
Age-related macular degeneration (AMD) is the leading 
cause of central visual loss among patients beyond the age 
of 55 years worldwide. The neovascular (exudative or wet) 
type (nAMD) accounts for approximately 10% of patients 
with AMD. nAMD is characterized by choroidal neovas-
cularization (CNV), which is the formation of a choroidal 
neovascular membrane fibrovascular complex that emanates 
from the choriocapillaris through a defective Bruch’s 
membrane. The pathogenesis of CNV is not fully understood, 
but vascular endothelial growth factors (VEGFs) have been 
found to play important roles in its development [1]. Among 
them, VEGF-A can promote the division and proliferation of 
vascular endothelial cells and neovascularization and main-
tain the survival of new vessels. Furthermore, VEGF-A is an 
inflammatory cell chemotactic factor [2,3]. It also increases 
vascular permeability [4]. High VEGF-A expression can be 

detected in surgically isolated samples of newly formed vessel 
membranes associated with nAMD [5]. VEGF inhibition has 
become a widely accepted treatment for exudative AMD.

Ranibizumab (RBZ, trade name Lucentis) is a recombi-
nant humanized monoclonal antibody. Its receptor binding 
site is VEGF-A, which is known to promote vascular genera-
tion and leakage and to cause nAMD. The binding of RBZ 
prevents the interaction of vascular receptors (VEGFR1 
and VEGFR2) on the surfaces of vascular endothelial cells, 
inhibits vascular endothelial hyperplasia, and reduces 
vascular leakage into the macular region and the development 
of CNV [6]. In 2006, the U.S. Food and Drug Administration 
(FDA) approved the use of intravitreal RBZ injections for the 
treatment of nAMD. The State Food and Drug Authority of 
China approved the clinical use in December 2011. However, 
RBZ can cause ocular adverse effects (AEs), including 
conjunctival hemorrhage, eye pain, vitreous floaters, and 
increased intraocular pressure [7]. Reported serious ocular 
AEs include endophthalmitis, uveitis, retinal detachment, 
retinal tear, retinal hemorrhage, and vitreous hemorrhage 
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Purpose: Age-related macular degeneration (AMD) is the leading cause of central visual loss among patients over the 
age of 55 years worldwide. Neovascular-type AMD (nAMD) accounts for approximately 10% of patients with AMD and 
is characterized by choroidal neovascularization (CNV). The proliferation of choroidal endothelial cells (CECs) is one 
important step in the formation of new vessels. Transcriptional coactivator Yes-associated protein (YAP) can promote 
the proliferation of multiple cancer cells, corneal endothelial cells, and vascular smooth muscle cells, which participate 
in angiogenesis. This study intends to reveal the expression and functions of YAP during the CNV process.
Methods: In the study, a mouse CNV model was generated by laser photocoagulation. YAP expression was detected 
with western blotting and immunohistochemistry. YAP siRNA and ranibizumab, a VEGF monoclonal antibody, were 
injected intravitreally in CNV mice. The YAP and VEGF expression levels after injection were detected with western 
blotting. The incidence and leakage area of CNV were measured with fundus fluorescein angiography, choroidal flat 
mounting, and hematoxylin and eosin (HE) staining. Immunofluorescent double staining was used to detect YAP cellular 
localization with CD31 (an endothelial cell marker) antibody. Proliferating cell nuclear antigen (PCNA) expression in 
CNV mice without or with YAP siRNA intravitreal injection and the colocalization of PCNA and CD31 were measured 
with western blotting and immunofluorescent double staining, respectively.
Results: YAP expression increased following laser exposure, in accordance with vascular endothelial growth factor 
(VEGF) expression. YAP siRNA and ranibizumab decreased VEGF expression and the incidence and leakage area of 
CNV. YAP was localized in the vascular endothelium within the CNV site. Additionally, after laser exposure, YAP 
siRNA inhibited the increased expression of PCNA, which was colocalized with endothelial cells.
Conclusions: This study showed that YAP upregulation promoted CNV formation by upregulating the proliferation of 
endothelial cells, providing evidence for the molecular mechanisms of CNV and suggesting a novel molecular target 
for nAMD treatment.
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[8]. Therefore, the identification of new molecular targets of 
nAMD treatment is extremely urgent.

