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Abstract

Purpose—The Institute of Medicine recommended conducting observational studies of 

childhood immunization schedule safety. Such studies could be biased by outcome 

misclassification, leading to incorrect inferences. Using simulations, we evaluated 1) outcome 

positive predictive values (PPVs) as indicators of bias of an exposure-outcome association, and 2) 

quantitative bias analyses (QBA) for bias correction.

Methods—Simulations were conducted based on proposed or ongoing Vaccine Safety Datalink 

studies. We simulated 4 studies of 2 exposure groups (children with no vaccines or on alternative 

schedules) and 2 baseline outcome levels (100 and 1000/100,000 person-years), with 3 relative 

risk (RR) levels (RR=0.50, 1.00, and 2.00), across 1,000 replications using probabilistic modeling. 

We quantified bias from non-differential and differential outcome misclassification, based on 

levels previously measured in database research (sensitivity>95%; specificity>99%). We 

calculated median outcome PPVs, median observed RRs, Type 1 error, and bias-corrected RRs 

following QBA.

Results—We observed PPVs from 34%–98%. With non-differential misclassification and true 

RR=2.00, median bias was toward the null, with severe bias (median observed RR=1.33) with 

PPV=34% and modest bias (median observed RR=1.83) with PPV=83%. With differential 

misclassification, PPVs did not reflect median bias and there was Type 1 error of 100% with 

PPV=90%. QBA was generally effective in correcting misclassification bias.
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Conclusions—In immunization schedule studies, outcome misclassification may be non-

differential or differential to exposure. Overall outcome PPVs do not reflect the distribution of 

false positives by exposure and are poor indicators of bias in individual studies. Our results 

support QBA for immunization schedule safety research.

Keywords

bias (epidemiology); immunization; safety; electronic health records; database; sensitivity and 
specificity

INTRODUCTION

Large, linked databases, such as the Centers for Disease Control and Prevention’s Vaccine 

Safety Datalink (VSD) and the Food and Drug Administration’s Post-Licensure Rapid 

Immunization Safety Monitoring Program (PRISM), are important resources for post-market 

studies of vaccine safety.1–3 These systems capture data on millions of individuals and 

billions of medical encounters from electronic health records (EHR) and medical billing 

claims.2,4 Clinical outcomes are identified with electronic data algorithms, which are 

typically individual or combinations of diagnosis codes.5,6

In studies of acute vaccine adverse events, presumptive outcomes are identified in electronic 

data within short risk and control periods around vaccination. Misclassification of these 

presumptive outcomes has been a key challenge in this research.2 Common reasons for 

misclassification include clinician miscoding and rule-out diagnoses.5 To avoid 

misclassification bias, researchers often chart review all presumed outcomes, and then re-

analyze data with only confirmed outcomes.2 The percent of presumed outcomes confirmed 

is typically reported as a positive predictive value (PPV) or confirmation rate.7 Vaccine 

safety studies have demonstrated considerable variability in outcome PPVs, ranging from 

5% to 97%.8,9

While there has been ample research on acute outcomes following vaccination, a 2013 

Institute of Medicine (IOM) report called for studies of chronic outcomes, such as 

autoimmune and allergic diseases, following cumulative exposure to early childhood 

immunizations.10 The VSD has embarked on such studies of immunization schedule 

studies11, but this research poses new challenges for addressing outcome misclassification 

bias. Unlike studies of acute outcomes, observation time will span years. It may not be 

feasible to adjudicate the hundreds or thousands of presumptive outcomes identified in 

electronic data.11 Furthermore, outcome sensitivity is a concern, since for some non-acute 

conditions, parents may have varying propensity to seek care for their children, or may 

consult external providers not captured in electronic health records.12

In this study, we used simulations to evaluate one method for assessing and another method 

for correcting bias of an immunization schedule-outcome association due to outcome 

misclassification in EHR data. The first method involves using overall outcome PPVs to 

assess misclassification bias. PPVs are the most commonly reported measure of electronic 

algorithm validity in EHR-based research.13 For immunization schedule safety studies, 

researchers could validate a sample of presumptive outcomes and estimate an outcome PPV. 
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While it has been suggested that PPV levels >70% are sufficient for electronic-only data 

analysis14, the relation between overall outcome PPVs and bias of an exposure-outcome 

association has not been investigated for EHR-based vaccine schedule safety research. We 

also evaluated quantitative bias analyses (QBA), which are methods for correcting 

systematic error in epidemiological research.15,16 Traditional QBA formulas for outcome 

misclassification apply sensitivity and specificity estimates to a study’s observed relative 

risk. Previous studies have reported the sensitivity and specificity for several chronic 

outcomes of interest in immunization schedule safety studies17–21; these measures could be 

used as bias parameters in QBA.

