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SUMMARY

In practice, count data may exhibit varying dispersion patterns and excessive zero values; 

additionally, they may appear in groups or clusters sharing a common source of variation. We 

present a novel Bayesian approach for analyzing such data. In order to model these features, we 

combine the Conway-Maxwell-Poisson distribution which allows both over- and under-dispersion 

with a hurdle component for the zeros and random effects for clustering. We propose an efficient 

Markov chain Monte Carlo sampling scheme to obtain posterior inference from our model. 

Through simulation studies, we compare our hurdle CMP model with a hurdle Poisson model to 

demonstrate the effectiveness of our CMP approach. Furthermore, we apply our model to analyze 

an illustrative dataset containing information on the number and types of carious lesions on each 

tooth in a population of 9-year-olds from the Iowa Fluoride Study, which is an ongoing 

longitudinal study on a cohort of Iowa children that began in 1991.
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1. Introduction

Zero inflation arises when the parametric model for the counts underestimates the proportion 

of zeros in the data.1–4 A new component is introduced to the model so that data are drawn 

from a mixture model containing the count distribution and a binary component providing 

additional zeros. An alternative model structure is the hurdle model. The hurdle model is a 

conditional model that first determines if the count will be zero or non-zero. Conditional on 
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the observation being non-zero, the count is drawn from a distribution with support on the 

positive integers.5–7

In practice, we often face situations where such count data are not independent and exhibit 

dependence between observations within clusters. The failure to appropriately account for 

dependence in the responses can lead to inefficient parameter estimates and invalid 

hypothesis tests. For analyzing this type of data, zero-inflated modelings have been 

developed to incorporate correlations in the marginal regression (i.e., GEE) framework.8–12 

There are also mixed effects models for zero-inflated clustered data that use random effects 

to introduce dependence.13–19 However, these methods are typically limited to the 

equidispersed or overdispersed cases due to the properties of Poisson and negative binomial 

distributions.

On the other hand, the Conway-Maxwell-Poisson (CMP) distribution, introduced by 

Conway and Maxwell,20 can model a wide range of dispersion from underdispersion to 

overdispersion and includes the usual Poisson distribution as a special case. Motivated by 

this versatility of the CMP distribution, Barriga and Louzada21 introduced a Bayesian 

approach to zero-inflated dispersed data based on a CMP distribution. However, their work 

only considers independent data and not clustered data. On the other hand, Choo-Wosoba 

and Datta22 developed statistical methodology with a CMP distribution for analyzing 

clustered data with excessive zero counts. In their paper, a mixed effects model approach is 

applied to handle the correlations within clusters. However, this frequentist approach 

typically is limited to equicorrelation through a single random component due to the 

difficulty of the Laplace approximation to the likelihood.23

The development of methodology in this paper is partially motivated by the Iowa Fluoride 

Study.24 The Iowa Fluoride Study is a longitudinal study with the goal of identifying risk 

and protective factors for dental health in children. Information about the study is available 

at http://www.dentistry.uiowa.edu/preventive-fluoride-study. This data contains the caries 

experience score (CES) for each of the patient’s teeth; the CES is a count variable with a 

higher scores indicating a more damaged tooth. Obviously, teeth within a child’s mouth 

share the same dental environment, which implies that the CESs will be correlated within 

patient. Furthermore, most teeth are healthy (no cavities) leading to excessive zero counts in 

CES (Figure 1).

To deal with these issues, we propose a Bayesian CMP model that will simultaneously 

accommodate the common challenges mentioned previously: zero-inflation, clustering, and 

both over- and underdispersion. Our paper is unique in that we can handle all three in a fully 

likelihood-based approach. In our previous work, we considered a frequentist approach by 

using a marginal GEE specification25 and a mixed effects model.22 For the mixed effects 

model, the Laplacian/quadrature methods used for estimation struggle to estimate correlation 

structure more complex than equicorrelation. By relying on a Bayesian estimation scheme, 

we have more flexibility in specifying the dependence across teeth; in particular, we allow 

differing levels of correlation between different classes of teeth (molar and non-molar). 

While Barriga and Louzada21 does use a Bayesian zero-inflated CMP distribution, they do 

not model dependence/clustering which is clearly needed in this application. Additionally, 
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we develop our model using a hurdle framework to account for the excess zeros, instead of a 

zero-inflation model. This provides more natural interpretations as there are separate models 

for those factors that cause/prevent cavities and those that lead to more/less severe cavities 

when they appear.