The proliferation of choroidal endothelial cells (CECs) 
is one important step in the formation of new vessels [9]. 
Angiogenic cytokines and growth factors secreted through an 
autocrine loop by CECs, or by a paracrine loop through the 
RPE, inflammatory cells, or fibroblasts, modulate the devel-
opment of CNV [10]. Therefore, the molecules that regulate 
endothelial cell proliferation during CNV are of interest to 
researchers.

Yes-associated protein (YAP) or its paralog transcrip-
tional coactivator with a PDZ-binding motif (TAZ; also 
named WWTR1) is a transcription coactivator in the Hippo 
pathway [11] and has vital roles in regulating the prolifera-
tion, differentiation, and migration of cells, tissue growth, 
and organ morphogenesis [12]. The Hippo pathway has been 
established in Drosophila melanogaster as an important 
regulator of organ size, and this pathway is highly conserved 
in mammals [13,14]. Studies have demonstrated that the 
fundamental roles of the Hippo signaling pathway include 
organ size control, regeneration, stem cell self-renewal, and 
tumorigenesis [15-17]. Neurofibromin 2 (NF2) knockout mice 
develop cataracts due to the disorganization and accumula-
tion of cells in the lens epithelium as a result of abnormal 
tissue growth, which can be reversed by deleting YAP, indi-
cating that this phenotype is dependent on the Hippo pathway 
[18]. This phenotype aligns with the current understanding 
of elevated YAP activity resulting in overgrowth, especially 
in tumors such as ovarian cancer [19], colorectal cancer [20], 
non-small cell lung cancer [21], and prostate cancer [22]. 
Interestingly, recent studies showed that YAP/TAZ mediates 
a wide range of cellular signals, including cell–cell contact, 
cell polarity, mechanical cues, secreted mitogens, and cellular 
metabolic status [23], which are all required for the regulation 
of angiogenesis. In addition, the crucial roles of YAP/TAZ 
have been uncovered in the morphogenesis, polarization, and 
migration of tip endothelial cells (ECs) and in the prolifera-
tion of stalk ECs in the developing vasculature with respect to 
the regulation of actin cytoskeleton rearrangement, cell cycle 
progression, and metabolism [24]. However, the expression 
and functions of YAP in CNV remain unclear.

Based on previous research, we speculated whether YAP 
regulated CNV formation by modulating the proliferation of 
CECs. A mouse CNV model was created by laser exposure, 
and YAP siRNA intravitreal injection was applied while 
RBZ was regarded as a positive control. This study further 
illustrates the cellular and molecular mechanisms of CNV 
formation and suggests novel molecular targets for AMD 
treatment.

METHODS

Mouse laser-induced CNV: All experimental procedures were 
performed in accordance with the requirements of the Animal 
Welfare committee of Nantong University. The research 
protocol for the use of animals was approved by the Center of 
Laboratory Animals, Nantong University (Nantong, Jiangsu, 
China) and the ARVO Statement for the Use of Animals in 
Ophthalmic and Visual Research.

Adult C57BL/6J (B6) mice (Experimental Animal 
Center of Nantong University, Nantong, Jiangsu, China) were 
anesthetized by intraperitoneal injection with 0.5% pentobar-
bital (0.1 ml per 10 g weight), and the pupils were dilated 
with topical administration of tropic amide phenylephrine 
eye drops (Santen, Osaka, Japan). Laser photocoagulation 
(647.1 nm; 50 mm spot size; 0.05 s duration; 250 mW) with a 
hand-held contact fundus lens (Ocular Instruments, Bellevue, 
WA) was performed to burn the retina at the 3, 6, 9, and 12 
o’clock positions. The time at which a bubble was observed, 
indicating rupture of Bruch’s membrane, was recorded. All 
mice were randomly divided into five groups based on the 
time after laser treatment (normal, 1, 3, 7, and 14 days). For 
western blot analysis, each group contained 24 mice that 
received laser treatment, and 15 mice that did not receive 
laser treatment constituted the control group. In the control 
and 7 day post-laser groups, another 45 mice (90 eyeballs) 
were included for choroidal flat mount, immunofluorescence, 
and histopathology.

