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Abstract

Purpose—To develop a quality assurance (QA) tool (acquisition guidelines and automated 

processing) for diffusion tensor imaging (DTI) data using a common agar-based phantom used for 

fMRI QA. The goal is to produce a comprehensive set of automated, sensitive and robust QA 

metrics.

Methods—A readily available agar phantom was scanned with and without parallel imaging 

reconstruction. Other scanning parameters were matched to the human scans. A central slab made 

up of either a thick slice or an average of a few slices, was extracted and all processing was 

performed on that image. The proposed QA relies on the creation of two ROIs for processing: (i) a 

preset central circular region of interest (ccROI) and (ii) a signal mask for all images in the 

dataset. The ccROI enables computation of average signal for SNR calculations as well as average 

FA values. The production of the signal masks enables automated measurements of eddy current 

and B0 inhomogeneity induced distortions by exploiting the sphericity of the phantom. Also, the 

signal masks allow automated background localization to assess levels of Nyquist ghosting.

Results—The proposed DTI-QA was shown to produce eleven metrics which are robust yet 

sensitive to image quality changes within site and differences across sites. It can be performed in a 

reasonable amount of scan time (~15 min) and the code for automated processing has been made 

publicly available.

Conclusions—A novel DTI-QA tool has been proposed. It has been applied successfully on 

data from several scanners/platforms. The novelty lies in the exploitation of the sphericity of the 
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phantom for distortion measurements. Other novel contributions are: the computation of an SNR 

value per gradient direction for the diffusion weighted images (DWIs) and an SNR value per non-

DWI, an automated background detection for the Nyquist ghosting measurement and an error 

metric reflecting the contribution of EPI instability to the eddy current induced shape changes 

observed for DWIs.
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1. Introduction

Diffusion tensor imaging (DTI) is demanding on MRI scanner hardware due to fast 

switching gradients required for fast imaging (i.e., echo-planar imaging, EPI) combined with 

strong diffusion sensitizing gradients to produce diffusion-weighted images (DWIs). As with 

all quantitative methods, the accuracy and sensitivity of the DTI metrics rely on good image 

quality. Furthermore, a large dataset is produced, made up of more than one non-diffusion 

weighted image, nDWI, and a large number of gradient directions (typically ≥30). This 

precludes visual inspection as a reliable form of monitoring the scanner performance. For 

these reasons, an automated, DTI-specific, phantom-based quality assurance protocol (QA) 

is of upmost importance both to track changes in performance at a given site as well as to 

assess inter-site differences in performance for multisite studies.

Due to the high incidence of image quality issues, it has become common practice to 

manually inspect and discard “bad” DTI images before computing DTI metrics, such as 

fractional anisotropy (FA) and apparent diffusion coefficient (ADC). However, the sporadic 

nature of many artifacts and the DTI data redundancy make such manual inspection tedious 

and unreliable. To mitigate these inconsistent practices, some DTI processing tools 

incorporate automated image rejection and distortion correction [1–3]. Because distortions 

are inevitable in EPI-based DTI data, all processing pipelines involve some form of 

distortion correction which can be accomplished using a variety of tools such as FUGUE 
and eddy [4] in FSL (FMRIB Software Library, Oxford, UK) [5]. Although necessary, these 

distortion correction tools may mask artifacts and hide scanner issues as they arise. Most 

quality control efforts focus on subject-specific in vivo effects and in many cases, the quality 

assurance/control is integrated with the DTI processing pipelines such as DTI studio [2], 

DTIprep [6], TORTOISE [1] and the work of Lauzon et al. [7]. However, the variable 

effectiveness of these methods at correcting image quality issues introduces another source 

of variability in DTI data [8]. Previous automated phantom-based QA approaches have 

focused primarily on the ability of the diffusion sensitizing gradients to perform as expected, 

measuring accuracy, repeatability and precision of ADC/FA measurements in a variety of 

isotropic phantoms. These methods offer gradient calibration routines [9] and other 

calibration metrics for multicentre studies [10–12]. Here, we present a phantom-based, 

automated quality assurance (QA) tool which incorporates both the assessment of artifacts 

and distortions present in DTI data, while measuring the performance of the diffusion 

sensitizing gradients as well. It is fast and simple and it can be used on a standardized 

spherical agar phantom.
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To the best of our knowledge, only two similar DTI-QA protocols have been previously 

proposed [13,14]. Our approach is novel in three ways: (i) we produce similar DTI-QA 

metrics as previous studies but all are computed in a different way. In particular, our 

approach to distortion measurements is very different from that used in either previous DTI-

QA protocol. We use a different phantom than Wang et al. [13] and hence do not have 

internal structures. Although we use the same agar phantom as Zhou et al. [14], we measure 

the distortions due to eddy currents and B0 inhomogeneity (not measured by ref. [14]) by 

exploiting the sphericity of the phantom. (ii) The image processing required to compute the 

metrics is fully automated and made publicly available. (iii) We expand the outcome metrics 

to capture the effects of parallel imaging (PAR) by scanning the phantom with and without 

PAR, as well as scanner stability within DTI scan time (e.g., SNR across nDWIs and SNR 

across DWIs) which indirectly measures the gradient performance; these were not available 

in either previous DTI-QA. This QA produces eleven relevant metrics that represent a 

comprehensive assessment of DTI data quality.

The focus of ref. [14] is on longitudinal HARDI (high angular resolution diffusion imaging) 

data quality for a multicentre trial. The metrics we propose can also be tracked in time, 

across sites and within site, following the criteria presented by Zhou et al. [14]. Therefore, 

this paper does not focus on the longitudinal aspect of the QA but rather on how the 

expanded set of metrics are computed, and what those metrics reflect, at a given time point, 

across scanners. The goal is to produce automated, sensitive and robust QA metrics. The 

code for the required processing is available for general use at https://github.com/

josephdviviano/qa-dti. The output of the code is described in more details in the discussion.