We introduce our Bayesian model in Section 2. Section 3 describes the Markov chain Monte 

Carlo (MCMC) sampling scheme used for inference. The application to the Iowa Fluoride 

Study data is undertaken and discussed in Section 4. We perform two simulations and 

compare the results with a Bayesian Poisson model in Section 5. The paper ends with a 

discussion in Section 6.

2. The Bayesian Model

In this section, we describe our model structure. We begin with the following general 

notation which will be used throughout the manuscript. Let N denote the total number of 

clusters (i.e., children for our illustrative data example), i = 1, …, N is the cluster level 

index, ni is the sample size (number of teeth) in the ith cluster, j indexes the observations 

(teeth) within the ith cluster (j = 1, …, ni), and Yij represents the response (CES score) of the 

jth observation in the ith cluster.

To describe the role of the zeros in the data, we use a hurdle model instead of a zero-

inflation component, due to its more natural interpretation. This Bayesian hurdle model 

consists of two different parts, the presence model and the severity model. The presence 

model considers a binary random variable for the non-zero outcome, i.e., whether there is 

any caries present on the tooth. The severity model, based on the CMP, describes the positive 

counts, that is, how much caries is on an involved tooth (how much decay there is quantified 

by the number of tooth surfaces affected). While we use the terms presence and severity for 

interpretation of the dental application, these can be considered generally as the zero model 

and the positive count model.

The presence model is based on a probit regression with both fixed and random effects 

terms. The probability that an outcome is positive (non-zero) is modeled through 

. This model is associated with fixed effects covariates Xij 

and coefficient vector β. Clustering comes from the random effects vector δi with 

corresponding design matrix Ui,δ. The choice of the design matrix Ui, δ determines the form 

of the clustering, allowing many common choices such as equicorrelation, multiple classes, 

etc.

The Conway-Maxwell-Poisson distribution20 is given by

where  is the normalizing constant, λ is a positive shape parameter, and 

υ is a non-negative dispersion parameter. The parameter υ yields underdispersion if υ > 1, 
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overdispersion if 0 < υ < 1, or equidispersion if υ = 1. When υ = 1, , which 

implies that CMP distribution is the same as the Poisson distribution with mean λ. 

Interpretations from CMP modeling are guided by the result26 that E(Yυ) = λ.

As the hurdle model is specified through P (Y = y|Y > 0), we use a CMP restricted to the 

positive integers,

(1)

where the new normalizing constant is . Thus, our severity 

model uses a truncated CMP distribution which excludes zero. The response-specific shape 

parameter λij is modeled through . The regression coefficients α 
describe the fixed effects, whereas the random effect vector γi accounts for clustering. The 

severity model may or may not use the same random effects design matrix Ui,δ as the 

presence model. The full distribution of Yij (conditional on random effects) can be written as

(2)

where .

In Equation 2, clustering across outcomes is induced by the random effects δi from the 

presence model and γi from the severity model. We assume they jointly follow a 

multivariate normal distribution: (δi, γi)T ~ MV N (0, Σ). As previously noted, the form of 

the dependence in U is determined by the choice of the random effect design matrices Uδ 
and Uγ.

For the regression coefficients, we use proper and disperse priors β ~ MV N (0, Ωβ) and α ~ 

MV N (0, Ωα). For the covariance matrix of the random effects, we use the conjugate inverse 

Wishart prior:

As the  function of a CMP distribution is not available in a closed form, a conjugate prior 

for the dispersion is not available. We recommend the prior distribution of the dispersion 

parameter υ be a lognormal distribution (LN, hereafter) with a median of υ at 1, so that our 

model is centered at equidispersion. We choose the variance of log(υ) to be 0.52 so that, with 

95% probability, υ is a priori between 0.38 to 2.66, representing a reasonable range of 

dispersions. That is, υ ~ LN(0, 0.52). Values for the hyperparameters can be taken based on 
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subject matter experience. When none is available, we use proper, weakly-informative priors 

determined by Ωα = Ωβ = 10 × Iq, συ = 0.5; c = p + 2, and Ψ = Ip, where q is the number of 

fixed effect variables, p is the number of random effect variables and Ip is the p dimensional 

identity matrix. In the prior on Σ, we choose c such that E(Σ) = Ip. Additionally, we perform 

a brief sensitivity analysis and find that our results are robust to these prior choices (see Web 

Appendix A).

