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Nuclear genes involved in mitochondrial diseases caused by instability
of mitochondrial DNA
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Abstract
Mitochondrial diseases are defined by a respiratory chain dysfunction and in most of the cases manifest as multisystem disorders
with predominant expression in muscles and nerves and may be caused by mutations in mitochondrial (mtDNA) or nuclear
(nDNA) genomes. Most of the proteins involved in respiratory chain function are nuclear encoded, although 13 subunits of
respiratory chain complexes (together with 2 rRNAs and 22 tRNAs necessary for their translation) encoded by mtDNA are
essential for cell function. nDNA encodes not only respiratory chain subunits but also all the proteins responsible for mtDNA
maintenance, especially those involved in replication, as well as other proteins necessary for the transcription and copy number
control of this multicopy genome. Mutations in these genes can cause secondary instability of the mitochondrial genome in the
form of depletion (decreased number of mtDNAmolecules in the cell), vast multiple deletions or accumulation of point mutations
which in turn leads to mitochondrial diseases inherited in a Mendelian fashion. The list of genes involved in mitochondrial DNA
maintenance is long, and still incomplete.
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The mitochondrion and its genome

Mitochondria are cytoplasmic organelles with a double phos-
pholipid membrane and are present in almost all eukaryotic
cells. Mitochondria are necessary for cell form and function.
Their best recognized role is to generate energy by oxidative
phosphorylation, but they also play a key role in synthesis of
iron–sulfur centers, fatty acid oxidation, chemical signaling
(Ca2+ signaling) and programmed cell death. The number of
mitochondria in the cell varies and depends on the cell type
and energy requirement, where cells with greater energy needs
have more mitochondria than cells with smaller needs
(Hudson and Chinnery 2006). Mitochondria are considered
to be semi-autonomous, because in the course of evolution

they have maintained their own small genome, known as mi-
tochondrial DNA (mtDNA). The mitochondrial genome was
discovered by Nass and Nass in 1963 (Nass and Nass 1963).
In the same year, Schatz isola ted mtDNA from
Saccharomyces cerevisiae (Schatz 1963; Holt and Reyes
2012). mtDNA is required for production of key catalytic
subunits of the mitochondrial respiratory chain complexes
and therefore is essential for oxidative ATP production. In
humans, it is a circular molecule of 16.5 kb carrying only 37
canonical genes. The mtDNA genes encode: 2 rRNAs, 22
tRNAs and 13 of 83 genes for respiratory chain subunits
(MT-ATP6, MT-ATP8, MT-CO1, MT-CO2, MT-CO3, MT-
CYB, MT-ND1, MT-ND2, MT-ND3, MT-ND4, MT-ND4L,
MT-ND5, MT-ND6). Additionally, according to the newest
discoveries, human mtDNA also encodes three short peptides,
humanin, gau proteins and MOTS-c, with important biologi-
cal functions, e.g., humanin plays a significant role in
protecting neurons from apoptosis in Alzheimer’s disease
(Shokolenko and Alexeyev 2015; Capt et al. 2016).

All other proteins (over 2000) required for the proper func-
tion of all mitochondrial biochemical pathways, including the
rest of the subunits of respiratory complexes, are encoded by
nuclear genes. This means that mitochondrial DNA expres-
sion, maintenance, copy number regulation, and repair
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processes rely on the nuclear genome (Tyynismaa et al. 2005;
Capps et al. 2003; DeBalsi et al. 2016; Scheibye-Knudsen
et al. 2015).

Several features make mitochondrial DNA unique, for ex-
ample inmammals it ismaternally inherited (Chen et al. 2010).
Moreover, there are up to thousands of mtDNA copies in each
cell (Suomalainen and Isohanni 2010). When all the mtDNA
molecules have the same sequence (wild or mutated) it is
called homoplasmy while heteroplasmy implies the mixture
of two or more types of mtDNA (for example wild type and
mutant). The heteroplasmy level of pathogenic variants corre-
lates with the phenotype to some extent.

Genetics of mitochondrial diseases

Mitochondrial diseases are defined by a respiratory chain dys-
function and in most of the cases manifest as multisystem and
multiorgan disorders with predominant expression in muscles
and nerves. Generally, the prevalence ofmitochondrial disease
is around 1:10,000 and is similar to diseases like phenylketon-
uria or spinal muscular atrophy but the exact frequencies vary
between different populations and are not known for many of
them. Prevalence of mitochondrial diseases is different in chil-
dren (6.2:100,000) and adult patients (1:4300 affected or at
risk) (Lightowlers et al. 2015). Moreover, the prevalence
varies between populations of patients, e.g., prevalence of
mitochondrial diseases in Spanish adult population (older than
14 years) is 5.7:100,000 (Arpa et al. 2003), in Australia
4.7:100,000 (Skladal et al. 2003).

Gorman et al. (2015) showed that mitochondrial disease is
caused bymutations in nuclear genes in 2.9 per 100,000 adults
in North East England.

