUANTIFICATION AND STATISTICAL ANALYSIS

GWAS of hepatic TG and eQTL analyses—Genotypes for 113 mouse strains were 

obtained from the Jackson Laboratories using the Mouse Diversity Array (Yang et al., 2009). 

As previously described (Hui et al., 2015), poor quality-flagged SNPs were removed. Then, 

SNPs that had a minor allele frequency (MAF) of <5% and a missing genotype rate of >10% 

were removed, yielding about 200,000 SNPs. Genome-wide association mapping of the 

hepatic TG content was previously generated in (Hui et al., 2015) and the tissue-specific 

eQTLs were generated in (Parks et al., 2013). GWAS and eQTLs were calculated using the 

Factored Spectrally Transformed Linear Mixed Models (FaST-LMM) approach, which uses 

a linear mixed model to correct for population structure (Listgarten et al., 2012). Cis-eQTLs 

were defined as those within ±1Mb region of the transcription start and end sites of the 

genes. False Discover Rate (FDR) estimated by the q values (Storey and Tibshirani, 2003) 

was used to correct for multiple testing. We included 216,611 cis-eQTL associations (75,857 

unique cis-eSNPs and 1,938 cis-genes) in adipose tissue, and 258,312 cis-eQTL associations 

(86,336 unique cis-eSNPs and 2,261 cis-genes) in liver at P<1E-6 (FDR<0.01) in the current 

study.

Reconstruction of the co-expression networks from liver and adipose tissue 
transcriptome data—We used two methods to infer tissue-specific co-expression 

networks from both liver and adipose tissue samples: Weighted Gene Co-expression 

Network Analysis (WGCNA) (Langfelder and Horvath, 2008), and Multiscale Embedded 

Gene Co-expression Network Analysis (MEGENA) (Song and Zhang, 2015). WGCNA has 

been the most widely used method to construct gene coexpression networks and a large 

number of studies have demonstrated its superior power to define biologically relevant 

modules. However, WGCNA modules tend to be large in size, with some modules each 

containing thousands of genes, making it challenging to conduct downstream refinement and 

prioritization of genes and processes. Moreover, WGCNA only allows each gene to be 
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assigned to a single module, which does not agree with the known biology where a gene can 

interact with different partners to carry out different functions. The newly developed method 

MEGENA, on the other hand, overcomes the main limitations of WGCNA by producing 

more compact and coherent modules and allowing each gene to be assigned to different 

modules. Therefore, the two methods complement each other and may uncover hidden 

biology missed by the other method. The key differences between the two methods are 

summarized in Table S10.

Both methods aim to identify co-regulated gene sets based on correlation of gene pairs and 

assign sets of co-regulated genes to coexpression modules via hierarchical clustering. 

MEGENA is based on divisive hierarchical clustering, which is opposite to the WGCNA 

approach, which uses agglomerative clustering. Agglomerative method starts with the 

assumption that each gene is a single cluster by itself. Then, it successively merges pair of 

clusters until all the genes are grouped into a single cluster (module). A pair of clusters is 

merged based on their distance according to a pre-defined distance measure (e.g. average 

{1−abs(correlation)} scores between all gene pairs, where each gene pair consists of two 

genes, one gene from each of the clusters). In contrast, divisive clustering starts at the top 

with all genes in one cluster and it requires a flat clustering procedure (e.g. k-means) to split 

a cluster into smaller groups. This procedure is applied recursively until each gene is in its 

own singleton cluster. Divisive algorithms produce more accurate clustering than 

agglomerative algorithms in most cases, since agglomerative methods make clustering 

decisions based on local patterns without taking into account the global distribution 

(Alpaydin, 2010; Bhatnagar, 2014). These early decisions in the agglomerative approach 

cannot be prevented. In contrast, divisive clustering benefits from complete information 

about the global distribution of the samples when making top-level partitioning decisions 