3. Details of Markov chain Monte Carlo Sampling

As inference is not available in a closed-form, we use iterative MCMC sampling methods. 

To improve mixing through the sampling process, we introduce continuous latent variables 

to correspond with whether Yij is zero or positive. To that end, we can equivalently express 

our probit model through the conditionally independent latent variables 

 where Yij > 0 if Zij > 0 and Yij = 0 if Zij < 0. This data 

augmentation scheme provides conjugate sampling in the presence model and speeds mixing 

for this component.27

The sampling algorithm iterates between the following steps.

1. Presence model latent variable Zij: If Yij = 0, then we sample Zij from a normal 

with mean  and unit variance, truncated to support (− ∞, 0]. If Yij > 

0, then we sample from the previous normal distribution truncated to (0, ∞).

2. Presence model regression coefficient β and random effects δ: A naïve Gibbs 

sampler that samples from p(z|β, δ,⋯), p(β|z, δ,⋯), and p(δ|z, β,⋯) will 

demonstrate high autocorrelation and slow mixing. To alleviate this, we jointly 

update β and δ through p(β, δi| z, ⋯) = p(β|z, γ) × p(δi|β, γ). This is a partially 

collapsed Gibbs sampler.28

Note that the sampling distribution for β (marginal over the random effects δ) is

where I(a) denotes the a-dimensional identity matrix and 

 is the conditional variance of δi given γi.

After updating β, we sample δi given β, Z, γi, and Σ for each i.

where .
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3. 3. Severity model regression coefficients α: As conjugacy is not available for the 

CMP model, we use a pair of Metropolis-Hastings updates. We perform a global 

step that seeks to update the full α vector, as well as a local step that attempts to 

update each component of α one at a time.

For the global step, we propose the candidate value αc ~ MV N(αt, Ωq,α), where 

αt is the current value of α at the tth iteration. For ease of explanation, we use 

to denote the probability mass function of the truncated CMP distribution of Yij 

in (1) and Π to be the prior density. We accept the candidate value αc with 

probability Aα where

otherwise, we remain at αt.

For the local step that seeks to update the kth element of the α, we propose 

from , and for all other components of α, we keep the current 

value, i.e., . We accept the proposed αc with probability  where

Otherwise, we remain at the current value αt. We repeat this for all components 

αk.

4. Severity model dispersion parameter υ: We update υ using the Metropolis-

Hastings algorithm. For the proposal distribution, we use a pseudo-random walk 

, and accept the move with probability Aυ,

where q(υc|υt) is the log-normal  proposal density.

5. Severity model random effects γ: As with the regression coefficients α, there is 

no conjugacy, and generally, the Metropolis-Hastings algorithm is needed to 
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update γi for each cluster i. However, in many situations this can be simplified 

by using only a MV N-Gibbs step for γi or a Metropolis step for part of γi with a 

MV N draw for the rest. This partially collapsed Gibbs step will lead to move 

efficient computation than a naive Metropolis-Hastings approach.

Recall that only the non-zero Yijs appear in the CMP part, and hence, only the γi 

that contribute to the distribution of these Yijs are identified by the CMP 

distribution. The sampling distribution for γi is proportional to

In particular, for a cluster where all counts are zero, the data provide no 

information about γi, as the product over yij is empty. Hence, the sampling 

distribution for γi is 

, which we can draw 

from exactly.

More generally, we let  denote the portion of γi identified in 

, and  be the unidentified portion of γi. We will update 

 by Metropolis-Hastings, marginalized over , and then, sample  from MV 
N conditional on  and δi. To that end, we propose the candidate 

, with a random walk around the current value . We accept 

the move with probability

where Π(γi, δi|Σ) represents the density of the MV N(0, Σ) random effects 

distribution after marginalizing over the unidentified components in . We then 

sample the remaining  from the conditional  based on MV N(0, Σ).

6. Random effects covariance matrix Σ : The covariance matrix can be updated 

through conjugacy:

Variance parameters in the Metropolis proposal distributions are chosen by trial 

and error so that acceptance rate is about 25% for multivariate steps and between 
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25% and 40% for univariate steps.29 We further discuss the selection of these 

variance parameters in Web Appendix B.