Western blotting: RPE-choroid-sclera complexes and retinas 
were extracted from three mice at 1, 3, 7, and 14 days after 
laser injury. Proteins were separated by 10% sodium dodecyl 
sulfate polyacrylamide gel electrophoresis (SDS–PAGE) 
and were transferred to a polyvinylidene difluoride (PVDF) 
membrane. The membrane was then incubated with rabbit 
anti-YAP (1:500; Cell Signaling Technology, Danvers, MA), 
mouse anti-VEGF (1:500; Santa Cruz Biotechnology, Santa 
Cruz, CA), and mouse anti-PCNA (1:1,000; Chemicon, 
Temecula, CA). The antibodies were incubated with 5% 
skim milk overnight at 4 °C and reacted with horseradish 
peroxidase (HRP)–conjugated secondary antibodies (1:2,000; 
Thermo Scientific, Rockford, IL) at 37 °C for 2 h. Extensive 
washes in 0.05% Tween-20 in TBS were followed by incuba-
tion with anti-GAPDH (1:1,000; Sigma-Aldrich, Saint Louis, 
MO). The blots were then incubated with chemifluorescent 
reagent enhanced chemiluminescence (ECL; Thermo Scien-
tific) and exposed to X-ray film in the dark. The intensity of 
the GAPDH signal was used as an endogenous control, and 
band optical density was quantified using ImageJ (National 
Institutes of Health, Bethesda, MD).
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Immunohistochemistry: Eight eyes were enucleated in each 
group, and 8 μm cryosections were prepared for immuno-
histochemistry staining 7 days after laser photocoagulation. 
Slides were briefly washed in PBS (136 mM NaCl, 2.6 mM 
KCl, 8 mM Na2PO4, 2 mM KH2PO4, pH 7.4) pH 7.4) and 
blocked with 3% normal bovine serum albumin (BSA) for 
1 h. The sections were incubated sequentially with rabbit 
anti-YAP (1:200; Cell Signaling Technology, Danvers, MA), 
with three PBS washes in between. Immunoreactivity was 
visualized with the peroxidase substrate amino ethyl carba-
zole (AEC kit; Hao Yang Biologic, TianJin, China). Images of 
the tissue samples were acquired with a microscope equipped 
with epifluorescence (Eclipse E800; Nikon, Amsterdam, The 
Netherlands) through a digital camera (DS-Fi1c; Nikon).

Intravitreal injection: YAP siRNA (2.5 nmol; Biomics 
Biotechnologies Co., Ltd, Nantong, China) dissolved in 1 μl 
of PBS (Sigma Aldrich) and 10 μg of RBZ, an anti-VEGF 
monoclonal antibody (Lucentis; Genentech, Inc., South San 
Francisco, CA) were injected into the vitreous cavity with 
a 33-gauge, double-caliber needle (Ito Corporation, Tokyo, 
Japan) immediately after the laser injury. Mice with or 
without laser injury were killed on day 7. The normal control 
group represented no laser injury or intravitreal ranibizumab 
injection (IVR). The 7 day group represented laser-induced 
CNV without any injection.

Fundus fluorescein angiography: To confirm the inhibitory 
effect of YAP siRNA on CNV formation, fluorescein angiog-
raphy was performed 7 days after laser photocoagulation. The 
development of CNV was evaluated using a digital fundus 
camera connected to a slit-lamp delivery system (Heidelberg, 
Beijing, China), and images were captured 3 min after 0.3 ml 
of 2% fluorescein sodium (Alcon Laboratories, Irvine, CA) 
was injected into the intraperitoneal cavity of mice as previ-
ously described [25].