For our primary objective, we evaluated whether outcome PPVs are effective indicators of 

bias of an immunization schedule-outcome association. To achieve this objective, we 

constructed simulations modeled on VSD studies that have been proposed or are ongoing, 

applied outcome misclassification levels previously measured in EHR data, and calculated 

the resulting misclassification bias and outcome PPVs. As a secondary objective, we tested 

the effectiveness of QBA for outcome misclassification within the same simulations.15,16 We 

examined both outcome misclassification that is independent of exposure (non-differential 

misclassification), and misclassification that systematically varies by exposure (differential 

misclassification).

METHODS

Study setting

We sought to have our simulations mimic actual VSD cohort studies of immunization 

schedule safety. To achieve this goal, we first identified a cohort of children born 2002–2012 

from two managed care organizations (MCOs) participating in the VSD, Kaiser Permanente 

Colorado and Kaiser Permanente Northern California. We further limited the cohort to 

children continuously enrolled in their MCO from birth to their 2nd birthday, which is the 

period when early childhood immunizations are administered.22 We used actual birthdates 

and MCO enrollment time (i.e., person-time) in our analyses; all other data in this study 

were simulated.

Both MCOs’ Institutional Review Boards approved this study; informed consent was not 

required.

Simulations

Within this VSD cohort, we constructed simulations of immunization schedule safety 

studies, where risks of chronic outcomes are compared between groups of children with 

different immunization patterns in early childhood (ages 0–2 years). Table 1 provides an 

overview of our simulations, relative risk (RR) levels, and outcome misclassification 

scenarios. We simulated outcomes with the formula23–25:

(1)
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,where p(outcome=1) is an individual’s probability of having the outcome, pt is person-time 

contributed (in days) from each child’s 2nd birthday to the first of MCO disenrollment or 8th 

birthday, β0 is the log of baseline outcome rate (per day), β1 is the log of the simulated RR, 

and X1 indicates under-vaccination exposure. The second term in equation (1) represents the 

daily probability of experiencing an outcome. The probability of experiencing an outcome 

during the entire follow-up period is the product of the daily probability and pt. Simulated 

RR refers to the true RR representing the association between under-vaccination exposure 

and outcome, absent of any bias.

The 2013 IOM report requested studies comparing risk of chronic outcomes in children who 

receive no vaccines or are vaccinated per distinct alternative immunization schedules versus 

children fully-vaccinated per the U.S. Advisory Committee on Immunization Practices’ 

(ACIP) recommended schedule.10,22 Therefore, for X1, we focused on children with no 

vaccines before their 2nd birthday and children whose parents choose distinct alternative 

schedules popularized in books or on the internet.26–28 Based on previous research, we 

simulated the prevalence of these two groups at 0.7% and 2.4%, respectively. The unexposed 

group was children fully-vaccinated per the ACIP schedule with a prevalence of 60.6%.29 

The remaining 36.3% of children are assumed to be missing some vaccine doses or are 

under-vaccinated at some point but get caught up before their 2nd birthday; these less distinct 

patterns of under-vaccination were not considered in this study.

We simulated two levels of baseline outcome incidence: 100 and 1000 outcomes per 100,000 

person-years. We chose these rates to represent both rare (e.g., Type 1 diabetes, epilepsy) 

and more common (e.g., allergic conditions, asthma) conditions from a priority list of 

outcomes for VSD immunization schedule research.11 Within each of four simulations (one 

for each of 2 exposure groups and 2 baseline outcome incidence levels), we separately 

simulated three levels of RR: 2.00, 1.00, and 0.50. For each simulation and RR level, we 

created 1,000 replicated datasets with a different random seed. Within each replication, 

exposure probabilities were applied to each child, and Bernoulli trials determined which 

children were assigned exposure to an under-vaccination pattern. Formula 1 was used to 

assign probability of outcome, and Bernoulli trials determined the outcome status for each 

child.