Diseases caused by mtDNA mutations are maternally
inherited, while those caused by mutations in nuclear genes
encoding proteins more or less directly engaged in the func-
tion of the oxidative phosphorylation system (OXPHOS) are
inherited in a Mendelian fashion (Wortmann et al. 2015). An
interesting subgroup of mitochondrial disorders results from
large deletions of mtDNA or its depletion. While single large
mtDNA deletions occur spontaneously and are in most cases
not transmitted from a mother to her children, multiple
mtDNA deletions and depletion have Mendelian inheritance
(Wong 2013; Dinwiddie et al. 2013; Lightowlers et al. 2015).
The former is the result of the fact that the maintenance of
mtDNA relies on proteins encoded in the nuclear genome.

Mitochondrial disorders associated with disturbed mtDNA
stability (copy number and quality) are collectively called mi-
tochondrial maintenance diseases or mtDNA depletion syn-
dromes. The main feature of those disorders is rearrangement
of the mitochondrial genome seen as multiple deletions of
mitochondrial DNA molecules (the presence of multiple clas-
ses of mtDNA molecules of different lengths) and/or decrease

of mtDNA copy number in cells, known as mtDNA depletion
(Krishnan et al. 2008; Nicholls et al. 2014; Wong 2013;
Gorman et al. 2015).

Mitochondrial DNA maintenance

Although mitochondrial DNA is not wound onto histone
structures, it does not freely float in mitochondrial matrix. It
is covered mainly by TFAM protein discovered as a transcrip-
tion factor, but mainly engaged in forming the proper shape of
the mitochondrial nucleoid and in copy number control (de-
tails later). The number of mtDNA molecules in one nucleoid
is still being discussed — it seems to be one to a few.
Obviously, replication plays the main role in the maintenance
of mitochondrial DNA (Campbell et al. 2012).

mtDNA replication machinery

Initially, the strand displacement model (SDM) of replication
was suggested but it was partially incorrect due to artifacts
which occurred during the preparation process. An updated
version of the SDM is called the RNA intermediate through-
out the lagging-strand (RITOLS) model. Both models imply
the presence of two origins of replication (ori, O), one on the
heavy (H) strand and one on the light strand (L), called OH
and OL respectively (Nicholls et al. 2014; Holt and Reyes
2012). OH is located within the non-coding region (NCR) of
mtDNA, whereas OL is at two-thirds of the mtDNA length,
within a cluster of tRNA genes. Replication starts from OH;
polymerase adds nucleotides to an RNA primer and synthesis
of the light strand starts only after OL has been reached. The
main distinction is that the displaced maternal heavy strand is
supposed to be naked in SDM and covered by short RNA
fragments in the RITOLS model, but the main assumption,
asynchronous replication, is common for both of them
(McKinney and Oliveira 2013).

In 2000, Holt and colleagues proposed a new, synchronous
model of mitochondrial DNA replication called COSCOFA
(conventional strand–coupled Okazaki fragment associated).
This model implies that synthesis is initiated bidirectionally
from multiple origins of replication at ori zone (ori z). The
leading H strand is synthesized continuously and the lagging
L strand is formed without delay as Okazaki fragments (Holt
et al. 2000).

It is suspected that different types of mitochondrial replica-
tion systems are present in various tissues or depend on the
energy state of mitochondria and cells (Martin-Garcia 2013).

The most important enzyme taking part in mtDNA replica-
tion is DNA polymerase gamma. Further proteins involved in
this process are: Twinkle helicase, single-stranded DNA bind-
ing protein (mtSSB; may stabilize the displaced maternal H
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strand) (Holt and Reyes 2012), topoisomerase (introduces the
breakpoint in mtDNA and separates strands), mitochondrial
RNA polymerase (mtRNAP; provides RNA primers for initi-
ation of replication), RNaseH1 and mitochondrial DNA ligase
III (Young and Copeland 2016). Defects in the mitochondrial
DNA replication process result in a single or multiple muta-
tions in mtDNA and lead to multiple deletions and/or deple-
tion of mtDNA molecules (Hudson et al. 2007).

Genes encoding proteins involved
in mitochondrial DNA replication

The catalytic subunit of DNA polymerase gamma (encoded
by the POLG gene) and its processivity factor (encoded by the
POLG2 gene) together with Twinkle helicase (encoded by the
TWNK gene), DNA replication helicase/nuclease 2 (encoded
by the DNA2 gene), single-stranded DNA binding protein 1
(encoded by the SSBP1 gene), primase and polymerase
(DNA-Directed) (encoded by the PRIMPOL gene), and mito-
chondrial genome maintenance exonuclease 1 (encoded by
the MGME1 gene) play the key role in mitochondrial DNA
maintenance and replication processes (Fig. 1).