Choroidal flat mount: Seven days after laser coagulation, 30 
eyes (six eyes from three mice/each group) were subjected to 
choroidal flat mount. The eyes were enucleated and imme-
diately fixed in 4% paraformaldehyde (Guoyao Group of 
Chemical Reagents, Beijing, China) in PBS (pH 7.3) for 1 
h. Under a biopsy microscope, the anterior segments were 
wiped out, and the neurosensory retinas were detached and 
separated from the optic nerve head. The remaining eyecups 
were washed with cold immunochemistry (ICC) buffer (0.5% 
BSA, 0.2% Tween-20, and 0.1% Triton X-100) in PBS. A 
1 mg/ml solution of Alexa Fluor 568 conjugated isolectin-
B4 (1:100; Invitrogen-Molecular Probes, Eugene, OR) was 
prepared in ICC buffer. The eyecups were incubated with 
the fluorescent dyes above in a humidified chamber at 4 °C 
with gentle shaking for 4 h, followed by washing with cold 

ICC buffer. Four or five radial cuts were made toward the 
optic nerve head for flat mounting of the sclera/choroid/RPE 
complexes with the gel (Gel-mount; Biomedia Corp. Foster 
City, CA). The samples were covered and sealed for micro-
scopic analysis.

CNV volume quantification: Z-stack images of CNV retinal 
flatmounts stained with isolectin B4 were acquired using a 
laser scanning confocal microscope with a 10X objective lens. 
The image stacks were rendered in three dimensions using 
IMARIS imaging software (Bitplane, Zurich, Switzerland) 
and processed to digitally extract the f luorescent lesion 
volume.

Histopathology: Eight eyes were enucleated in each group, 
and 8 μm cryosections were prepared for hematoxylin and 
eosin (HE) staining 7 days after laser photocoagulation. The 
sections were coverslipped with mounting medium. Serial 
sections were examined, and the samples that contained 
the thickest or widest lesions among the set of specimens 
obtained for each CNV condition were assessed. Slices 
with HE staining were examined using a light microscope 
(Olympus, Tokyo, Japan). IPP 6.0 was used to calculate the 
maximum thickness and length of each CNV lesion.

Immunofluorescence: YAP tissue localization was examined 
on 8 μm cryosections (7 days after laser photocoagulation). 
The cryosections were blocked with 1% BSA for 4 h at room 
temperature and then incubated with rabbit YAP antibody 
(1:50; Cell Signaling Technology, Danvers, MA) and mouse 
CD31 antibody (1:50, Abcam, Cambridge, MA) at 4  °C 
overnight. For CD31 staining, antigen retrieval was achieved 
using a heated water bath at 97 °C for 10 min. Then, the 
slides were stained with Alexa Fluor 488 goat anti-mouse 
immunoglobulin G (IgG), Alexa Fluor 546 goat anti-rabbit 
IgG (1:200; Invitrogen, Carlsbad, CA), and Hoechst 33258 
(1:2000; Sigma-Aldrich, catalog number: 861405). Photomi-
crographs were taken using a digital high-sensitivity camera 
(Hamamatsu, ORCA-ER C4742–95, Hamamatsu, Japan).

Statistical analysis: All values are presented as the means ± 
standard deviation (SD). A one-way ANOVA was used for 
statistical comparisons of multiple groups. Descriptive statis-
tics were calculated using Stata statistical software version 
11.0. A p value of less than 0.5 was considered statistically 
significant. Each experiment was performed at least three 
times.

RESULTS

YAP and VEGF expression increases after laser photocoagu-
lation: To identify the expression levels of YAP and VEGF 
in CNV, proteins of RPE-choroid complexes and retinas 
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were extracted for western blotting. After laser injury, YAP 
expression was upregulated and peaked at 7 days, showing a 
similar tendency to that of VEGF (Figure 1A,B). Immuno-
histochemistry also showed that YAP expression increased 
following laser exposure (Figure 1C). These results suggest 
that YAP may be associated with CNV formation.

YAP siRNA alleviates the leakage and extent of CNV: To 
further investigate the functions of YAP in CNV, intra-
peritoneal (IP) injection of YAP siRNA was applied in 
the mouse CNV model, and ZBR was used as a positive 
control. Three types of YAP siRNA (mm-Yap-si-1, -2, and 
-3, shown in Table 1) and scramble siRNA were used for IP 
injection, with mm-Yap-si-2 showing the highest knockdown 
efficiency, which was used in the subsequent experiments 
(data not shown). Then, the YAP and VEGF expression levels 
following the YAP siRNA IP injection and laser injury were 
measured, showing that the YAP protein levels in the RPE-
choroid complexes and the retina were reduced dramatically 
in the YAP siRNA and RBZ groups compared with those in 
the control, vehicle, and scramble siRNA groups. Further-
more, VEGF expression showed a decrease similar to that of 

YAP (Figure 2A,B), suggesting that YAP may promote CNV 
formation by upregulating VEGF expression.