Misclassification

We reviewed published studies to identify ranges of likely outcome misclassification levels 

in VSD immunization schedule research. We identified validation studies of EHR-based 

algorithms for two outcomes of interest: asthma and Type 1 diabetes.11 The best performing 

algorithms had sensitivity>95% and specificity>99%.17,18 For each simulation and RR, we 

made four copies of the 1,000 replicated datasets and tested two scenarios of non-differential 

and two scenarios of differential outcome misclassification based on these levels (Table 1, 

scenarios A–D). For one differential outcome misclassification scenario, we measured bias 

with lower outcome sensitivity among under-vaccinated children. Some parents who refuse 

vaccines express distrust in traditional medicine and may seek care outside the MCO12, 

leading to decreased outcome sensitivity. We then measured bias from lower outcome 

specificity among under-vaccinated children. Clinicians may be more likely to suspect 
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infectious conditions in ill children who are under-vaccinated, which could lead to more 

“rule-out” diagnoses and higher false positive rates.

When testing the two non-differential outcome misclassification scenarios, we applied 

sensitivity and specificity levels from Table 1 to the simulated datasets without regard to 

exposure. For the two presentations of differential misclassification, sensitivity and 

specificity were applied separately by exposure. Bernoulli trials determined which children 

“flipped” to an outcome false positive or false negative status, representing EHR data 

misclassification.

Analysis

We calculated the observed RR, using Poisson regression with a log of person-time as the 

offset, within each replication. The observed RR is the immunization schedule exposure-

outcome association estimated with outcome misclassification present. For each simulated 

immunization schedule safety study, simulated RR level, and misclassification scenario, we 

reported bias as the median observed RR with misclassification across replications.

For each simulation and RR level, we reported the median PPVs that resulted from each 

outcome misclassification scenario. When simulated RR≠1.00, we reported empirical power 

with and without outcome misclassification. We calculated empirical power as the percent of 

replications where the null hypothesis was rejected at alpha=0.05 in the same direction as 

the simulated RR. We calculated Type 1 error for simulations with simulated RR=1.00 as the 

percent of replications with null hypothesis rejection at alpha=0.05.

We tested the effectiveness of QBA using formulas for both QBA assuming non-differential 

outcome misclassification and assuming differential outcome misclassification (Appendix 

1).15,16 To conduct the QBA, we determined the number of observed individuals that were 

exposed with outcome, exposed without outcome, unexposed with outcome, and unexposed 

without outcome in each simulated replication. We then applied QBA formulas with 

sensitivity and specificity measured from each replication and calculated the RR that would 

have been observed had misclassification not been present. We reported the median QBA-

corrected RRs across replications.

All simulations and analyses were conducted using SAS 9.4®.

RESULTS

Across replications there were an average of n=1,722 children simulated to be completely 

unvaccinated (simulations #1 and #2), n=6,117 children simulated to be on a distinct 

alternative schedule (simulations #3 and #4), and n=155,722 children simulated to be 

adhering to the ACIP schedule (unexposed group in all simulations). We observed a range of 

bias across the simulations, levels of simulated (i.e., true) RR, and misclassification 

scenarios tested. Across simulations, overall median outcome PPVs ranged from 34%–98%. 

With non-differential misclassification, median bias was across replications was towards the 

null and overall outcome PPVs were associated with the magnitude of median bias (Tables 

2a–2b, scenarios A and B). For example, when true RR=2.00, the median observed RR was 
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1.33 when the median PPV=34%, and the median observed RR was 1.83 when the median 

PPV=85%. When the median PPV was 98%, there was virtually no bias of the median RR.

When outcome misclassification was differential to exposure, the direction of median bias 

varied and overall PPVs were not indicators of the direction or magnitude of median bias 

(Tables 2a–2b, scenarios C and D). For example, when true RR=2.00 and the baseline 

outcome rate was 1,000/100,000 person-years, the median observed RR was 1.65 when 

outcome sensitivity was lower among under-vaccinated children and 2.23 when specificity 

was lower among under-vaccinated children. In both scenarios, median overall outcome 

PPVs were 91% or 92%. In some simulations, differential misclassification caused extreme 

median bias. For example, in simulation #1, with lower specificity among under-vaccinated 

children (scenario D), the observed median RR was 2.72 when true RR=0.50, and median 

PPV=50%.