POLG and POLG2 genes

One of the most important proteins encoded by the nuclear
genome involved in replication, expression, maintenance, and
repair of mitochondrial DNA is polymerase gamma (Polγ).
Polγ is the only DNA polymerase involved in mtDNA repli-
cation present in the human mitochondrion (García-Gómez
et al. 2013).

The holoenzyme is composed of a catalytic subunit POLG
encoded by the POLG gene (15q26.1, 23,491 bp, 23 exons)
and a homodimer of accessory subunits POLG2 encoded by
the POLG2 gene (17q23.3, 26,283 bp, 8 exons) (Johnson and
Johnson 2001; Oliveira et al. 2015; Hudson and Chinnery
2006).

POLG has a catalytic core with 3′-5′ exonuclease activity
responsible for proofreading (26–418 amino acids), a linker
domain (419–755 amino acids), and 5′-3’polymerase activity
responsible for replication (756–1239 amino acids) (Oliveira
et al. 2015; Hudson and Chinnery 2006).

The subunit encoded by the POLG gene is necessary for
proper function of the enzyme, it enhances enzyme activity by
simultaneously accelerating the polymerization rate and sup-
pressing exonuclease activity (Szymanski et al. 2015; Johnson
and Johnson 2001; Lee et al. 2009). Polymerase gamma is
considered a high fidelity polymerase introducing less than
2 × 10−6 errors per nucleotide (Hudson and Chinnery 2006).
POLG2 increases the affinity for DNA molecules (DiRe et al.
2009; Szymanski et al. 2015).

Mutations affecting polymerase gamma result in a wide
range of genetic syndromes with many mtDNA mutations,
deletions, multiple deletions, and depletion of mitochondrial
DNA (Linkowska et al. 2015; Hudson and Chinnery 2006).
Diseases associated with Polγ dysfunction caused by muta-
tions in the POLG gene include mitochondrial DNA depletion
syndrome 4A (Alpers type, MIM 203700), a fatal infant dis-
ease with epilepsy and drug induced liver failure, mitochon-
drial DNA depletion syndrome 4B (MNGIE type, MIM
613662) with gastrointestinal involvement, mitochondrial re-
cessive ataxia syndrome (includes SANDO and SCAE, MIM
607459), and relatively benign progressive external
ophthalmoplegia autosomal dominant 1 (MIM 157640) and
autosomal recessive 1 (MIM 258450) (Naïmi et al. 2006). All
the above-mentioned diseases, which differ in severity and
range of symptoms, may be caused by the same spectrum of
POLG mutations. Progressive external ophthalmoplegia with
mitochondrial DNA deletions, autosomal dominant 4 (MIM
610131) develops as a result of mutations in the POLG2 gene.

TWNK

Polymerase γ cooperates with TWINKLE helicase (also
known as PEO1) encoded by the TWNK gene (10q24.31,
11,866 bp, 6 exons). TWINKLE is a mitochondrial 5′-3′
helicase necessary for replication of human mitochondrial
DNA (Milenkovic et al. 2013; Tyynismaa et al. 2004). It binds
to and unwinds double-stranded DNA (dsDNA) by breaking
hydrogen bonds between annealed nucleotide bases and sep-
arating to single strands (Tyynismaa et al. 2005; Korhonen
et al. 2003; García-Gómez et al. 2013; Cieskielski et al.
2016; Lamantea et al. 2002).

Mutations in the TWNK gene studied in cell cultures and
deletor mice resulted in blocking of the replication process,
accumulation of intermediates and finally in multiple mtDNA
deletions (Goffart et al. 2009).

Knownmutations result in insufficient mitochondrial DNA
synthesis and lead to deletions and depletion of mtDNA
(Nikkanen et al. 2016; Paramasivam et al. 2016). They are a
frequent cause of progressive external ophthalmoplegia with
mitochondrial DNA deletions, autosomal dominant 3 (MIM
609286) but in rare cases may lead to recessive diseases like
mitochondrial DNA depletion syndrome 7 (hepatocerebral
type) (MIM 271245) and Perrault syndrome 5 (MIM 616138),

SSBP1

Stabilization of the replication fork through preventing bind-
ing strands of a replicated fragment of DNA from forming
secondary structures and degradation is the main role of single
stranded DNA binding protein 1 (SSBP1) encoded by the
SSBP1 gene (7q34, 12,180 bp, 9 exons). SSBP1 interacts with
polymerase gamma and helicase Twinkle and strengthens
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their functions (Hudson and Chinnery 2006; Ruhanen et al.
2010).

Studies on Saccharomyces cerevisiae RIMI null mutants
(RIMI encodes ssDNA binding protein) (Van Dyck et al.
1992) and mutants in the lopo (low power) gene from
Drosophila melanogaster (which affect the mitochondrial
single-stranded DNA-binding protein) (Maier et al. 2001)
showed depletion of mitochondrial DNA and confirmed that
this protein is necessary for replication and maintenance of
mtDNA. In HeLa cell cultures with silenced SSBP1 the
mtDNA/nDNA ratio decreased and synthesis of the D-loop
was affected (Ruhanen et al. 2010). No pathogenic variants in
this gene have been described.