2. Materials and methods

This DTI-QA was developed for purposes of intra- and inter-site monitoring in a multisite 

study called ‘SPINS’ which comprises three sites with different 3 T MRI scanners of 

different vendors/models. The sites are the Centre for Addiction and Mental Health (CMH, 

Toronto, CA), the Maryland Psychiatric Research Centre (MRC, Maryland) and the Zucker-

Hillside Hospital (ZHH, NY) with the following 3T MRI scanners respectively: GE MR750 

(GE Healthcare, WI), Siemens Trio (Siemens Medical Solutions, Erlangen, Germany) and 

GE HDx. For the GE sites, the ‘dual spin echo’ option was used [15] to minimize eddy 

currents as per human scans and the 8-channel head coil was used. For the Siemens site, a 

12-channel head coil was used.

2.1. Phantom and image acquisition

The FBIRN (Function Biomedical Informatics Research Network) agar-filled phantom 

[16,17] is used for several reasons: (i) it is smaller (diameter = 17.5 cm) and more 

manageable than the ACR phantom so it fits in more head coils (ii) it allows for better 

consistency because of the agar; there is no need to wait for the liquid to settle, there will be 

no moving air bubbles and it is less prone to vibrational effects (iii) the diffusion in agar as 

well as the relaxation parameters (T1, T2) and RF load mimic the brain better than an 

aqueous phantom. Although the agar phantom diffusivity is expected to be a little higher 

than that in brain tissue (1.5 × 10−3 mm2/s vs 0.5–1.4 × 10−3 mm2/s) [14], we propose the 
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use of this standard phantom because it has been used for many years in fMRI QA protocols 

[17] and has been shown to be temporally stable in diffusion measures (FA) as well spatially 

uniform [14]. It can be ordered from FBIRN so it is made in one location, following a 

consistent recipe and protocol, minimizing variability in production across sites. As for all 

phantom-based diffusion acquisitions, temperature is a possible source of contrast change 

because some scan parameters and diffusion are temperature dependent. For this reason, the 

temperature of the phantom is tracked and it is stored in a place with consistent temperature 

to ensure minimal variation within a given site; temperature may be a common source of 

inter-site differences which can be monitored.

The image acquisition parameters should match what is being run on subjects at the site to 

best capture the hardware/software performance at the given site. In particular, the b-value, 

the set of diffusion sensitizing gradient directions as well as the number of phase encode 

(PE) steps should match that used on brain scans because these values determine the size of 

the diffusion-sensitizing gradients and how they are played out. We can reduce the repetition 

time (TR) because a large value (≫T1) is used for DTI in order to fit the number of slices 

required to cover the entire brain within one TR. For the purpose of this QA, we do not 

require full phantom coverage so we reduce the number of slices and shorten TR to the 

minimum. Although some signal loss is expected, we balance the need for good SNR with 

the need for a short scan time.

Due to the rather large b-value required for human scanning and the decrease in TR, a single 

central phantom slice may not have sufficient signal to perform the following QA reliably. In 

particular, the measurements that require well-defined edges of the phantom relative to the 

surrounding may be compromised, depending on the coil. The signal loss can be 

compensated for by either increasing the slice thickness or averaging over a few central 

slices. These operations will increase the absolute value of the signal without altering 

distortions or any other relative measures of interest: e.g., SNR of DWI relative to nDWI. As 

long as the same number of slices and slice thickness is used across different sites, the 

resulting values will be comparable across sites as well. The following calculations will be 

done on this central average slab, herein referred to as “the image”. All QA metrics 

presented are derived from a set of such images, each one representing either a nDWI or the 

DWI for a particular diffusion direction. The number of nDWIs and DWIs will be denoted 

by N0 and NDWI respectively. For the SPINS multisite study, the following scan parameters 

were consistent across sites: TE/TR = Minimum Full/2000 ms, slice thickness 4 mm, 2 mm 

in-plane resolution (FOV = 25.6 cm, Nx × Ny = 128 × 128), 7 slices, N0 = 5, NDWI = 60 

(same directions at all sites) and b = 1000 s/mm2. The total scan time is kept below 15 min 

at all sites.

We propose to run the DTI-QA scan twice, once with no parallel imaging reconstruction 

(nPAR) and once with PAR (ASSET/iPAT factor 2). The changes in SNR and distortions can 

be used to assess the effectiveness of the PAR setting which is commonly used on all subject 

scans due to possible improvements to both of these measures. It is noteworthy to mention 

that there is a discrepancy across vendors in the implementation of PAR acquisitions: only 

for some cases PAR allows a reduction in minimum TE which results in signal recovery that 

can compensate for the reduction of data collection [18]. For other platforms, the PAR 

Chavez et al. Page 4

Magn Reson Imaging. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



option does not allow a reduction in the minimum TE (e.g., GE, ASSET = 2 has same 

minimum TE as no ASSET). Here we use the minimum TE allowed for each case and make 

a note of the TE when interpreting the results.

2.2. Image processing

In contrast to what is suggested by Wang et al. [13], we propose to not register the DWIs to 

each other nor to the nDWIs as a first step. We do not believe that this is a necessary step for 

a phantom QA as long as the phantom is fixed in a given position within the bore because in 

that case, discrepancy between nDWIs and DWIs is not due to motion but rather differences 

in scanner performance which we do not wish to mask by performing a coregistration. In the 

case of ref. [13], the coregistration step used built-in scanner functions which could differ 

across vendors/sites, introducing yet another source of variability.

2.2.1. Making the ccROI—A central, circular ROI (ccROI) is used to compute metrics 

that capture average values (such as SNR and FA) throughout most of the image while 

avoiding the edges. It is defined such that its size is maximized while ensuring that no edge 

effects are included across all images in the dataset (nDWIs + DWIs). For our parameters, 

the ccROI is defined as a central circle of radius equal to 30 voxels (=6 cm) because the 

phantom has a radius of approximately 8.5 cm.