The f luorescein angiogram assays showed that the 
leakage area of CNV decreased in the YAP siRNA and 
RBZ groups 7 days after laser exposure (Figure 2C). A well-
defined radial array of isolectin-labeled vessels was visible 
within the CNV area in the 7 day, vehicle, and scramble 
siRNA groups (Figure 2D). Compared to the 7 day, vehicle, 
and scramble siRNA groups, the extent of CNV was smaller 
in the YAP siRNA and RBZ groups (Figure 2E).

YAP is localized in the vascular endothelium within the CNV 
site: Seven days after laser exposure, histopathology analysis 
showed that YAP siRNA IP injection and IVR statistically 
significantly decreased the thickness and length of the retinal 
lesions caused by CNV (Figure 3A,B). To identify the cellular 
localization of YAP within the CNV site, double immunos-
taining of YAP with CD31, a marker for endothelial cells, was 
performed. Within the CNV site, YAP was localized in the 
vascular endothelium (Figure 3C).

YAP siRNA inhibits the proliferation of endothelial cells: 
Previous studies have revealed that YAP promotes the 

Figure 1. YAP and VEGF expres-
sion levels are upregulated after 
CNV formation. The mouse 
choroidal neovascular izat ion 
(CNV) model was generated by 
laser photocoagulation. A: YAP and 
VEGF protein levels were detected 
with western blotting. GAPDH 
was used as a loading control. B: 
The histogram shows the densi-
tometric analysis of the average 
levels of YAP and VEGF relative 
to GAPDH. *p<0.05; compared to 
normal controls. C: Immunohis-
tochemistry of YAP in the normal 
and 7 day post-laser photocoagula-
tion groups.
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proliferation of corneal endothelial cells [26] and vascular 
smooth muscle cells [27]. Therefore, PCNA expression was 
detected in the mouse CNV model, showing that the PCNA 
protein level increased following laser exposure, which 
peaked at 7 days (Figure 4A,B). After YAP siRNA IP injec-
tion, PCNA expression decreased compared to that in the 
7 day group (Figure 4C,D), which was consistent with the 
immunofluorescence results (Figure 4E). Taken together, 
these data indicate that YAP siRNA facilitates CNV by 
inhibiting the proliferation of endothelial cells.

DISCUSSION

The mouse laser-induced CNV model is widely used in 
nAMD research. Developed originally for primates [28], 
this model was later adapted for rodents [29]. These animal 
models are highly applicable to CNV that occasionally occurs 
in human eyes after accidental laser burns [30]. Laser-induced 
CNV models provide preclinical evidence to support the 
clinical evaluation of anti-VEGF drugs for ocular neovascular 
diseases such as AMD and diabetic retinopathy [31]. In this 
study, the mouse laser-induced CNV model was generated 
and revealed that the VEGF protein level peaked at 7 days, 
which is consistent with previous research [32-34]. Polyeth-
ylene glycol-8 (PEG-8) subretinal injection can also induce 
CNV based on the principles of intraocular complement 
activation in mice, with VEGF peaking 5 days after PEG-8 
exposure [35]. A JR5558 mouse with an rd8 mutation on a 
C57BL/6J background is an established model of spontaneous 
CNV, with spontaneous CNV starting between postnatal days 
10 and 15 and increasing in extent and severity, subsequently 
causing RPE disruption and dysfunction [36,37]. Considering 
the cost and the lack of relationship between CNV and gene 
mutation, we did not use mutated mice.

The process of CNV formation involves multiple angio-
genic factors, including VEGF, hepatocyte growth factor 
(HGF), platelet-derived growth factor (PDGF), fibroblast 

growth factors, tumor necrosis factor, pigment epithelium-
derived growth factor, interleukins, the complement system, 
chemokines, ephrins, and angiopoietins [38]. Among them, 
VEGF plays a central role in CNV. Therefore, intravitreal 
anti-VEGF agents are the mainstay of nAMD treatment 
worldwide. Intravitreal anti-VEGF therapy, including ranibi-
zumab, does not cure the disease, but it decreases the rate 
of progression and facilitates visual improvements in some 
patients [39]. In this study, ranibizumab also inhibited VEGF 
expression and promoted CNV formation.