PRIMPOL

The PRIMPOL gene (4q35.1, 52,347 bp, 16 exons) encodes
nuclear and mitochondrial primase and DNA directed poly-
merase. PRIMPOL plays a key role in mtDNA replication
initiation. Moreover, it enables the replication machinery to
replicate past DNA lesions (translesion synthesis, TLS), e.g.,
in apurinic/apyrimidinic sites (AP sites). This protein is pres-
ent both in the nucleus and mitochondria. Silencing of the
PRIMPOL gene in human fibroblasts leads to multiple
mtDNA deletions and depletion. A PRIMPOL mouse

knockout is viable but mtDNA replication deficiency is ob-
served on the cellular level. This confirms that absence of
PRIMPOL has multiple adverse effects on mtDNA synthesis
(García-Gómez et al. 2013). Mutations in this gene have been
shown to result in autosomal dominant myopia (type 22, MIM
615420).

DNA2

A member of the DNA2/NAM7 helicase family, DNA2 is a
DNA replication helicase/nuclease 2 enzyme encoded by the
DNA2 gene (10q21.3, 58,458 bp, 22 exons). It has nuclease,
helicase, and ATPase activity and interacts with polymerase
gamma by stimulating its catalytic activity. DNA2 removes
RNA primers and stabilizes mtDNA structure during the rep-
lication process; thus, playing an important role in the main-
tenance of mitochondrial DNA.Moreover, DNA2 participates
in repair of small DNA lesions induced by oxidation, alkyl-
ation or spontaneous hydrolysis and is critical for long-patch
base-excision repair (LP-BER) (Ronchi et al. 2013).

Mutations in DNA2 are associated with recessive Seckel
syndrome 8 (MIM 615807) and dominant progressive exter-
nal ophthalmoplegia with mitochondrial DNA deletions
(MIM 615156).

Diseases

Type of mtDNA instability

Genes encoding proteins involved in mtDNA replica�on

Genes encoding proteins involved in nucleo�de metabolism

Other genes

Single mtDNA dele�on Mul�ple mtDNA dele�ons Deple�on

POLG (AR, AD)
POLG2 (AD)
TWNK (AD)

POLG (AR)
TWNK (AR)
MPV17 (AR)SLC25A4 (AD)

TYMP (AR)

TYMP (AR)
DGUOK (AR)
SLC25A4 (AD)
RRM2B (AR)
TK2 (AR)

Kearns-Sayre syndrome
Pearson syndrome
Progressive external ophthalmoplegia
(PEO) and PEO+
Leigh syndrome (mtDNA dele�on)

Alpers-Hu�enlocher syndrome
Progressive external ophthalmoplegia
PEO+
MNGIE

Mitochondrial DNA deple�on syndromes
Alpers-Hu�enlocher syndrome

MPV17 (AR)
OPA1 (AD)
MNF2 (AD, AR)

Fig. 1 Mitochondrial DNA instability types with their molecular backgrounds and diseases they cause. AR – autosomal recessive, AD – autosomal
dominant
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MGME1

The MGME1 gene (20p11.23, 22,529 bp, 8 exons) encodes
mitochondrial genomemaintenance exonuclease 1 (MGME1)
protein probably involved in mtDNA repair (Uhler et al.
2016).

MGME1 removes flaps (last 20–50 nt) during replication
and enables the processing of mtDNA ends due to the ability
to cleave dsDNA in both 5′-3′ and 3′-5′ directions. Thus this
exonuclease can cut 5′ and 3′ flaps. Moreover, MGME1 may
enhance exonuclease activity of polymerase gamma (Nicholls
et al. 2014; Uhler et al. 2016).

Studies on human fibroblast culture with null MGME1
show that the absence of MGME1 leads to large mtDNA
rearrangements such as deletions and depletion. Significant
lengthening of the D-loop leading to incorrect processing of
the mtDNA 5’end was observed as well (Nicholls et al. 2014).

MGME1 loss-of-function mutations lead to mitochondrial
disease with DNA depletion, deletions, duplications, and re-
arrangements and result in mitochondrial DNA depletion syn-
drome 11 (MIM 615084).

RNASEH1

Ribonuclease H1, encoded by the RNASEH1 gene (2p25.3,
33,559 bp, 14 exons) is an endonuclease involved in DNA
replication and repair processes both in the nucleus and mito-
chondria, but in mitochondria it is the only ribonuclease of
that type while in the nucleus there are two (besides ribonu-
clease H2). Ribonuclease H1 specifically digests double–
stranded DNA-RNA hybrids and is necessary to produce
primers for mtDNA replication.