2.2.2. Signal mask making—The first critical step for computing several outcome 

metrics (particularly those related to distortions) is to determine the signal mask for each 

image in the dataset. Here, we use an iterative edge-detection region-filling algorithm 

because this was found to be more robust than a simple thresholding algorithm for DWIs 

which often have low signal in the central region. Ideally, the first step will result in a closed 

loop outlining the circular border of the phantom. The second step involves region filling/

flooding the edge mask from a central seed. The signal mask-making step was accomplished 

with built-in functions in Matlab (The MathWorks Inc., Natick, MA).

A single pass of edge detection and region filling is sufficient for a good mask detection if 

the SNR of the images is high (e.g. nDWIs). However, there are a few situations when the 

above does not work on the first pass and more iterations are required. There are two main 

causes for failure on the first pass: (i) inhomogeneity of the signal within the agar phantom 

results in closed loop edges within the phantom, containg the region flooding seed (ii) the 

outer edge is incomplete at the first pass so the entire image is filled with the region-filling 

algorithm. Case (i) can be corrected by using a seed mask rather than a single voxel seed. A 

seed mask is defined as a circular mask, well within the phantom (radius < phantom radius). 

Every voxel contained in the seed mask is used as a filling seed. This last step is performed 

iteratively: the central seed mask grows at each iteration until the image filling step entirely 

fills the phantom mask. A good starting radius value for the seed mask, r1, is the radius of 

the ccROI (e.g., r1 = 30). Case (ii) can be corrected by iterative dilation and erosion steps 

until the phantom outer edge mask is closed. The incidence of case (ii) can also be reduced 

by the use of a very sensitive algorithm for edge detection at the expense of increasing the 

incidence of case (i). Both cases can be reduced by performing an edge-preserving median 

filtering of the image before edge detection.
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Cases (i) and (ii) can be automatically detected by checking the number of voxels in the 

resulting signal mask, nmask, against thresholds of minimum and maximum values: thmin and 

thmax. Given that a single pass of edge detection and region filling is usually enough for 

good signal masking for the nDWIs, the initial threshold values can be preset to reasonable 

values, based on the size of the phantom and the resolution of the images, without any 

negative impact. For an N × N image and a phantom with radius = r (cm) and image 

resolution = x (cm), we have found reasonable thresholds to be: thmax = 0.9·N2 and thmin = 

(Nr · 0.95)2π where Nr = floor(r/x) is the approximate number of voxels that make up the 

radius of the phantom. After the nDWI signal masks are formed, the average nmask value 

resulting for those, ave(nmask)0, can be used to define a minimal threshold value for nmask 

for the DWI signal masks: thmin = 0.95 ave(nmask)0. A flowchart for the algorithm for this 

process is given in Fig. 1. A negative response to Step 5 corresponds to case (i) whereas an 

affirmative response to Step 3 corresponds to case (ii). Steps 4 and 6 correspond to the 

iterative steps. The final result is a signal mask, SMaski, for each image i = 1:N0 + NDWI.

2.3. Computation of outcome metrics

For each subsection below, a particular artifact/effect is measured. Within each subsection, 

several intermediate measures are computed which can be used to identify sources of 

changes/differences and to troubleshoot problems. The cumulative outcome metrics 

presented for each subsection are the values that we recommend for tracking in time as an 

overall measure of image quality. They are listed in the subsection heading and italicized in 

the text for clarity.

2.3.1. The signal-to-noise ratio (SNR): AVE(SNR)0, CV(SNR)0, AVE(SNR)DWI, 
CV(SNR)DWI, ADC—SNR is not computed pixel-wise but rather using the average signal 

over the ccROI. This value combines the effect of signal intensity due to TE and diffusion as 

well as signal inhomogeneity within the homogenous phantom resulting from B1 and coil 

sensitivity effects. Also, the noise level is not uniform across the images as a result of multi-

channel data combination and in some cases, PAR reconstruction. However, we found that 

most spatial dependencies of the noise can be removed by subtracting two nDWIs. This is 

consistent with previous findings [19]. A plot of the histograms of the resulting “noise map” 

within the ccROI can be used to confirm that it follows a Gaussian distribution and thus 

computing the standard deviation, STD(noise), within the ccROI is a good measure of noise 

for the SNR calculation. The noise maps computed by taking the difference between any two 

images, where both are nDWI or DWIs, should produce the same result, as long as there are 

enough data points, because the noise is not dependent on the diffusion sensitization. Once 

we determine STD(noise), we use the same value to compute SNR for each image in the 

dataset and then compute four cumulative metrics: average and standard deviation SNR 

across nDWIs: AVE(SNR)0 and STD(SNR)0, and the same two values across DWIs: 

AVE(SNR)DWI and STD(SNR)DWI. Cumulative metrics are AVE(SNR) and coefficient of 

variation, CV(SNR) = STD(SNR) * 100/AVE(SNR) for both nDWIs and DWIs.

A ratio RSNR = AVE(SNR)DWI/AVE(SNR)0 is directly related to the mean diffusivity of the 

phantom (also known as the apparent diffusion coefficient, ADC) through the relation:
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(1)

where S and S0 are the signal magnitude values for DWIs and nDWIs respectively. RSNR is 

used to compute ADC = −ln(RSNR)/b and ADC is tracked longitudinally within a site along 

with the temperature of the phantom. For inter-site comparisons, ADC may reflect 

differences in effective b-values, noise floor of DWIs or phantom temperature if we assume 

negligible agar variability across sites.

The STD(SNR)DWI reflects the consistency of diffusion sensitization across gradient 

directions. Inconsistencies across gradient directions can result from gradient nonlinearities/

miscalibrations. Comparisons between STD(SNR)DWI and STD(SNR)0 can isolate the 

contribution of the diffusion sensitizing gradients to the instability.