4. Analysis of Iowa Fluoride Study

The Iowa Fluoride Study (IFS) is a longitudinal study which in 1991 began collecting dental 

examination data on children in Iowa starting at age 5. These children were followed up at 9, 

13 and 17 years. In this paper, we focus on the 9-year-old children’s dataset which is 

particularly interesting due to the mixed dentition (composed of some primary teeth and 

some permanent teeth, which does not pose any complications with our approach).

This dataset consists of caries experience scores (CES) as a response variable and seven 

potential risk/protective factors for caries. Each surface of a tooth is scored 0 (sound), 1 

(non-cavitated), or 2 (cavitated) depending on the level of caries involvement, and the CES 

is the sum over the five surfaces of the tooth. Thus, the response variable takes integer values 

from 0 to 10. A larger CES indicates more severe decay on the tooth. The dataset includes N 
= 464 clusters (representing 464 children) with cluster size ni lying between 16 and 24 for 

the number of teeth per person. Altogether, we have 10,838 observations, with 9,616 zero 

counts, which is almost 89% of the dataset (Figure 1). Thus, this dataset appears to be zero-

inflated.

In the dental field, the location of a tooth inside the mouth is known to have a great effect on 

the likelihood of dental carries, or cavities. In fact, cavities are more likely to occur on the 

molars than non-molars (incisors, canines, and premolars) because molars have irregular 

occlusal surfaces which more easily retain food. Additionally, the mesial and distal surfaces 

between the teeth of molars also are more likely to retain bacteria and have increased caries 

risk. To account for this, both the presence and severity models include a covariate for non-

molar (relative to molar). Each model includes eight covariates which presumably affect 

cavities or caries as protective/risk factors (Table 1).

To define the dependence structure across teeth, we again focus on the two types of teeth: 

molar and non-molar. We introduce the clustering effect by tooth location as we expect that 

teeth within each class are more closely related than those across classes. We parameterize 

this by letting δi be a length 2 vector, where the first component is the overall cluster effect 

(random intercept) and the second represents the effect of non-molar teeth (relative to 

molars). For the severity model, we only include a cluster-specific random effect (random 

intercept), as there are fewer responses to inform the severity model and its random 

components (less than 12% of observations have positive Y). In addition, most cavities occur 

on molars (more than 95%), so there would be insufficient information to identify a non-

molar term in this severity model. In total, we have three random effects (δi1, δi2, γi).

As discussed in Section 2, the hyperparameters for the priors are chosen to be Ωα = Ωβ = 10 · 

I11, c = 5, Ψ = I3, and συ = 0.5, yielding relatively disperse priors. The posterior samples of 

the model parameters are obtained by running the MCMC algorithm (Section 3) for 65,000 

iterations. The samples are collected after first 25,000 burn-in iterations, yielding 40,000 

samples to be used for inference.
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MCMC convergence is assessed through trace plots and Geweke tests30 for the individual 

parameters, as well as the log-likelihoods for the presence (logL1) and severity (logL2) 

models, where

The trace plots indicate adequate mixing (Figure 1 in Web Appendix B) and most 

parameters pass the Geweke test (Table 2 in Web Appendix B). The effective sample sizes31 

for the log-likelihood functions of the presence and severity models are both found to be 

greater than 1,000. We also analyze the same dataset with a hurdle mixed Poisson model 

(i.e., fixing υ = 1) to compare with our hurdle CMP model. The posterior means and 95% 

equal-tailed credible intervals are given in Table 2.

Coinciding with our expectations, we find the molar/non-molar effect to be highly impactful 

in both the presence and severity models with both the CMP and Poisson frameworks. Non-

molars are much less likely to develop caries, and of those teeth that do develop caries, they 

tend to have lower scores relative to a corresponding molar.

Considering predictors whose credible intervals (CI) exclude zero to be important factors, 

we find the same set of important covariates in the presence (zero) model for the CMP and 

the Poisson choices. This is reasonable and expected as the differences in the two models 

occur in the distribution of the positive counts. Daily fluoride intake (FlIntake) and tooth 

brushing frequency (ToothBrush) are protective factors, while greater soda pop intake 

(SodaPop) increases the risk of developing caries.

In the severity model of the CMP and Poisson frameworks, tooth brushing frequency 

(ToothBrush) is predictive of less caries. In the hurdle mixed CMP there is evidence that 

professional fluoride treatment (FlTrt) is associated with higher CES score but the effect size 

is small; in the Poisson model the CI contains zero. The estimated CMP dispersion 

parameter is  with P(υ < 1|y) = 0.969, indicating the (positive) CES scores are 

overdispersed.