It was shown, both in mice and human, that loss of
RNaseH1 activity disturbs mtDNA replication. In mice, a
knockout of Rnaseh1 leads to embryonic lethality with
mtDNA depletion (Cerritelli et al. 2003). In human, mutations
in RNASEH1 have been recently attributed to autosomal re-
cessive PEO with mtDNA deletions (MIM 616479) (Reyes
et al. 2015).

Genes encoding proteins involved
in transcription of mtDNA

The transcription machinery is not only essential for gene
expression but also mtDNA copy number regulation as it is
responsible for the synthesis of the primers for replication.
Mitochondrial RNA polymerase POLMRT and a set of tran-
scription factors: TFAM, TEFM, and TFB2M are responsible
for that process.

The human mitochondrial genome contains two transcrip-
tion promoters: LSP and heavy-strand promoter 1 (HSP1) and
HSP2 (Lodeiro et al. 2012). Initiation of transcription from

HSP promoter is only POLMRT dependent. POLMRT gener-
ates short RNA primers near oriL (during the replication pro-
cess this region becomes single stranded and forms a loop
structure). Efficient initiation of transcription from LSP re-
quires cooperative action of POLMRT and transcription fac-
tors TFAM and TFB2M (Litonin et al. 2010).

POLRMT

Mitochondrial RNA polymerase encoded by the POLRMT
gene (19p13.3, 23,346 bp, 21 exons) is responsible for tran-
scription of the mitochondrial genome and also provides
primers for mtDNA replication, therefore all changes in the
enzyme structure (or transcription complex) may impact
mtDNA stability. POLRMT together with TFAM, TEFM,
and TFB2M forms a transcription complex (Kühl et al.
2016; Posse et al. 2015; Minczuk et al. 2011).

TFB1M and TFB2M interact directly with POLRMT, help
in promoter recognition, and increase transcription efficiency
100–200-fold as compared with RNA polymerase alone
(Falkenberg et al. 2002; Litonin et al. 2010).

TFAM

TFAM (10q21, 14,088 bp, 9 exons) is the mitochondrial tran-
scription factor A coding gene also known as TCF6L3 or
mtTFA. TFAM is a key activator of mitochondrial transcrip-
tion, plays an important role in mitochondrial DNA replica-
tion and copy number regulation, and is crucial for mitochon-
drial biogenesis. TFAM expression and turnover depends on
the interaction between POLMRT, TFAM, and mitochondrial
DNA (Picca and Lezza 2015; Kang et al. 2007; Ekstrand et al.
2004). In vitro experiments show that equimolar amounts of
TFAM and mtDNA template result in the maximal transcrip-
tion level (Litonin et al. 2010). Change in TFAM expression
results in change of the protein level and influences mtDNA
copy number (it is directly proportional). A mutation in the
TFAM gene has been recently described as a cause of neonatal
liver failure with mtDNA depletion (Stiles et al. 2016).

TEFM

The mitochondrial transcription elongation factor encoded by
the TEFM gene (17q11.2, 7933 bp, 4 exons) is responsible for
transcript elongation. TEFM forms a complex with mitochon-
drial RNA polymerase, interacts with its catalytic domain,
enhances processivity (Minczuk et al. 2011), and probably
regulates the DNA replication initiation process (Posse et al.
2015). It was shown that when TEFM is absent in a mitochon-
drial transcription machinery model transcription is terminat-
ed and total transcript levels were significantly lower and tran-
scripts were shorter. This indicates that TEFM is essential for
full-length mtDNA transcript formation (Posse et al. 2015).
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TFB2M

Mitochondrial transcription factor B2, also known as mito-
chondrial 12S rRNA dimethylase 2 or mitochondrial
dimethyladenosine transferase 2 mtTFB2, encoded by the
TFB2M gene (1q44, 25,703 bp, 8 exons) is a part of the
mtDNA transcription complex (Moustafa et al. 2015).

Mutations in POLMRT, TEFM, and TFB2M have not been
described yet but changes in their expression may cause mi-
tochondrial DNA instability and could lead to mitochondrial
disease.

Genes encoding proteins involved
in nucleotide metabolism

Balance in free nucleotide concentrations is very important for
proper DNA replication. It is particularly important in mito-
chondria, because there are no de novo nucleotide biosynthe-
sis pathways. Mitochondria rely mainly on salvage pathways
localized partially in mitochondria and partially in the cyto-
plasm. Imbalance in free nucleotide concentrations leads to
disturbances in mtDNA replication and in consequence to
mtDNA copy number decrease or to the appearance of multi-
ple deletions.

There are two deoxyribonucleoside kinases expressed in
mitochondria phosphorylating purine and pyrimidine
deoxyribonucleosides. Thymidine kinase-2 (TK2) phosphor-
ylates deoxythymidine, deoxycytidine, and deoxyuridine,
while deoxyribonucleoside kinase (dGK) phosphorylates
deoxyguanosine and deoxyadenosine (Saada et al. 2001).
The RRM2B gene encodes a protein participating in catalytic
conversion of ribonucleoside diphosphates (NDP) to
deoxyribonucleoside diphosphates (dNDP) – basic elements
for DNA synthesis (Pontarin et al. 2012).