2.3.2. B0 inhomogeneity image distortion: RatioB0—The B0 field inhomogeneity 

(ΔB0) is known to distort EPI-based images through stretches/compression, with possible 

signal pileup/loss, in the PE direction only (i.e., the readout direction, RO, remains 

undistorted). We can thus exploit the sphericity of the phantom to assess the extent of this 

type of asymmetrical distortion by comparing phantom dimensions along both the PE and 

RO directions. We will assume that the image is oriented so that the PE and RO directions 

are vertical and horizontal respectively. Although the ΔB0 distortion is along the PE 

direction (vertical), it may not be centred horizontally, i.e., there may be a shear. 

Furthermore, the distortion may be a stretching or compression, depending on the direction 

of the PE data collection with respect to the sign of ΔB0. However, the sphericity of the 

phantom results in a convex image border despite the distortion, making it simple to produce 

a metric that captures the amount of distortion.

A comparison of PE and RO dimensions along the centre of the phantom may not be the 

most sensitive measure to assess the amount of ΔB0-induced distortion in cases where there 

is shear. Instead, we propose to use the following. Using the signal mask made from the 

nDWIs as described in Section 2.2.2, we take the average location of the ten voxels of the 

mask that have smallest row index values (i.e., closest to the top) and do the same for ten 

voxels with the highest row index values and compute the PE diameter, diaPE, as a difference 

between these. Although not necessarily a true phantom diameter, this measure will capture 

the extent to which the phantom was distorted along the PE dimension and allow for sub-

voxel sensitivity. Similarly, we average the location of the ten voxels of the mask that have 

smallest column index values, do the same for ten voxels with largest column index values 

and compute diaRO from the difference. In this case, we expect the ten voxels to lie in a 

central position on the phantom because there is no distortion in this dimension. Thus, diaRO 

is expected to correspond to the true phantom diameter. We then compute the RatioB0:

(2)
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The amount of stretch/compression is captured by the extent to which B0Ratio differs from 

unity. Values for RatioB0 < 1 and > 1 indicate compressions and stretches respectively. 

While only the amount by which RatioB0 deviates from 1 is indicative of the amount of 

distortion, we track the value RatioB0 for a given site so as maintain sensitivity to any 

change in scanner performance.

2.3.3. Eddy current induced distortions: avevoxelshift, %∈vshifit—Large diffusion 

sensitizing gradients are required to produce DWIs. These gradients can interfere with other 

scanner components/hardware, resulting in the production of unwanted eddy currents. These 

unpredictable currents result in unexpected gradients in the imaging system which in turn, 

cause image distortions due to the low effective bandwidth in the PE direction. These 

distortions consist primarily of affine distortions which include three distinct types, 

depending on which spatial dimension is affected: shift of centre of image, stretch/

compression along the PE direction or a shear across the RO direction. All effects change 

the shape/location of the object along the PE dimension. To capture the effect of eddy 

currents in a DTI dataset, one can compare the shape of the images between nDWIs and 

DWIs. Furthermore, the eddy currents produced will depend on the particular gradient 

direction as the gradient amplitude along each of the three orthogonal (i.e., x, y and z) 

directions varies. Thus, each DWI has a unique distortion with respect to the nDWIs. We 

propose to quantify the amount of distortion associated with each DWI as follows.

We use the first nDWI mask, SMask1, from a dataset as the reference. We subtract it from 

each DWI mask and take an absolute value to produce a difference mask associated with 

each gradient direction, j:

(3)

These difference masks consist of incomplete phantom contours which capture the small 

shape differences. To quantify the amount of shape difference, we perform a column-wise 

calculation. We split the difference mask into top and bottom halves along a central 

horizontal axis and compute a column-wise average edge thickness: for column, c, and 

image j, we determine the thickness across the top hemisphere, , and for the 

bottom hemisphere,  and average these values to produce a single value for a 

given column. We perform this for all columns contained within SMaskj and compute an 

average across all columns as our final metric, vshiftj, for each gradient direction j. We can 

use this same procedure to obtain differences across nDWI which do not reflect eddy current 

distortions but rather instabilities in the EPI acquisition and/or masking algorithm. We can 

use those values as an estimate of the error in the vshiftj metric (i.e., the contribution from 

other instabilities that are not associated with eddy currents):
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(4)

where Nc is the number of columns within the mask minus four (i.e., two edge columns on 

each side are omitted) and voxelshiftcj indicates the total voxel count in DiffMaskj at 

column, c. The error in the eddy current distortion metric can be given as the average of the 

vshiftj value computed over DiffMaskj for j = 2:N0 (since DWI1 is used as the reference):

(5)

The cumulative metrics used to capture the amount of eddy current distortions in a DTI 

dataset is then given by the average vshiftj across all DWIs:

(6)

with relative error: %∈vshifit = ∈vshifit * 100%/avevoxelshift.

2.3.4. Nyquist ghosting: RatioNyq—The EPI readout can result in a so-called N/2 

Nyquist ghost due to inconsistent phase errors across alternate PE lines due to the change in 

direction of the readout gradient for even and odd echoes. This ghost is a replica of the 

image, usually of much lower intensity, centred at the uppermost edge of the image and 

wrapping back into the bottom half. Most scanners have some form of Nyquist ghost 

adjustment/compensation techniques which may include calibration of hardware 

components and the acquisition of a pair of zero phase-encoded reference scans for phase 

correction. However, hardware components are known to deteriorate in time, thus changes in 

the ability to produce ghost-free EPIs must be monitored. Also, differences across scanner 

platforms result in a large variation in the level of ghosting across sites making it an 

important QA metric.