YAP promotes tissue growth and cell viability by regu-
lating the activity of multiple transcription factors, including 
TEA domain family (TEADs) and Sma- and Mad-related 
family (SMADs) members [16,40]. YAP/TEAD activates 
CD44 transcription by binding to the CD44 promoter at 
TEAD binding sites. However, CD44 regulates NF2 (an 
upstream molecule of YAP) phosphorylation according to cell 
density and sequentially promotes the YAP transcriptional 
coactivator, suggesting that CD44 has two pivotal functional 
roles as an upstream suppressor of the Hippo pathway and 
as a downstream target regulated by YAP/TEAD [41]. CD44 
is a cell–surface adhesion molecule and a receptor for hyal-
uronan (HA), a major component of the extracellular matrix, 
which is involved in cell adhesion [42], proliferation [43], 
inflammation [44,45], tumor invasion, and metastasis [46]. 
In addition to the proliferation of endothelial cells, inflam-
mation is another pathogenic factor in CNV [47-49]. CD44 
is maximally induced at 3–5 days post-laser photocoagula-
tion in rats and is localized to the RPE, choroidal vascular 
endothelial cells, and inflammatory cells, suggesting that 
CD44 expression before new vessel formation may be linked 
to the initiation of CNV [50,51]. Moreover, antibody-based 
blockade of CD44 significantly reduced CNV [51]. Whether 
YAP promotes the proliferation and inflammatory response 
of endothelial cells via CD44 will be addressed in a future 
study.

Table 1. The siRNAs used in the study.

SiRNA name Sequence (5′-3′) position

Scramble siRNA
Sense: UUCUCCGAACGUGUCACGUdTdT

None
Anti-sense: ACGUGACACGUUCGGAGAAdTdT

mm-Yap-si-1
Sense: GGAGAAGUUUACUACAUAAdTdT

891
Anti-sense: UUAUGUAGUAAACUUCUCCdTdT

mm-Yap-si-2
Sense: CAAGACAUCUUCUGGUCAAdTdT

701
Anti-sense: UUGACCAGAAGAUGUCUUGdTdT

mm-Yap-si-3
Sense: GAAUUGAGAACAAUGACAAdTdT

1278
Anti-sense: UUGUCAUUGUUCUCAAUUCdTdT
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Figure 2. YAP siRNA IP injection reduces VEGF expression and the leakage area of CNV. A: YAP and VEGF protein levels after scramble 
siRNA and YAP siRNA intraperitoneal (IP) injection and intravitreal ranibizumab injection (IVR) were detected with western blotting. 
GAPDH was used as a loading control. B: The histogram shows the densitometric analysis of the average levels of YAP and VEGF relative 
to GAPDH. *p<0.05; compared to the 7 day post-laser photocoagulation group. C: Hyper-fluorescence surrounding the laser spots reflects 
relatively weak leakage (grade 1) in the YAP siRNA IP injected mouse retinas. D: Mouse RPE-choroid flat mount preparations from laser-
injured regions were fluorescently labeled with the endothelial and microglial cell marker isolectin-B4 (63X magnification). Scale bars = 100 
μm. E: Comparison of choroidal neovascularization (CNV) size in the 7 day post-laser photocoagulation, vehicle, scramble siRNA, YAP 
siRNA, and RBZ groups. *p<0.05, compared to the 7 day post-laser photocoagulation group.
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A recent study revealed that transglutaminase 2 (TG2; 
Gene ID 7052; OMIM 190196) is a direct target gene of the 
YAP/TAZ response, which is supported by YAP1 and TAZ 
interactions with the TG2 promoter to regulate TG2 mRNA 
and protein levels in MCF10A, HaCaT, and HCT116 cells [52]. 
TG2, also known as tissue transglutaminase, has multiple 
functions in protein cross-linking and protein kinases [53] 
and serves as a scafolding factor [54]. TG2 activity has been 
implicated in various physiologic activities, including apop-
tosis [55], angiogenesis [56], wound healing [57], and cellular 
differentiation [58]. TG2 in ECs acts as a multifunctional 
protein during angiogenesis by regulating the deposition of 
VEGF into the extracellular matrix (ECM) and facilitating 

the activation of its signaling through VEGF receptor 2 
(VEGFR2). Based on previous research, the hypothesis that 
YAP may regulate CNV through TG2 functions warrants 
further study.