TK2

The TK2 gene (16q21, 42,410 bp, 12 exons) encodes a mito-
chondrial matrix enzyme – thymidine kinase 2 (TK2). TK2 is
an enzyme essential for mtDNA maintenance, catalyzes the
rate-determining step of the pyrimidine salvage pathway
(Tyynismaa et al. 2012) and generates (by phosphorylation)
thymidine monophosphate (TMP), cytidine monophosphate
(CMP) and deoxyuridine from deoxypyrimidine nucleosides
(Cámara et al. 2015; Saada et al. 2001).

Mutations in the TK2 gene result in a decrease of enzyme
activity which impairs recycling of mtDNA nucleotides and
finally causes progressive muscle weakness (myopathy) and
mitochondrial DNA depletion syndrome 2 (myopathic type,
MIM 609560) (Cámara et al. 2015; Saada et al. 2001; Wang
et al. 2003).

Approximately 30 pathogenic mutations in the TK2 gene
have been described (ClinVar) with a hot spot in exon 5
(Manusco et al. 2003).

For example, Cámara et al. (2015) observed that compound
mutations in the TK2 gene (p.T108 M and p.K202del) were
present in DNA isolated from muscle biopsies from patients
with myopathy. They also observed a dramatic decrease of
mtDNA copy number in cells. Structural analysis of the en-
zyme showed that missense mutations were linked with bind-
ing affinities of dTMP and dCTP (Cámara et al. 2015).
Mutation p.T108 M was also described by Behin et al.
(2012) and Paradas et al. (2013) and was associated with a
30% depletion of mtDNA and deletion of 45% of mtDNA
molecules when compared to controls.

DGUOK

Deoxyguanosine kinase (dGK), another matrix enzyme,
encoded by the DGUOK gene (2p13, 32,136 bp, 8 exons)
provides phosphorylated purines necessary for mtDNA syn-
thesis (Jullig and Eriksson 2000; Ronchi et al. 2012).
Mutations in this gene lead to mitochondrial DNA depletion
syndrome 3 (hepatocerebral type) (MIM 251880).

In silico analysis suggested that the most frequent muta-
tions in the gene affect the structure of dGK. Biochemical
analysis of the activity of dGK isolated from skeletal muscles
from myopathic patients showed that mutations may impair
the enzyme function (Ronchi et al. 2012).

RRM2B

RRM2B gene (8q22.3, 34,618 bp, 9 exons) encodes ribonu-
cleotide reductase regulatory TP53 inducible subunit M2B
(p53R2), a part of ribonucleotide reductase. This cytoplasmic
enzyme is responsible for conversion of ribonucleoside di-
phosphates to deoxyribonucleoside diphosphates and is an
element of the de novo nucleotide biosynthesis pathway.
Ribonucleotide reductase is composed of large R1 and small
R2 subunits. There are two types of R2 subunits in the cell.
One is present during the S phase of the cell cycle only, the
second one, encoded by RRM2B, provides the basal level of
deoxyribonucleoside diphosphates. mtDNA replication, gen-
erally independent of cell cycle, takes place not only during
the S phase, p53R2 protein is crucial for mtDNA synthesis.

Mutations in RRM2B lead to mtDNA depletion (Pontarin
et al. 2012).

Diseases associated with mutations in the RRM2B gene
include mitochondrial DNA depletion syndrome 8A
(encephalomyopathic type with renal tubulopathy) (MIM
612075), mitochondrial DNA depletion syndrome 8B
(MNGIE type) (MIM 612075), and progressive external
ophthalmoplegia with mitochondrial DNA deletions, autoso-
mal dominant 5 (MIM 613077).
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TYMP

Thymidine phosphorylase (TP) is another protein important
for nucleotide biosynthesis encoded by the TYMP gene
(22q13.33, 4334 bp, 10 exons). This cytosolic enzyme of the
salvage pathway catalyzes the cleavage of thymidine into thy-
mine and 2-deoxy-α-D-ribose-1-phosphate and plays an im-
portant role in catabolic processes (Javaida et al. 2016). TP is
also considered a promoter of tumor growth and metastasis.
Overexpression prevents apoptosis and induces angiogenesis
and is associated with tumor aggressiveness and poor progno-
sis (Bronckaers et al. 2009).

Mutations in TYMP lead to accumulation of nucleosides
and an imbalance in the mitochondrial nucleotide pool and
results in MNGIE type autosomal recessive mitochondrial
DNA depletion syndrome 1 (MIM 603041) (Table 1).