The level of Nyquist ghosting is often reported as a percentage ghost intensity relative to the 

main image. However, there is no consensus as to how/where the ghost and signal intensity 

are measured. Here, we propose an automated method that extracts all background values 

from an image in both the PE and RO direction. Nyquist ghosting will only contaminate the 

PE background signal thus a ratio of average background values along the PE relative to the 

RO direction will be an adequate metric for level of ghost assessment:
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(7)

The automated background detection is obtained by use of the signal masks of the nDWIs 

and an image frame that includes all zero-valued image voxels around the borders of the 

image. Both background ROIs are made up of two separated regions, one on either side of 

the phantom. The backgroundPE ROI is defined as two horizontal strips that avoid the signal 

mask and exclude the image frame. Similarly, the backgroundRO ROI is defined as two 

vertical strips that avoid the signal mask and exclude the image frame. To maximize our 

accuracy, we aim to make these regions as large as possible. However, to maximize our 

sensitivity to the ghost artifact, we restrict the possible ghost-containing background (i.e., 

backgroundPE) region to include only columns which may contain the ghost: both horizontal 

strips are confined, in the left-right direction, by the outermost columns that contain the 

phantom as the Nyquist ghost cannot extend beyond the phantom borders in the RO 

direction. The voxel values contained in both strips that make up each ROI are concatenated 

and an average value is computed to yield AVE(backgroundPE) and AVE(backgroundRO) 

and ultimately, RatioNyq given in Eq. (7). Here, the mean is used because we want the 

measurement to be sensitive to outliers as the Nyquist ghost in the background often consists 

of only a few voxels associated with the edges of the phantom.

A larger value of RatioNyq indicates a poorer image quality as more contamination of 

ghosting in present in the image.

2.3.5. FA maps: AVE(FA), STD(FA)—Fractional anisotropy (FA) maps are produced 

using FSL (FMRIB Software Library, Oxford, UK) with no eddy current correction, 

resulting in some edge effects but it should not affect the signal in the ccROI. The amount of 

noise and consistency of diffusion sensitization across gradient directions is captured by how 

much the average FA within the ccROI differs from zero in this homogeneous phantom. 

Increases in noise as well as any discrepancy across gradient directions will result in an 

artifactual increase in FA. The inhomogeneity of FA, due to both noise and spatially 

dependent signal variations, is captured by the standard deviation of FA within the ccROI: 

STD(FA). We expect AVE(FA) to be close to zero for this homogeneous phantom. For this 

reason, we use propose to track the STD(FA) rather than use the relative measure given by 

the coefficient of variation.

3. Results

The proposed DTI-QA was implemented at the three aforementioned sites: CMH, MRC and 

ZHH. In the following, we show the intermediate results at various stages of the DTI-QA for 

one time point, at two contrasting sites to demonstrate the contrast in data quality across 

vendors and scanners. We show that both image-based and cumulative metrics correspond to 

observable data quality differences. We recommend producing several figures when running 

the DTI-QA as those will help troubleshoot issues when a cumulative metric deviates from 

the expected range at a site. Finally, we show examples of how the resulting DTI-QA 
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cumulative metrics can be used to track changes in data quality within a site and/or compare 

and track data quality differences across sites. At the GE sites, CMH and ZHH, the TE was 

constant across PAR and NPAR acquisitions (TE = 85 ms). For the Siemens site, MRC, the 

TE was shorter for the PAR (TE = 85 ms) than for the NPAR (TE = 97 ms) acquisition. This 

will only be a factor when comparing SNR changes across PAR and NPAR acquisitions.

3.1. Phantom and image acquisition

Sample images, nDWI and DWI, across the three sites, for PAR and NPAR are shown in Fig. 

2. It is clear that there are large image quality variations across sites. Decrease in SNR and 

distortions are also evident in the PAR acquisitions.

3.2. Image processing: mask results

Despite the obvious reduction in contrast between the phantom signal and background for 

DWIs relative to nDWIs (notice different scaling in Fig. 2), and the variability in the image 

inhomogeneities across sites, the proposed mask algorithm was successful in producing 

signal masks for nDWIs at all sites. The result of a Canny edge detection, method available 

in Matlab (The MathWorks Inc., Natick, MA), is shown in Fig. 3. The image frame (zero-

valued voxels) can be seen to differ across nDWI and DWI, as well as across sites. Fig. 3 

demonstrates the result for two different scanners. In one case (CMH-nDWI), an almost 

closed inner edge loop can be seen (grey arrow) and in the other case (ZHH-DWI), an 

incomplete phantom border is shown (grey arrow). The proposed method with r1 = 30 

voxels (same rationale as for the ccROI, this ensures the circle is within the phantom), 

successfully created signal masks for all nDWIs as well as DWIs at all three sites.

3.3. Computing the DTI-QA metrics

3.3.1. The signal-to-noise ratio: AVE(SNR)0, CV(SNR)0, AVE(SNR)DWI, 
CV(SNR)DWI, ADC—Noise maps were produced by taking the difference between 

pairwise nDWIs as well as for four pairs of DWIs (i.e., pairwise across the first eight DWIs, 

using each DWI only once). Noise values within the ccROI were then obtained and a 

histogram was plotted to check for Gaussian distribution. If the fit to a Gaussian was good, 

we computed STD(noise) for each noise map, as well as for the cumulative noise values 

obtained by concatenating all noise map values. Fig. 4 shows sample noise maps as well as 

histograms of the values with Gaussian fits and resulting STD(noise). It was found that 

although the STD(noise) did not vary much across noise maps, the noise maps produced by 

the DWIs did show some unwanted signal intensity variations across gradient sensitization 

directions at some sites (bottom row of Fig. 4a). These could interfere with the STD(noise) 

measurement. Thus, we propose to use the STD(noise) obtained by combining noise values 

across nDWI noise maps in cases when there are more than two nDWIs: N0 > 2. In order to 

include all nDWIs in the calculation with equal weighting to avoid a bias in the result, we 

propose to produce noise maps for pairwise nDWIs where each possible pair is used; this 

will result in N0(N0 − 1)/2 pairs. Then, all noise values are concatenated and an overall 

STD(noise)0 is estimated (Fig. 4b). We use this result in the denominator of all SNR 

computations in that dataset.
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In all cases, the noise distribution was Gaussian as expected. A plot of SNR across all 

images reflects more variability across DWIs than nDWIs, reflecting gradient nonlinearities 

and/or gradient calibration differences [20] which may result in varying effective b-values 

across different gradient directions (Fig. 5). The cumulative SNR metrics shown in Table 1: 

AVE(SNR)0, CV(SNR)0, AVE(SNR)DWI, CV(SNR)DWI, were in concordance with the 

visible differences in image quality across sites (Fig. 1).