Power and Type 1 error

In some simulations, outcome misclassification led to reductions in power (Table 3). For 

example, for true RR=2.00 in simulation #1, power was reduced from 78% without any 

misclassification to 70% with non-differential specificity=99.9% and PPV=84% (scenario 

B), and further down to 40% power with non-differential specificity=99.0% and PPV=34% 

(scenario A). Change in power varied by true RR within the same differential 

misclassification scenario. For example, when specificity was lower among under-

vaccinated children (scenario D), the higher outcome false positive rate in this exposed 

group led to consistent overestimation of the true effect. Therefore, when simulated 

RR=0.50, power was reduced from 100% without misclassification to 17% with 

misclassification, but power remained at 100% when RR=2.00.

Before misclassification was applied, Type 1 error was near 5% in all simulations where 

simulated RR=1.00. Non-differential outcome misclassification did not affect these rates 

(results not shown). However, differential misclassification led to Type 1 error up to 100%, 

and overall PPV levels were not associated with these rates (Table 4). For example, in 

simulations #3 and #4 with differential outcome sensitivity (scenario C), median PPV=51% 

and Type 1 error=7.1% when the baseline outcome rate was 100/100,000 person-years. In 

contrast, median PPV=92% and Type 1 error=67.8% when the baseline outcome rate was 

1,000/100,000 person-years. While the higher false negative rate among under-vaccinated 

children led to bias toward observing a protective effect, the specificity of 99.5% more 

rapidly caused the observed effect back toward the null with the rarer outcome, leading to 

lower Type 1 error.

Quantitative bias analysis

In most simulations of non-differential misclassification, QBA assuming non-differential 

misclassification corrected bias (Tables 2a–2b, Table 4). When true RR=2.00, QBA 

assuming non-differential misclassification resulted in perfect or near-perfect bias 

correction. QBA assuming non-differential misclassification was also effective when true 

RR=0.50, except in Simulation #1. In that simulation with completely unvaccinated children 

and the rarer outcome, median bias-corrected RR was 0.67 with QBA assuming non-
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differential misclassification. This median bias-corrected RR was closer to the true value of 

RR=0.50 than the median RR observed with misclassification of 0.84.

QBA using outcome sensitivity and specificity measurements by exposure group led to 

nearly perfect correction of bias in all simulations. Unsurprisingly, when misclassification 

was simulated to be differential by exposure, QBA assuming non-differential 

misclassification was ineffective, and sometimes resulted in estimates that were more biased 

than the estimates observed under misclassification.

DISCUSSION

While numerous studies have reported on misclassification in pharmacoepidemiological 

databases6,13,14,30,31, there has been limited work in quantifying the bias that arises from 

such misclassification and on methods for correcting this bias. To our knowledge, there has 

been no prior work on evaluating and correcting misclassification bias in vaccine schedule 

research studies. Using simulations, we quantified a range of bias across plausible scenarios 

of non-differential and differential outcome misclassification. Our results suggest that rather 

than relying on overall PPVs as indicators of bias, quantitative methods should be used to 

account for misclassification bias.

Our results highlight several reasons why overall outcome PPVs may not be effective 

indicators of bias of an exposure-outcome association. First, while median PPVs were 

associated with the magnitude of median bias with non-differential misclassification, they 

were not associated with the magnitude or direction of median bias with differential 

misclassification. In immunization schedule research, differential outcome misclassification 

could occur due to parent or provider behavior.11,12,32 Even if non-differential outcome 

misclassification is presumed, exactly equal misclassification levels across exposure groups 

is not guaranteed.33 Differential misclassification can lead to bias toward or away from the 

null, and the direction of bias is often unpredictable.34,35 Second, since predictive values are 

a function of three factors (specificity, sensitivity, and prevalence; see Appendix 2)5,36, PPVs 

can fluctuate based on any of these factors. For example, we observed extreme differences in 

PPV, from 34% to 84%, from a 0.9% difference in specificity when outcome prevalence was 

low. Since overall outcome PPVs do not reflect the distribution of false positives by 

exposure (an underlying cause of bias of an exposure-outcome association), these metrics 

have limited utility for assessing bias in individual studies. Instead, quantitative methods to 

adjust for systematic error should be considered.