SLC25A4

The SLC25A4 gene (4q35.1, 7144 bp, 4 exons) encoding a
heart muscle specific isoform of a solute carrier family 25
(mitochondrial carrier, adenine nucleotide translocator) mem-
ber 4 also known as ANT1 was the first gene in which muta-
tions responsible for mtDNA instability were described
(Kaukonen et al. 2000). The gene product (monomer protein)
forms a pore at the mitochondrial inner membrane. ANT1
predominates in post-mitotic tissues such as muscles and heart
(Pebay-Peyroula et al. 2003; Ahmed et al. 2015). ANT1 reg-
ulates ATP and ADP transport — it transfers ADP from the
cytoplasm to the mitochondrial matrix and ATP from the ma-
trix to the cytoplasm (Neckelmann et al. 1987; Kawamata
et al. 2011). The exact mechanism of mtDNA destabilization
by the SLC25A4mutations is not known. Definitely, the ADP/
ATP balance is important for maintenance of the membrane
potential. It is also postulated that ATP and ADP concentra-
tion may influence dATP quantity and also affect proper
DNA/RNA hybrid formation during replication.

Most of the described SLC25A4 mutations cause
misfolding of the protein and affect intermembrane exchange
of molecules leading to inhibition of cell growth. Moreover,
the changed ANT1 protein interacts with other membrane
proteins and affects their function (Liu et al. 2015).

Mitochondrial DNA instability was shown in SLC25A4
knockout mice (Krishnan et al. 2008).

Mutations in SLC25A4 can be inherited in an autosomal
dominant or recessive manner. Dominant mutations leading to
progressive external ophthalmoplegia with mitochondrial
DNA deletions (PEO) (MIM 609283) seem to show a
dominant-negative effect on the molecular level, while the
phenotype caused by recessive ones (mitochondrial DNA de-
pletion syndrome 12 (cardiomyopathic type)) (MIM 615418)
is more similar to the one obtained for knockout mice.

Genes encoding proteins involved
in mitochondrial fusion, fission, and mobility

Mitochondria are no longer considered as static bean-shaped
structures. They move, fuse, and divide and form a network
interconnected with the endoplasmic reticulum. Undisturbed
fusion, fission, and movement are especially important in neu-
rons, where mitochondria have to travel along axons and den-
drites to act in the proper time and place. Fusion and fission
are energy dependent so they rely on effective respiration and
at the same time quality control of mitochondria is based on
fusion and fission. Defects in fusion, as proven in detail in
mice, lead to loss of mtDNA copy number, multiple mtDNA
deletions, and increase the point mutation rate (Chen et al.
2010). Genes involved in mitochondrial fusion and fission
most frequently mentioned in the context of human disease
include OPA (OPA1, mitochondrial dynamin like GTPase),
MFN1 (mitofusin 1), and MFN2 (mitofusin 2) encoding pro-
teins involved in fusion, FIS1 (mitochondrial fission 1 pro-
tein), DNM1L (dynamin 1-like protein, Drp1), and MFF (mi-
tochondrial fission factor) important for proper mitochondrial
division (MacVicar and Langer 2016; Losón et al. 2013).

OPA1

The OPA1 (3q29, 104,668 bp, 32 exons) gene encodes mito-
chondrial dynamin like GTPase. OPA1 plays an important
role in mtDNAmaintenance, mutations in theOPA1 gene lead
to mtDNA multiple deletions (Hudson et al. 2007). OPA1
protein localizes to the inner mitochondrial membrane where
it is involved in cristae formation and proper fusion of the
inner membrane. One of the OPA1 isoforms localizes in the
nucleoid and seems to be involved in mtDNA replication (Yu-
Wai-Man et al. 2010; Elachouri et al. 2011).

More than 200 mutations in the OPA1 gene have been
found of both autosomal dominant and autosomal recessive
character. They are associated with autosomal dominant optic
atrophy 1 (MIM 165500), optic atrophy plus syndrome (MIM
125250) and autosomal recessive Behr syndrome (MIM
210000). In one consanguineous family, mitochondrial DNA
depletion syndrome 14 (encephalocardiomyopathic type)
(MIM 616896) due to a homozygousOPA1mutation has been
described.

MFN1

The MFN1 gene (3q26.33, 47,253 bp, 17 exons) encodes a
transmembrane GTPase localized in the mitochondrial outer
membrane. MNF1 (mitofusin 1) forms homomultimers and
heteromultimers with MFN2 (mitofusin 2) and together they
are responsible for outer mitochondrial membrane fusion.
There are no human diseases attributed to MFN1 mutations.
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MFN2

Similar to MFN1, the MFN2 gene (1p36.22, 33,335 bp, 19
exons) encodes a transmembrane GTPase localized in the mi-
tochondrial outer membrane and shares high homology with
MFN1. Two transcriptional forms are known.Mitofusin 2 was
described as a protein enabling close contact of mitochondria
with the endoplasmic reticulum. Recently the opposite was
found: depletion of MFN2 results in a closer contact with
ER (Filadi et al. 2015).