In particular, Table 1 indicates that CV(SNR)0 was insignificant (<0.02%) across sites 

relative to CV(SNR)DWI (> 1% in most cases). A general reduction in CV(SNR)DWI can be 

seen across the GE sites (CMH and ZHH) for PAR relative to NPAR (Fig. 5) but this is not 

the case for the Siemens site (MRC). The value of ADC varied across sites but it remained 

almost constant between PAR and NPAR acquisitions (<2% difference) at CMH and ZHH 

while a significant increase in ADC (9.8%) was observed for PAR relative to NPAR 

acquisitions at MRC.

3.3.2. B0 inhomogeneity image distortion: RatioB0—The B0 inhomogeneity 

induced image distortion, captured by RatioB0, was easily computed at all sites because the 

signal masks were easily obtained for nDWIs. A sample for each site is shown on the top 

row of Fig. 6. In general, we obtained RatioB0 < 1 which reflects an image compression 

rather than a stretch. This value usually indicated less than a 3% shape change and it was 

slightly reduced (closer to 1) for PAR relative to NPAR in all cases (Table 1).

3.3.3. Eddy current induced distortions: avevoxelshift, %∈vshifit—Difference 

masks were obtained for all images using nDWI1 as the reference. Based on the results 

across sites, the EPI instability is in general negligible relative to the eddy current distortions 

as can be seen by only a few random voxels in the Difference Masks for nDWIs, in contrast 

to those for DWIs which often reflect a contour of the phantom. Also, the value for vshifti is 

in concordance with the visible amount of difference mask detected for a given image (Fig. 

7c). The cumulative metrics, avevoxelshift and %∈vshifit, are quite variable across sites and 

there is an obvious reduction in the amount of detectable eddy current distortions (decrease 

in avevoxelshift) across DWIs with the use of parallel imaging (PAR vs NPAR) at the 

expense of an increase in EPI-induced shape instability, reflected by %∈vshifit, across all 

sites (see Table 1 and Fig. 7d).

3.3.4. Nyquist ghosting: RatioNyq—The automated Nyquist ghosting detection was 

able to effectively capture the amount of ghosting visible in the background of the nDWIs 

images. A comparison across three sites is shown in Fig. 6 where the images are scaled to 

maximize the ghost contrast. The only site with appreciable ghosting is MRC and the values 

for RatioNyq are consistent with this: RatioNyq = 1.368 for MRC, whereas RatioNyq = 1.051 

and 1.047 for CMH and ZHH, respectively. This metric, RatioNyq, is particularly sensitive to 

any contamination from phantom signal as the background values are much lower than those 

in the phantom signal and we compute the mean. For this reason, we dilate the signal masks 

(3 × 3 kernel) before excluding these mask voxels. The background detection proposed here 

performs much better than the common use of fixed background regions defined a priori 

because it ensures that regions belonging to the signal masks are excluded, regardless of 

phantom placement or distortion, and it adapts to the differences in image frame seen across 
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scanners (see Fig. 6 bottom row). The success of this automated background detection relies 

on the fact that we have an accurate and robust method to produce nDWI signal masks.

3.3.5. FA maps: AVE(FA), STD(FA)—FA maps show some variation in FA within the 

homogeneous phantom which is related to gradient nonlinearities/miscalibrations as well as 

image artifacts and noise (Fig. 8). In all cases, the use of PAR slightly increased the 

AVE(FA) of this homogeneous phantom and the effect was more pronounced for the site for 

which the SNR was very low (ZHH) where it increased from 0.0530 to 0.0771 (+45%).

3.4. Multisite studies

We have implemented the above DTI-QA for the SPINS multisite study presented here as 

well as for another larger multisite study, as part of Brain-CODE, funded by the Ontario 

Brain Institute, OBI (http://www.braininstitute.ca/brain-code) with a total of ten sites with 

varying scanning platforms [21]. Across all sites, there is only one metric (avevoxelshift) 
that the proposed approach could not compute at one site due to the low SNR of the 

phantom signal near the edges of the phantom for the DWIs at that site (attributed to the age 

of the scanner). For these studies, we perform the DTI-QA on a weekly or monthly basis at 

all sites and results will be published elsewhere.

4. Discussion

It is clear that the data quality is not homogeneous across vendors and/or scanner/software 

versions; the SNR and image artifacts vary considerably. This is most relevant when 

performing a multisite study as these factors are rarely consistent across sites. The DTI-QA 

metrics we have presented represent a comprehensive assessment of DTI image quality and 

scanner performance; they are sensitive and robust measures and their computation is fully 

automated. The most novel contributions are the distortion measurements based on phantom 

sphericity, automated ROI detection for Nyquist ghost measurements and the extensive SNR 

measurements that allow an assessment of gradient nonlinearities/calibrations and scanner 

EPI stability within scan time i.e., CV(SNR)0 and CV(SNR)DWI and %∈vshift. The code 

made available through github (https://github.com/josephdviviano/qa-dti) will output the 

proposed cumulative metrics as text files in csv format. Several figures (in jpeg format) 

capturing other intermediate values (similar to the figures shown in this manuscript) are also 

produced by the code for troubleshooting purposes. It is recommended to use the text files to 

temporally append cumulative metrics while keeping the figures in date-specific folders for 

easy access in cases where the cumulative metrics are not as expected. This can be 

customized in a site-specific manner.