To evaluate the resulting dependence structure of our model, we consider the posterior mean 

of the random effect covariance matrix:

(4)

and
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(5)

where the variance-covariance components are displayed in the upper triangular part and the 

correlation coefficients in the lower off-diagonal part. Based on the CMP-estimated , we 

can find the correlations between the latent variables Z to describe the dependence within 

cluster. The correlation between the Zis of two molars is 0.484, between two non-molars is 

0.579, and between a molar and non-molar is 0.346. Clearly, teeth within a location class are 

more highly correlated than across class, but there remains positive correlation across all 

observations in the cluster.

V ar(γi), is the variance component corresponding to the severity model in Equation 5, 

roughly 18% larger than the corresponding component in the CMP model. In addition to 

clustering, random effects are used in GLMs to induce overdispersion. Here, V ar(γi) the 

variance component is inflated to compensate for the overdispersion that the restrictive 

Poisson model cannot explain. Thus, the Poisson choice conflates overdispersion and the 

clustering effect. That is, it may overstate the correlation between teeth to account for true 

overdispersion. However, the mixed CMP is flexible enough to distinguish between the 

contributions of these two.

To determine the sensitivity of our conclusions to our prior choice, we perform a brief 

sensitivity study in Web Appendix A. We consider a more informative, strong prior choice 

using the hyperparameters: Ωα = Ωβ = 1 × I11 with c = 25, Ψ = 5 × I3, and συ = 0.2. Under 

this choice of prior on Σ, we have  as in the original prior. 

Additionally, we use a less-informative, weak prior using the values: Ωα = Ωβ = 100 × I11, 

and συ = 0.8. Here, we use an improper prior for Σ, Π(Σ) ∝ |Σ|{−(p+1)/2}. We find our 

parameter estimates and conclusions are consistent across these choices. Detailed results are 

contained in Web Appendix A.

5. Simulation Studies

To validate our method and better understand its operating characteristics, we consider two 

simulation experiments, one with overdispersion (υ = 0.7) and the other with equidispersion 

(υ = 1, leading to a Poisson distribution). For each setting, we consider N = 200 clusters 

with cluster size of ni = 20. Similar to the role of molars and non-molars, each cluster 

contains two classes with 10 observations each. This setting enables us to compare our 

hurdle CMP mixed model and the hurdle Poisson mixed model. The simulation set-up of 

this section is guided by the Iowa data for the nine-year-old children.

For each scenario, we use the same design matrices for fixed effects in both binary and 

positive count parts. The design matrix for the fixed effects consists of four different 

covariates with an intercept. The first two are the intercept and a binary class indicator, 0 for 
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the first 10 observations and 1 for the rest. Then, we consider three continuous factors 

corresponding to FlIntake, SodaPop, and ToothBrush chosen by sampling with replacement 

from the IFS data, respectively.

For the dependence, we take the first two columns from the fixed effects design matrix as 

random effects design matrix in both the binary and positive count parts. Hence, the random 

effect is (δi1, δi2, γi1, γi2), corresponding to an intercept and binary class effect in the 

presence model, and an intercept and binary class effect in the severity model. The true 

parameter values can be found in Tables 3–6.

We generate 200 simulated datasets under the two choices of υ, 0.7 and 1.0. For each data 

set, we run MCMC to obtain 50,000 posterior iterations to use for inference. When the data 

are drawn from CMP (υ = 0.7), we first sample 5,000 burn-in iterations (55,000 total), and 

when the true data are conditionally Poisson (υ = 1.0), the MCMC chain takes longer to 

reach the stationary distribution and 15,000 burn-in iterations are used (65,000 total). Based 

on these samples over 200 datasets, bias and mean squared error (MSE) are calculated for all 

the fixed effect estimators and individual variance components for the random effects. We 

also calculate the sum of squared errors (SSE) for a block of the random effect variance 

matrix by summing the MSE over the appropriate (i, j) parameters corresponding to the 

relevant block of Σ.

For the overdispersion case (υ = 0.7), estimation of the β parameters in the binary 

component from the CMP model is similar to estimation in the Poisson model (Table 3). As 

noted in the previous section, this is expected, as the models are the same for this 

component. However, the positive part estimators α behave noticeably different for those 

two models. Table 3 shows that the CMP model estimates have smaller bias and smaller 

MSE than those estimators from the Poisson model.