(Bhatnagar, 2014). However, divisive methods are more complex than the agglomerative 

way since a second, flat clustering algorithm is needed as a nested subroutine as mentioned 

above. MEGENA uses Planar Filtered Networks, which aim to reduce computational costs 

of multi-scale clustering. MEGENA performs a nested k-medoids clustering, which detects 

k optimal clusters at each iteration by minimizing the shortest path distance within each 

cluster to provide more compact modules. The nested clustering process goes on until no 

more compact child cluster can occur. Since MEGENA clusters genes into modules in a 

multi-scale manner, at each scale we can obtain alternative gene sets despite using the same 

gene expression input. This multi-scale clustering mechanism allows genes to be members 

of multiple modules, but at different scales. In contrast, WGCNA uses Topological Overlap 

Matrix (TOM) subtracted from 1 (dissTOM= 1−TOM) as a dissimilarity measure and 

distance between two clusters is defined by the average dissTOM value of all possible gene 

pairs (one gene from each cluster in a pair-wise manner). We used the average distance 

feature, which is the default choice. In agreement with (Song and Zhang, 2015), we 

observed that MEGENA, using modules obtained from all scales instead of only one scale, 

tends to cluster the genes into more compact and functionally coherent groups than 

WGCNA. The use of modules generated from these complementary methods allows us to 

comprehensively capture the potential gene organization patterns among genes.
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Preservation analysis of the coexpression modules—We searched the preservation 

of the modules derived from the MEGENA and WGCNA methods using the 

modulePreservation procedure provided in the WGCNA R package. This procedure reports a 

Z-summary score, which depends on both density and connectivity statistics of the nodes in 

the sub network (module), to determine whether a module is conserved or non-conserved. A 

Z-summary score<2 means that the tested module is not conserved in the expression dataset 

or adjacency matrix of the second condition that is tested. A Z-summary score above 2 

means there are evidences for the module preservation (Langfelder and Horvath, 2008). We 

applied the modulePreservation procedure to the tissue-specific WGCNA modules and 

searched their preservation in the MEGENA modules and then we applied this procedure to 

the MEGENA modules to check their preservation in the WGCNA modules. Additionally, 

we analyzed the reciprocal preservation of the modules obtain from the HF/HS diet 

expression data with those from a set of gene expression data from HMDP mice fed a chow 

diet (Bennett et al., 2010).

Selection of coexpression modules correlated with NAFLD—To filter the co-

expression modules down to those that are relevant to the trait of interest (hepatic TG level), 

eigen genes of MEGENA and WGCNA modules were obtained and their associations with 

the trait were calculated using Pearson correlation. Correlation P<1E-3 was used as the 

cutoff to select NAFLD related modules. This cutoff corresponds to False Positive Rate 

(FPR)<0.1 based on permutation analysis. We randomly generated 1000 gene sets as our 

negative controls with varying member sizes ranging from 20 to 500 genes. Then, the eigen 

gene of each negative control is obtained and their associations with the trait were calculated 

using Pearson correlation. 102 gene sets among 1000 negative controls exhibited a 

correlation at P<1E-3. Since these sets are randomly generated, we hypothesized that these 

102 sets were False Positives (FP). The remaining negative control gene sets were accepted 

as True Negatives (TN). Hence, FPR=FP/(FP+TN) score for the P<1E-3 cutoff is ~0.1.

Functional annotation of the NAFLD correlated coexpression modules—The 

TG-correlated co-expression modules were annotated with the pathways from KEGG, 

Reactome, Biocarta, MatrisomeDB, and PID databases collected in the MSigDB database 

(Subramanian et al., 2005) via the hypergeometric test (one-tailed version of Fisher Exact 

test). Bonferroni correction was used to obtain adjusted P-values. Pathways reaching 

adjusted P <0.05 and shared gene numbers ≥ 5 were assigned as significant. Overlaps with 

nominal P values<5E-3 and shared gene numbers ≥ 5 were considered (even if the adjusted 

P>=0.05) as suggestive pathways.