All metrics presented in this DTI-QA protocol rely on the creation of one of the two masks: 

ccROI and SigMasks. Although ccROI is placed in the centre of the FOV which may not be 

the exact centre of the phantom image, metrics that use this mask in the computation were 

found to not depend on small discrepancies between the two centres. The important purpose 

of this ROI is to exclude edge effects. The SigMasks were created from the images 

themselves and thus the choice of edge detection method used (with varying sensitivity), 

may affect the signal masking results and in turn, the metrics that depend on these. The 

extent to which a very sensitive method should be used depends on the data quality (i.e., 
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SNR) of the images in the dataset. While a more sensitive method is more likely to find the 

border of the phantom, it is also more likely to find closed loops within the phantom. The 

iterative process can be optimized for the given data by performing several variations of 

edge-detection methods and edge-preserving filtering. For all images tested, the Canny edge-

detection performed after a 3 × 3 median filter resulted in good signal mask detection except 

in one case where, for some DWIs, the edges of the phantom blended into the background 

due to very poor SNR.

The SNR was found to decrease for PAR scans relative to NPAR scans as expected, at the 

GE sites (CMH and ZHH) where a fixed TE value was used. The cumulative metrics thus 

isolate the effects of increased relative noise that come from PAR reconstruction artifacts 

and a reduction in the number of k-space lines of data. However, this reduction in SNR for 

PAR may be overcome to some extent by the signal gain associated with a reduction in TE 

[18] available on some platforms, such as for MRC. In our case, a 16% decrease in SNR 

(3.39 to 2.84) across PAR and NPAR scans is observed for the DWIs at MRC despite the 

relatively constant SNR achieved for nDWIs, resulting from the decrease in TE. This 

indicates an increase in relative noise associated with the PAR that is not overcome by 

decreased TE. Nevertheless, significant decreases in avevoxelshift and RatioB0 can be 

attributed to using PAR as expected [18], supporting the use of PAR for DTI human 

scanning.

We get average ADC (〈ADC〉) values within the expected range for this phantom at all sites: 

1.81 · 10−3 s/mm2 (NPAR) and 1.83 · 10−3 s/mm2 (PAR) for CMH, 1.74 · 10−3 s/mm2 

(NPAR) and 1.90 · 10−3 s/mm2 (PAR) for MRC and 1.91 · 10−3 s/mm2 (NPAR) and 1.94 · 

10−3 s/mm2 (PAR) for ZHH. The GE sites produce more consistent 〈ADC〉 values across 

NPAR/PAR (<2% difference). Some of the discrepancy in 〈ADC〉 across sites may be due to 

phantom temperature although the large variation in 〈ADC〉 (8.4%) across NPAR/PAR 

within site (for MRC) is larger than the across site differences. The source of this 

discrepancy is not clear as an increased noise floor with PAR would result in an 

underestimation of 〈ADC〉 but the opposite is observed. Furthermore, the values of 

AVE(SNR)0 change very little for PAR vs NPAR for this site (less than for the other two GE 

sites) while the CV(SNR)DWI increases only for this site. This indicates a very different 

behaviour in SNR across volumes with the introduction of PAR at this site, which could be 

the result of a vendor-specific reconstruction algorithm. Comparisons in behaviour with 

other Siemens sites would be necessary to further investigate this.

The Nyquist ghost measurement relies on the background values of the image. For most 

scanners, the background is suppressed when PAR is used to do the reconstruction which is 

why we propose to compute RatioNyq only on the NPAR scans. However, there are cases 

when the background is suppressed even for NPAR if filters are used on the images. It is 

important to acquire filter-free images for this DTI-QA. In general, for phantom-based QA 

procedures, if a filter is deemed necessary to enhance a particular feature of the images, it 

can be applied as long as it is not done on the scanner, using a scanner-specific 

implementation that will only add to the variability across sites/vendors. Instead, a standard 

filter can be chosen and applied equally off-line to all images from all sites, preserving the 

ability to compare across sites.
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We propose to use voxel-wise FA computations (i.e. FA map), later taking AVE and STD 

values within the ccROI as this way the FA metrics capture both noise effects and gradient 

nonlinearities/miscalibrations simultaneously. In contrast, Wang et al. propose to use ROI-

based FA where a single FA value is computed based on average signal values within an 

ROI, i.e., one value for each gradient direction, to isolate gradient nonlinearities/

miscalibrations as the random noise is “averaged out” [13]. In our case, we compute SNR 

for each DWI separately and thus any signal variation due to gradient nonlinearities/

miscalibrations will be reflected in a variation of SNR across DWIs i.e., STD(SNR)DWI. 

Therefore, we are more interested in capturing both the effects of noise and gradient 

nonlinearities/miscalibrations on our FA maps. The fact that FA increases for all PAR vs 

NPAR scans (see Table 1) despite the apparent decrease in STD(SNR)DWI for the two GE 

sites (CMH and ZHH) indicates that, in agreement with ref. [13], noise and PAR-induced 

artifacts dominate the voxel-based FA metric; gradient based effects are secondary. This is 

also confirmed by computing Pearson’s correlation coefficients for AVE(SNR) vs AVE(FA), 
combining across NPAR/PAR scans. We find significant negative correlations for both 

nDWI (r = −0.86, p = 0.027) and DWIs (r = −0.89, p = 0.019) and a much less significant 

positive correlation between STD(SNR)DWI and AVE(FA) (r = 0.77, p = 0.075).

Of note, in contrast to ref. [14], we have chosen not to incorporate a spike noise detection 

method [22] as part of our phantom-based DTI-QA as spike noise is very sporadic in nature; 

in our experience, the lack of spike noise in a single phantom scan does not guarantee a 

spike-free image when human data is acquired. We think phantom-based spike noise 

detection may lead to false positives and/or false negatives so we believe it is best to check 

all human data for the possible presence of this artifact.