While QBA has been advocated as an essential tool in epidemiological research16,37, these 

methods have had limited use in vaccine safety and EHR-based research.6,38,39,36 The 

tendency to underestimate misclassification error, along with a lack of practical examples, 

have been identified as barriers to implementing QBA.16 We addressed these barriers by 

measuring bias via simulation, and by evaluating the application of QBA in immunization 

schedule safety research. Our results showed that QBA was typically effective in correcting 

outcome misclassification bias. However, similar to previous findings by Johnson and 

colleagues, we found that QBA is vulnerable to assumptions made and bias parameters used.
40 For example, in simulation #1, with a rare exposure and rare outcome, QBA assuming 
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non-differential misclassification did not effectively correct misclassification bias when true 

RR=0.50, even though the underlying misclassification process was non-differential. This 

was due to differences in sensitivity and specificity by exposure that occurred due to chance.

For traditional QBA methods to be most effective in immunization schedule research, our 

results suggest that outcome sensitivity and specificity should be estimated by exposure. 

Since collecting such data may not be feasible, an alternative approach is to establish ranges 

of plausible sensitivity and specificity levels by exposure, and use probabilistic bias analysis 

to quantify a range of corrected RRs.15,39 Less-established quantitative bias approaches 

using predictive values are available.15,41,42 However, these methods come with challenges, 

including requiring positive and negative predictive values stratified by exposure15, or 

assuming non-differential outcome sensitivity.41 While we investigated traditional QBA 

methods for misclassification using sensitivity and specificity measures, evaluation of 

predictive value-based approaches is also warranted in EHR-based research.

Our study has several limitations. Our simulations did not incorporate all outcome 

misclassification levels encountered in immunization schedule safety research. Also, while 

our differential misclassification scenarios were based on practical concerns in 

immunization schedule research, it is unknown how different outcome sensitivity and 

specificity levels actually are across exposure groups, since these data have not been 

collected. As a result, our simulations may have over- or under-estimated the 

misclassification bias that may be encountered in this line of research. Moreover, our 

simulations only focused on bias from misclassification of binary outcomes. Exposure 

misclassification due to missing vaccine records is also a concern. Addressing measurement 

error of exposures, covariates, and of continuous or multi-level outcome variables, along 

with bias from unmeasured confounding, involves more complex bias analyses which merit 

further evaluation within EHR-based research.15 Finally, we only considered bias of risk 

ratios, and did not evaluate how outcome misclassification in EHR data would affect 

measures of risk difference.

Research using electronic databases are essential to U.S. vaccine safety, and improved 

methods for quantifying and communicating about uncertainty in this line of research are 

needed.43 While our simulations were conducted in the context of immunization schedule 

safety research, our findings are broadly applicable to other EHR-based 

pharmacoepidemiological research. Our results serve to encourage researchers to 

acknowledge the potential for misclassification bias in EHR-based studies, and to use 

quantitative techniques for identifying, measuring, and correcting this bias.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Key Points

• Bias from misclassification of outcomes in electronic health record data is a 

methodological challenge in immunization schedule safety studies.

• Using simulations, we evaluated outcome positive predictive values (PPVs) as 

indicators of bias of an immunization schedule-outcome association, and 

quantitative bias analyses for addressing this bias.

• While outcome PPVs reflected the magnitude of median bias with non-

differential outcome misclassification, these metrics were not effective 

indicators of median bias with differential misclassification.

• With differential outcome misclassification, Type 1 error rates of 100% were 

observed with outcome PPVs of 90%.