As we use the 95% credible intervals to determine important factors, we also consider the 

coverage rate (CR) in Table 3. As we use only 200 datasets to evaluate these proportions, all 

are found to be within the margin of error of the nominal 0.95 rate with one exception (the 

theoretical Monte Carlo standard error is 0.015). In the hurdle Poisson model, the intercept 

α0 displays very poor coverage due to the bias from model misspecification.

Estimation of the variance components is assessed in Table 4. As with the regression 

coefficients, estimation of the upper block of Σ corresponding to δ (σ11, σ12, σ22), the 

random effects in the binary model, are roughly equivalent between the CMP and Poisson 

models; SSE in this block is 0.0416 for the CMP model and 0.0415 for the Poisson. 

However, differences between the models are apparent in the γ block of Σ (σ33, σ34, σ44) 

describing the positive count model. SSE for this block is 0.0375 for CMP, compared to 

0.0545 for Poisson. In particular, the variance terms for γ tend to be biased high in the 

hurdle Poisson model to recover overdispersion, as discussed in the previous section. 

Overall, we find the hurdle CMP mixed effects model performs significantly better for zero-

inflated, dispersed data than the simpler Poisson choice.

The υ = 1 scenario is also considered, and the results are given in Tables 5 and 6. Overall, 

estimation of both the fixed effects and random effects variances perform similarly in both 
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the CMP and Poisson models. We do see slightly inflated MSE of the regression coefficients 

in the severity component under the hurdle CMP model, but the difference is minor and the 

bias is still negligible. The coverage rates (CR) of 95% CI are also close to the nominal rate. 

In addition, a low bias in υ indicates the flexibility of our model. Thus, we conclude that 

even for υ = 1 case, the hurdle CMP mixed effects model is comparable to the hurdle 

Poisson mixed effects model.

In conclusion, our simulation studies demonstrate that the hurdle CMP mixed effects model 

fits significantly better for dispersed data and is comparable to the hurdle Poisson mixed 

effects model, when the data are equidispersed.

As suggested by a reviewer, we conducted another simulation study where data have no zero 

inflation to see how our hurdle mixed CMP model behaves compared with the true model, a 

mixed effects CMP. It turns out that most of all the corresponding estimators are reasonably 

close to the true values even under the no zero-inflation setting. For full detail, see details in 

Web Appendix C.

6. Discussion

We have proposed a new Bayesian approach for modeling dependent, zero-inflated count 

data by combining a probit component with the Conway-Maxwell-Poisson regression using 

shared random effects. Our approach is flexible in terms of allowing various types of 

dispersions from under- to over-dispersion (unlike negative binomial and many other count 

models), and the structure of the dependence across counts is adaptable to many correlation 

forms. Most frequentist approaches to this problem experience difficulties in approximating 

the likelihood with Laplacian/quadrature methods. However, our Bayesian approach avoids 

this by relying on an iterative sampling scheme that draws the values of the random effects 

each iteration. Consequently, such a sampling scheme-based framework gains the flexibility 

to choose a more versatile form of the random effects design matrix. The data application 

and simulation studies provide clear-cut evidence that our approach is superior to a more 

standard, random effects, hurdle Poisson model.

While the MCMC scheme we describe in Section 3 is found to perform successfully in the 

experiments we consider, one of the outstanding challenges is further improving and 

speeding up the computation. By using collapsed Gibbs steps, our sampler is designed to 

minimize auto-correlation when possible, but as with any Gibbs sampler in a complex 

modeling framework, mixing can be slow. One relevant contributor is that evaluation of the 

mass function requires the normalizing constant , which is an infinite sum with no 

closed form representation; Gillispie and Christopher32 suggest an approximation of , but 

it only works under certain ranges of the parameters, λ and υ. As all of the observed counts 

are less than or equal to 10, we instead choose to truncate the sum at 100 for computation, 

providing a high level of accuracy since P(Y > 100) is negligible under the υ and λijs we 

encounter.