Curation of previously known NAFLD genes—We collected 107 NAFLD-associated 

genes from the DisGeNET database (Piñero et al., 2015), which curates gene-disease and 

variant-disease associations from databases such as UniProt, ClinVar, Comparative 

Toxicogenomics Database-CTD, from the GWAS Catalog, and cautiously derives genes via 

text mining of previous studies. Some of these studies use only mouse or rat models while 

others use both human and animal models in a cross-species manner. Genes are scored 

according to multiple measures to provide users prioritized phenotype-genotype 

associations. These measures encompass the number of the publications from PubMed 
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supporting the gene-disease associations, the type of the study (animal models, human 

studies, or both), and the disease specificity index (DSI). DSI of a gene is inversely 

correlated with the number of diseases associated with this gene. If the gene is related to 

multiple diseases, DSI diminishes to zero; when the gene tends to be specific to one disease, 

DSI approaches 1. We selected the NAFLD genes with a DSI score >0.2 and those that were 

validated and published at least in two PubMed studies, as recommended by the method. 

These genes were used to compare with genes identified from the current HMDP study as a 

means for in silico validation. we annotated these genes with functional terms via the 

hypergeometric test as described above. The top functional terms (adjusted P<1E-04, as 

listed in Table S7) that are highly associated with these 107 genes were compared with the 

pathways from our HMDP analyses.

Mergeomics pipeline (MSEA and KDA procedures)—We conducted multi-omics 

integration using the Mergeomics (Shu et al., 2016) pipeline, a computational pipeline 

developed to identify pathways, gene network, and key regulators via multi-omics 

integration. In this study, we first used liver TG GWAS information from the HMDP male 

mice to guide the identification of pathways and coexpression networks that are genetically 

associated with TG using the Marker Set Enrichment Analysis (MSEA) module in 

Mergeomics. Briefly, genes within each pathway (from KEGG, Biocarta, and Reactome) or 

tissue-specific co-expression modules (from WGCNA or MEGENA) were mapped to eSNPs 

via tissue-matched eQTL of the same mouse samples (we listed all of the data sources that 

are leveraged in this study in the "key resource table" of the STAR methods). In this study, 

only the cis-eQTLs (within ±1Mb of the transcription start and end sites) with association 

P<1E-6, which are more reliable than trans-eQTLs, were used to map genes to the loci. The 

eSNP sets representing each pathway or module were then filtered for linkage 

disequilibrium (LD) based on the LD block information determined by the PLINK2 tool 

(Chang et al., 2015) and annotated with the liver TG GWAS association P values. The 

GWAS p values of each eSNP set was then compared against eSNPs generated from random 

gene sets to assess the significance of enrichment for stronger GWAS association p values, 

using a modified chi-square statistics which is not based on a single GWAS p value cutoff 

but summarized over a range of quantile-based cutoffs to avoid artifacts and produce stable 

enrichment scores (Shu et al., 2016). The enrichment statistics is defined as 

. In the formula, n denotes the number of quantile points (we used ten 

quantile points ranging from the top 50% to the top 99.9% based on the rank of the GWAS P 
values), O and E denote the observed and expected counts of positive findings (i.e. signals 

above the quantile point), and κ = 1 is a stability parameter to reduce artefacts from low 

expected counts for small SNP sets.

An FDR < 0.05 cutoff value for the MSEA process was chosen by evaluating the specificity 

values of 1,000 random gene-sets created using the background genes included in the 

original gene-sets comprised of both pathways and coexpression modules. The sizes of the 

random gene-sets vary between 20 and 500. These random gene-sets (negative controls) 

were expected not to be significantly enriched for the liver TG related GWAS data for a 
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given FDR value. A specificity score is defined as: , where TN are true 

negatives, representing random gene-sets that are not enriched for the GWAS data (FDR >= 

given cutoff); FP are false positives, representing random gene-sets that are enriched for the 

GWAS data (FDR < given cutoff). We aim to have a specificity score close to one. For the 

FDR<0.05 cutoff, specificity reaches at S=0.829 for the adipose-specific analysis (821 TNs 

and 171 FPs among 1,000 random sets from the adipose data) and it reaches S=0.799 for the 

liver-specific analysis (799 TNs and 201 FPs among 1,000 random sets from the liver data).