• Quantitative bias analysis was effective in correcting outcome 

misclassification bias and should be considered in immunization schedule 

research.
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Table 1

Description of simulations, levels of relative risk, and outcome misclassification

Simulated immunization schedule safety study* Levels of 
simulated 

relative risk 
(RR)

Outcome misclassification 
scenarios

Sensitivity (SN) and specificity 
(SP) levelsapplied to each 
simulationand level of RRSimulation Number

Exposure Group†
Reference group:

Children vaccinated per the 
U.S. recommended 

immunization schedule

Baseline Outcome Rate
Outcome rate in reference 

group

1 Unvaccinated(no vaccines) 100/100,000 person-years

RR= 0.50
RR= 1.00
RR= 2.00

A: Non-differential outcome 
misclassification:

SN=97.5%, SP=99.0%
B: Non-differential outcome 
misclassification, with higher 

outcome specificity:
SN=97.5%, SP=99.9%
C: Differential outcome 

misclassification, with lower 
outcome sensitivity among 

exposed‡:
SN1=85.0%, SN0=99.0%,
SP1=99.5%, SP0=99.5%
D: Differential outcome 

misclassification, with lower 
outcome specificity among 

exposed‡:
SN1=97.5%, SN0=97.5%,
SP1=97.5%, SP0=99.5%

2 Unvaccinated(no vaccines) 1,000/100,000 person-years

3 Distinct alternative 
immunization schedules

100/100,000 person-years

4 Distinct alternative 
immunization schedules

1,000/100,000 person-years

Abbreviations: RR=relative risk; SN=overall sensitivity; SP=overall specificity; SN1=sensitivity among exposed; SN0=sensitivity among 

unexposed; SP1=specificity among exposed; SP0=specificity among unexposed

*
1,000 replicated datasets were generated for each simulation and relative risk level using probabilistic modeling. Four copies of these 1,000 

datasets were generated to test the two non-differential and two differential outcome misclassification processes.

†
We simulated the prevalence of completely unvaccinated children to be 0.7% and children on distinct alternative immunization schedules to be 

2.4%. We simulated the unexposed group to be children fully-vaccinated per the U.S. Advisory Committee on Immunization Practices’ 
recommended schedule, with an estimated prevalence of 60.6%. The remaining 36.3% of children are assumed to be missing some vaccine doses or 
are under-vaccinated at some point but get caught up on vaccines before their 2nd birthday, and these under-vaccination patterns were not 
considered in this study.

‡
The lower sensitivity (scenario C) and specificity (scenario D) levels occur in a rare exposure group. Since overall outcome sensitivity and 

specificity levels will be a weighted average of these levels from across the exposed and unexposed groups, the overall observed sensitivity and 
specificity will be closer to the value in the more common unexposed group.
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Table 3

Empirical power with and without outcome misclassification†

Simulation Number 1 2 3 4

Exposure Group Unvaccinated children Distinct alternative immunization schedules

Baseline outcome rate per 100,000 person-years 100 1,000 100 1,000

Simulated RR=0.50

Power without misclassification 22% 100% 85% 100%

Power with misclassification:

A: Nondifferential misclassification
SN = 97.5%, SP = 99.0%

9% 100% 35% 100%

B: Nondifferential misclassification
SN = 97.5%, SP = 99.9%

19% 100% 75% 100%

C: Differential sensitivity
SN1=85.0%, SN0=99.0%,
SP1=99.5%, SP0=99.5%,

17% 100% 65% 100%

D: Differential specificity
SN1=97.5%, SN0=97.5%,
SP1=97.5%, SP0=99.5%,

0% 17% 0% 52%

Simulated RR=2.00

Power without misclassification 78% 100% 100% 100%

Power with misclassification:

A: Nondifferential misclassification
SN = 97.5%, SP = 99.0%

40% 100% 86% 100%

B: Nondifferential misclassification
SN = 97.5%, SP = 99.9%

70% 100% 99% 100%

C: Differential sensitivity
SN1=85.0%, SN0=99.0%,
SP1=99.5%, SP0=99.5%,

34% 100% 77% 100%

D: Differential specificity
SN1=97.5%, SN0=97.5%,
SP1=97.5%, SP0=99.5%,

100% 100% 100% 100%

Abbreviations: SN=overall sensitivity; SP=overall specificity; SN1=sensitivity among exposed; SN0=sensitivity among unexposed; 

SP1=specificity among exposed; SP0=specificity among unexposed; RR=relative risk

†
Empirical power was calculated as the percent of simulated replications where the null hypothesis was rejected at alpha=0.05 in the same direction 

as the simulated RR (i.e., the observed RR is >1.0 for simulated RR=2.0 and <1.0 for simulated RR=0.50).
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