Mutations inMFN2 are the main cause of autosomal dom-
inant Charcot-Marie-Tooth disease, axonal, type 2A2A (MIM
609260) but also autosomal dominant hereditary motor and
sensory neuropathy VIA (MIM 601152) and autosomal reces-
sive Charcot-Marie-Tooth disease, axonal, type 2A2B (MIM
617087). mtDNA depletion and multiple deletions were ob-
served in muscles and fibroblasts from patients with AD
Charcot-Marie-Tooth disease caused by MFN2 mutations
(Vielhaber et al. 2013).

DNM1L

The DNM1L (12p11.21, 66,451 bp, 21 exons) encodes anoth-
er member of the GTPase family: dynamin-1-like protein
which regulates mitochondrial function and plays a crucial
role in the division, fusion, and fission of mitochondria.
DNM1L forms an oligomeric ring at the division spot that
narrows and splits the mitochondrial tubule (Fahrner et al.
2016). DNM1L is critically important in human (and general
mammalian) development, its absence causes abnormality in
embryonic development. Nonsense mutations disturb central
nerve system development. Yoon et al. (2016) have shown
that if mutations were present in the DNML gene, giant mito-
chondria with an abnormal shape were present in neurons in
human (with compound heterozygous mutations in DNM1L
gene) and knock-out mice. Mutations in the DNM1L gene
cause encephalopathy which is lethal due to defective mito-
chondrial and peroxisomal fission (type 1) (MIM 614388,
autosomal dominant).

MFF

The MFF gene encodes the mitochondrial fission factor
(2q36.3, 32,686 bp, 13 exons), which is an outer membrane
protein required for localization of DNM1L and division of
mitochondria. MFF protein together with FIS1 are responsible
for recruitment of DNM1L to the division site (Friedman et al.
2011).

Mutations in MFF lead to a similar phenotype to DNM1L
mutations (encephalopathy, lethal, due to defective mitochon-
drial peroxisomal fission 2, autosomal recessive).T
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FIS1

FIS1 – tetratricopeptide repeat domain-containing protein 11
encoded by the FIS1 gene (7q22.1, 5479 bp, 5 exons) acts
independently of MFF. No diseases caused by FIS1 mutations
have been described.

Miscellaneous

Besides the above-mentioned genes encoding proteins in-
volved in the processes with more or less well described in-
fluence on mtDNA stability, there are multiple other genes not
involved in any of these processes in which mutations lead to
mtDNA deletions or depletion. Here wemention only a few of
them with the highest impact on human health.

MPV17

Although MPV17 (2p23.3, 13,611 bp, 9 exons) mutations
were described as a cause of autosomal recessive mitochon-
drial depletion syndrome ten years ago (Spinazzola et al.
2006), the function of the protein encoded by this gene was
not known. Recently (Antonenkov et al. 2015), this inner
membrane protein was shown to function as a non-selective

channel under a strict control of factors reflecting the energetic
state of mitochondria such as membrane potential or redox
state.

SPG7

The SPG7 gene (16q24.3, 66,852 bp, 22 exons) encodes
paraplegin which is a component of the mitochondrial AAA
protease. Spastic paraplegia 7 takes part in many cellular func-
tions like ribosome assembly regulation, membrane trafficking,
protein folding, intracellular motility, organelle biogenesis, and
proteolysis. Mutations in SPG7 historically have been attributed
to spastic paraplegia 7, autosomal recessive (MIM 607259) but
recently were found to be an important factor in mitochondrial
diseases (Sánchez-Ferrero et al. 2013; Pfeffer et al. 2014;Gorman
et al. 2015). Mutations in that gene lead to chronic progressive
external ophthalmoplegia due to disordered mitochondrial DNA
maintenance. In theNorth East England population prevalence of
mutations in the SPG7 gene is greater than in TWNK,OPA1, and
POLG genes (Pfeffer et al. 2015; Gorman et al. 2015).

As we mentioned at the beginning of this review, mito-
chondrial diseases are very difficult to diagnose due to com-
plex genotype–phenotype relationships, also called a blended
phenotype. This means that mutations in one gene can lead to
different clinical phenotypes and mutations in different genes

Fig. 2 The main symptoms of the
diseases caused by mitochondrial
DNA instability
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can lead to the same signs and symptoms (Wortmann et al.
2015).

Phenotype

Mitochondrial diseases affect each individual differently.
Although mitochondrial disease primarily affects children,
adult onset is becoming more common (Fig. 2).

Summary

Mitochondrial diseases are a heterogeneous group of diseases.
Age of onset is very different, from infants to the fifth decade
of life. Symptoms involve multiple tissues and most of them
may be progressive. Genetic background of this group of dis-
eases inmost cases is still unknown. The list of genes involved
in mitochondrial DNA maintenance is long and still
incomplete.

Although therapeutic options are still limited, effective di-
agnosis on the clinical and molecular level opens the way to
proper treatment. In some cases, targeted therapy is possible
such as nucleotide supplementation in the case of patients with
TK2 mutations.
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