Significantly enriched pathways and co-expression modules (FDR < 0.05) were merged into 

the supersets if the overlapping ratio between gene sets was > 0.33 and significance of 

overlap passed Bonferroni corrected P-value<0.05 based on Fisher’s exact test to reduce 

redundancy. The merging process was performed separately for the significant gene sets 

from each tissue. In some cases, a canonical pathway and a co-expression module, which are 

annotated with the same pathway name, may not be merged together and they can be 

represented by two separate gene sets due to their relatively small overlapping ratio. For 

instance, the insulin signaling term associated with a co-expression module is not merged 

with the insulin signaling term from the KEGG database due to the small overlap ratio.

The second step of the Mergeomics pipeline is the Key Driver Analysis (KDA) process, 

which identifies hub or key regulator genes within the liver TG-associated supersets by 

mapping the genes in each superset onto predefined tissue-specific Bayesian Networks 

(BNs). Liver and adipose tissue BNs were utilized for this process. BNs involve the directed 

causal relationships between gene pairs by considering both gene expression data and 

previously known regulatory relationships between genes. BNs used in our study were 

derived from multiple human and mouse datasets from previous studies (Derry et al., 2010; 

Emilsson et al., 2008; Schadt et al., 2008; Tu et al., 2012; Wang et al., 2007; Yang et al., 

2006; Zhong et al., 2010), as listed in the key resource table of the STAR methods. A BN 

from each dataset was constructed using an established method, RIMBANET (Zhu et al., 

2007, 2008). A BN from a dataset represents a consensus network in which only edges that 

passed a probability of >30% across 1000 BNs generated starting from different random 

seed genes, were kept. For each tissue, BNs from individual studies were combined without 

considering the edge weights (as the edges included in each BN were considered robust), to 

form a union network. This strategy has been successfully used previously to derive 

meaningful biological insights (Mäkinen et al., 2014; Shu et al., 2016, 2017; Zhao et al., 

2016). Since the directions of the interactions might be conflicting in some of these previous 

studies, we omit the directionality in these BNs when applying KDA. Because these BNs 

were collected from both mouse and human studies, gene symbols in network figures are 

given in human orthologs. A Key Driver (KD) of a NAFLD superset was defined based on 

the enrichment of member genes in the superset in the candidate KD’s network 

neighborhood compared to that of a random gene selected from the network, using a 

modified chi-square based statistics as described in the MSEA section above. The 

Benjamini-Hochberg false discovery rate (FDR) approach was used to correct for multiple 

hypothesis testing and FDR < 0.05 were used to determine significant KDs of a given 

superset.
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Statistical analysis used in experimental validation—Statistical analyses were 

performed using Prism v7.0a (GraphPad Software, Inc., La Jolla, CA, USA). Errors bars 

plotted on graphs are presented as the mean ± SEM unless reported otherwise. The critical 

significance value (α) was set at 0.05, and if the P values were less than α, we reported that, 

by rejecting the null hypothesis, the observed differences were statistically significant.

DATA AND SOFTWARE AVAILABILITY

The NCBI GEO accession number for the microarray data used in our study is GSE64770.

Raw expression data for liver tissue can be found at: https://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE64769.

Raw expression data for adipose tissue can be found at: https://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE64768.
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Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• NAFLD was modeled in a population of ~100 diverse inbred strains of mice.

• Network modeling was used to predict key driver genes regulating NAFLD.

• In vivo knockdown of these genes rescued from steatosis and insulin 

resistance.

• In vitro knockdown of Pklr or Chchd6 shifted towards glycolytic metabolism.
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Figure 1. Schematic diagram of the methodology
Liver and adipose tissue gene expression data, genotype, and hepatic TG phenotypic data of 

the Hybrid Mouse Diversity Panel (HMDP) mice were integrated to identify putative causal 

mechanisms for the NAFLD. TG: Triglyceride, eQTL: expression Quantitative Trait Loci; 