The Hippo signaling cascade is regulated by various 
upstream factors, including cell–cell contact, organ size 
sensing machinery, and other signaling pathways regulated by 
WNT, transforming growth factor beta (TGF-β), and several 
G-protein-coupled receptors (GPCRs), especially Gα12/13-
linked GPCRs [59]. Moreover, a recent study [60] showed that 
YAP is essential for tissue morphogenesis mediated through 
a Rho GTPase-activating protein, ARHGAP18, in the 

Figure 3. YAP is localized in 
endothelial cells. A: Normal mouse 
retinal and choroid structure. Each 
photograph shows the central area 
of choroidal neovascularization 
(CNV) within the mouse retinas 
and choroids in the 7 day post-
laser photocoagulation, vehicle, 
scramble siRNA, YAP siRNA, or 
ranibizumab (RBZ) group. Scale 
bar: 100 μm (RPE: retinal pigment 
epithelium; OS: outer segment; IS: 
inner segment; ONL: outer nuclear 
layer; OPL: outer plexiform layer; 
INL: inner nuclear layer; IPL: inner 
plexiform layer; GC: ganglion cell 
layer). B: Statistical analysis of the 
data of the 7 day post-laser photo-
coagulation, vehicle, scramble 
siRNA, YAP siRNA, and RBZ 
groups. n = 12–16 spots. *p<0.05, 
compared to the 7 day post-laser 
photocoagulation group. Black 
dashed lines represent the edge of 
CNV. C: Cellular localization of 
YAP in the retina/choroid cryosec-
tions was determined with double 
immunostaining with endothelial 
marker CD31. Scale bar = 100 μm.
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regulation of the cortical actomyosin network and filopodia 
formation in medaka and zebrafish. TGF-β is a molecule with 
pleiotropic effects that participates in cell proliferation and 
differentiation during angiogenesis and fibrotic processes, 
and the presence of TGF-β in neovascular membranes has 
been demonstrated [61,62]. TGF-β families are expressed in 
CNV [63]. Several studies have found that TGF-β signifi-
cantly enhances VEGF secretion, vascular permeability, and 
extracellular matrix remodeling on its own or in concert with 
other cytokines, such as tumor necrosis factor alpha (TNF-α) 
[64,65]. Therefore, we proposed that YAP expression may be 
upregulated by TGF-β during CNV formation, which requires 
further investigation.

In summary, this study demonstrated that the upregula-
tion of YAP promoted CNV formation by upregulating the 
proliferation of endothelial cells. Treatment with YAP siRNA 
significantly decreased the extent of laser-induced CNV in 
a mouse model, suggesting that YAP may be an important 
molecular target for antiangiogenesis therapies in AMD. 
There are limitations in this study that should be mentioned. 
First, the detailed mechanism of YAP in promoting endo-
thelial cell proliferation has not been investigated. Second, 
whether YAP promotes CNV formation through other 
pathways, such as regulation of the inflammatory response, 
remains uncertain.

Figure 4. YAP siRNA inhibits the proliferation of endothelial cells. A: The PCNA protein level was detected with western blotting. GAPDH 
was used as a loading control. B: The Bar Chart showed the ratio of PCNA to GAPDH. *p<0.05, compared to the normal control group. 
C: The PCNA protein level following scramble siRNA or YAP siRNA intravitreal (IP) injection was detected with western blotting. 
GAPDH was used as a loading control. D: The Bar Chart showed the ratio of PCNA to GAPDH. *p<0.05, compared to the 7 day post-laser 
photocoagulation group. E: Double immunostaining of PCNA and CD31 in the normal control, 7 day post-laser photocoagulation, and YAP 
siRNA groups. Scale bar = 100 μm.
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