In the analysis of the IFS data, we include a tooth-location factor in the model to control the 

dependence across teeth. Another possibility might be to consider a spatial structure to 
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define the dependence across teeth, perhaps along the lines of some previous work.17,19 

Intuitively, we may expect that adjacent teeth are highly correlated, and that the dependence 

decays the farther away the teeth are located. In principle, our model can handle this 

approach by defining a γij and δij term for every tooth, and the full vector is drawn from 

MVN with covariance matrix Σi that provides a (low-dimension) spatial structure based on 

tooth location. In practice, there are some challenges. First, as our data is so sparse (almost 

89% zeros), we have very little information regarding the random effects for the count 

components. Secondly, the expansion of the random effect structure will require greater 

MCMC computational time. The continued use the partially collapsed steps for δ (see Step 5 

in Section 3) may help manage this issue. Third, in the 9-year-old children’s dataset, there is 

a mix of primary and permanent teeth, and their locations do not exact align. Specification 

of the dependence for these terms will require additional considerations. Thus, with respect 

to these challenges, the random effects structure we chose is a more reasonable and flexible 

choice than equicorrelation as typically used. Additionally, we only focus on the data of the 

9-year-old children. Further methodology can be developed to leverage the longitudinal 

information across the several study visits to understand the factors leading to improving or 

declining dental health across childhood and adolescence. We leave these as possibilities for 

future extensions.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Frequency histograms of the entire caries experience scores (CES) (left panel) and the non-

zero CES(right panel) of the nine-year-old children’s dataset from the Iowa Fluoride Study.
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Table 1

Description of potential risk/protective factors from the Iowa Fluoride Study (IFS)

Non-molar Non-molar effect; non-molar is coded as 1.

Sex Sex of the child; male is coded as 1.

ExamAge Age in years at the time of the dental examination (centered at 9 years).

FlIntake Daily fluoride intake (mg) from water, other beverages and selected foods, ingested dentifrice and fluoride supplements. 
Computed by AUC trapezoidal method from all available data within the time span 5 to 9 years.

SodaPop Daily soda pop intake (oz.) computed with AUC trapezoidal method using all available data within the time span 5 to 9 years.

ToothBrush Average of all tooth brushing frequencies reported for the period 5 to 9 years.

DentalVisit Proportion of times a dental visit was reported with each individual point assessing the previous 6 months.

FlTrt Average proportion of times a professional dental fluoride treatment was received with each individual point assessing the 
previous 6 months.

FlHome Average home tap water fluoride level for all returned questionnaires for the period 5 to 9 years.

Stat Med. Author manuscript; available in PMC 2019 February 28.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Choo-Wosoba et al. Page 18

Table 2

Posterior means and 95% credible intervals (CI) for both presence and severity models as applied to the Iowa 

data

hurdle mixed CMP hurdle mixed Poisson

Presence Model

posterior mean CI posterior mean CI

Intercept −0.555 (−1.130, 0.015) −0.560 (−1.124, −0.007)

Non-molars −2.608 (−3.314, −2.082) −2.525 (−3.133, −2.026)

Sex −0.191 (−0.404, 0.019) −0.186 (−0.397, 0.024)

ExamAge   0.132 (−0.017, 0.283)   0.133 (−0.017, 0.281)

FlIntake −0.423 (−0.774, −0.074) −0.417 (−0.764, −0.080)

SodaPop   0.073 (0.029, 0.117)   0.074 (0.029, 0.118)

ToothBrush −0.566 (−0.796, −0.339) −0.567 (−0.796, −0.342)

DentalVisit   0.222 (−0.342, 0.785)   0.219 (−0.330, 0.775)

FlTrt   0.334 (−0.039, 0.710)   0.340 (−0.027, 0.710)

FlHome   0.122 (−0.128, 0.378)   0.116 (−0.131, 0.363)

Severity Model

posterior mean CI posterior mean CI

Intercept   0.904 (0.422, 1.406)   1.038 (0.560, 1.453)

Non-molars −0.627 (−0.897, −0.373) −0.668 (−0.951, −0.400)

Sex −0.102 (−0.240, 0.039) −0.108 (−0.257, 0.050)

ExamAge   0.103 (−0.001, 0.207)   0.112 (−0.001, 0.230)

FlIntake −0.104 (−0.343, 0.136) −0.115 (−0.359, 0.131)

SodaPop   0.015 (−0.014, 0.044)   0.018 (−0.014, 0.050)

ToothBrush −0.189 (−0.360, −0.036) −0.202 (−0.382, −0.024)

DentalVisit −0.071 (−0.474, 0.357) −0.058 (−0.457, 0.344)

FlTrt   0.259 (0.002, 0.554)   0.272 (−0.004, 0.538)

FlHome −0.117 (−0.308, 0.064) −0.123 (−0.306, 0.051)

υ   0.888 (0.772, 1.005) 1
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