GWAS: genome-wide association studies.
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Figure 2. Comparison between NAFLD processes between liver and adipose tissue
Putative causal pathways shared between tissues as well as those unique to each tissue are 

listed. For co-expression modules, the 5 most over-represented gene ontology terms are 

shown. See also Tables S1–S7 and Figure S1.
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Figure 3. Bayesian gene subnetworks representative of NAFLD pathways and their key drivers
(A) Liver Bayesian subnetwork comprised of liver NAFLD supersets and the top 3 key 

drivers of each superset. (B) Adipose Bayesian subnetwork comprised of adipose NAFLD 

supersets and the top 3 key drivers of each superset. (C) Liver Bayesian subnetworks of 

selected genes Fasn, Thrsp, Pklr, and Chchd6. Key Driver (KD) genes are illustrated with 

large node sizes, human GWAS candidate genes are represented in hexagon shapes, and the 

rest of the genes are represented by medium node sizes. Member genes of each NAFLD-

associated superset are indicated with a distinct color. Non-member genes are represented in 

grey with small node sizes. Blue edges show the interactions between human GWAS 
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candidate genes and our candidate KDs. The other interactions were shown in grey. See also 

Table S8.
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Figure 4. Effects of shRNA knockdown of KD genes on mouse phenotypes
Eight week old C57BL/6J mice were injected with adenovirus carrying either empty vector 

or shRNA against respective KD genes and fed with HF/HS diet for 14 days. Comparisons 

of (A–D) liver and three white adipose tissue (WAT) weights, (E) hepatic triglyceride (TG) 

levels, (F) hepatic total cholesterol (TC) levels, (G) plasma insulin levels and (H) HOMA-IR 

measurements between control and shRNA animal groups. Data are represented as mean ± 

SEM (n = 7–12 animals per group). P values were calculated by unpaired two-sided 

student’s t-test. †P < 0.10, *P < 0.05, **P < 0.01, ***P < 0.001. See also Figures S3 and S4.
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Figure 5. Effects of shRNA knockdown of predicted KD genes on network neighborhood genes
Relative normalized expression values of neighborhood genes and distant genes (3-edges 

apart) of (A–B) Pklr and (C–D) Chchd6 network respectively, between control and shRNA 

animal groups after 14 days of infection. Data are represented as mean ± SEM (n = 4–5 

animals per group). P values were calculated by unpaired two-sided student’s t-test. *P < 

0.05, **P < 0.01, ***P < 0.001. See also Figure S3.
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Figure 6. Knockdown of Pklr and Chchd6 affects both mitochondrial respiration and glycolysis
Bioenergetic studies on intact AML12 cells transfected with either scrRNA or siRNA 

against respective novel KD genes (Pklr and Chchd6) were analyzed. Comparisons of (A) 

oxygen consumption rate (OCR) profile, (B) mitochondrial (datapoint 14 subtracted from 3), 

(C) non-mitochondrial (datapoint 14), (D) ATP-linked (datapoint 6 subtracted from 3) and 

(E) proton leak (datapoint 14 subtracted from 6) associated respiration levels, (F) 

extracellular acidification rate (ECAR) profile, (G) basal ECAR (datapoint 3), (H) 

maximum ECAR (datapoint 6) levels and (I) overall metabolic profile between scrambled 

and siRNA groups. Data are represented as mean ± SEM. The experiment was repeated in 
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two independent times with n = 4–8 wells per group each time. (J) Bioenergetic analyses on 

isolated liver mitochondria from mice injected with adenovirus carrying either empty vector 

or respective shRNA (n = 2 animals per group). Data are represented as mean ± SEM (n = 

3–4 wells per data point). (A, F) P values were calculated by one-factor (time) repeated 

measures two-way ANOVA (time by treatment interaction P value). (B–E, G–H) P values 

were calculated by unpaired student’s t-test. *P < 0.05, **P < 0.01, ***P < 0.001. See also 

Figure S3.
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Figure 7. Summary figure illustrating that a number of KD genes are linked to mitochondrial 
and metabolic pathways leading to hepatic triglyceride accumulation
KD genes including Fasn, Thrsp, Pklr and Chchd6 found in the current study are colored in 

red. I, II, III, IV and V correspond to respective electron transport chain (ETC) complexes. 

TCA: Tricarboxylic acid cycle; OAA: Oxaloacetate; FFA: free fatty acid.
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