Both aforementioned multisite studies have been using the proposed DTI-QA to track data 

quality consistency within a site and to compare data quality across sites for over one year. 

We do not present longitudinal data here as it is the focus of several other works in progress. 

Although scanner performance has improved over recent years, reducing the incidence and 

magnitude of most DTI-related image artifacts, the metrics we propose have been shown to 

be sensitive and reliable in tracking scanner performance and detecting scanner issues. Both 

studies have benefited from such a tool: it has enabled timely identification of scanner 

performance issues within sites. Currently, efforts are underway to incorporate some of these 

cumulative outcome metrics, particularly those that differ most across sites, in a modified 

mega-analytical homogenization approach to improve statistical power of multisite human 

DTI data analysis [23].

5. Conclusions

A novel DTI-QA tool has been proposed. It has been applied successfully on data from 

several scanners/platforms. The novelty lies in the exploitation of the sphericity of the 

phantom. Other novel contributions are the determination of STD(noise) that can be used to 

compute SNR values across all images (nDWIs and DWIs), as well as a relative error metric 

reflecting the contribution of EPI instability to the total shape changes observed for DWIs, 

enabling an isolation of eddy current induced effects. The metrics are computed in a fully 
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automated manner and the code has been made publicly. The hope is that this will facilitate 

homogenization of DTI-QA efforts across sites/studies.
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Fig. 1. 
Mask making algorithm flowchart. The main steps for the mask making algorithm are given. 

There are three steps that require a yes/no response to decide how to proceed. Steps 3 to 4 

represent the iterative process for closing the outer edge of the phantom. Steps 5 to 6 

represent the iterative process for filling the mask. The first step requires a selection of a 

radius r1 such that it is much smaller than the radius of the phantom (r1 = 30 voxels as per 

ccROI). The threshold values, thmin and thmax, consist of minimum and maximum expected 

number of voxels in the mask (see text to compute these). The number of voxels in the mask, 

nmask, is computed at Steps 3 and 6.
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Fig. 2. 
Sample Images used for DTI-QA metrics calculations across sites and across NPAR/PAR. 

Each row shows representative data for one of the SPINS sites. Representative images 

(nDWI and DWI) without PAR (NPAR) and with PAR are shown on the left and right, 

respectively. The nDWIs are scaled the same across NPAR/PAR, the same is true for the 

DWIs (but scales for nDWI and DWIs are different). The change in background is apparent 

for the GE sites: CMH and ZHH (top and bottom rows).
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Fig. 3. 
Signal mask making examples. Intermediate steps of the mask making algorithm are shown 

for two cases, different sites, across nDWI and DWI images (all are NPAR scans here). 

Here, the nDWIs and DWIs are scaled the same within site to emphasize the SNR challenge 

presented by the DWIs. The ‘edges’ step shows all the edges found on the first pass; image 

frame (zero-values border) differences are apparent across sites and nDWI/DWI. The top 

row (CMH-nDWI) shows an example where a central loop edge is found. Although it is not 

closed, it demonstrates how it could happen. The bottom row shows an example where the 

outer phantom edge is incomplete at the first pass. A single application of Step 4 was 

sufficient to close it in this case.
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Fig. 4. 
Calculation of STD(noise) for SNR measurements. a) Sample noise map images resulting 

from taking image differences: subtracting all possible nDWI pairs (top and central row) and 

also subtracting the first four pairs of DWIs (bottom row). Some gradation of signal is 

apparent in the DWIs noise maps that is not there for the nDWIs noise maps. b) Noise map 

histograms resulting for each noise map in a), as well as the cumulative noise histogram that 

results when all nDWI noise maps are combined. Gaussian fits are show over each histogram 

to demonstrate the Gaussian nature of the noise when computed in this manner. STD(noise) 

resulting from the Gaussian fits are plotted for each nDWIs and DWI pair shown in a), as 

well as for the cumulative nDWI noise histogram which we propose to use for all SNR 

calculations.
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Fig. 5. 
SNR results. Sample images are shown along with SNR plots across nDWIs and DWIs, for 

two sites. Plots show NPAR and PAR results overlaid for comparison. The images in a) show 

sample images (nDWI and DWIs) for the NPAR case with the position of the ccROI used to 

compute average signal for SNR computations; this ROI enables the exclusion of edge 

effects. The increased stability of SNRDWI and overall decrease in SNR with PAR is 

apparent in the plots in b).
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Fig. 6. 
B0 distortion and Nyquist ghost results. Sample nDWIs are shown for all three sites of the 

SPINS study (one in each column). The top row indicates the B0 distortion results per 

image, with measurements overlaid on images which are scaled to emphasize the 

background; the Nyquist ghosting of MRC is evident. The bottom row indicates the Nyquist 

ghosting metric results per image, while demonstrating the localization of the automated 

background ROIs used to compute RatioNyq.
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Fig. 7. 
Eddy current distortion measurements. a) Sample signal masks are shown for nDWIs and 

DWIs along the top row at a given site (CMH-NPAR). b) Difference signal masks resulting 

when the first nDWI signal mask is used as a reference. c) Zoomed difference signal masks 

are shown for two nDWIs and two DWIs along with the corresponding vshift value; it is 

evident that this value captures the amount of shape difference well. d) Plots of vshift values 

resulting for all images in the dataset (nDWI and DWI). Here, NPAR and PAR results are 

overlaid for comparison. It is obvious that for this case, the EPI-based instability, given by 

the shifts across nDWIs, is much less significant than the eddy current induced shifts which 

exclusively affect the DWIs. Furthermore, it is evident that PAR reduces the amount of shift 

present in the DWIs (i.e., the eddy current shift) while increasing it slightly for the nDWIs 

(i.e., the EPI-based instability).
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Fig. 8. 
FA results. Sample FA maps are shown (with ccROI overlaid) across sites, for NPAR and 

PAR. It is clear that FA is not constant throughout the homogeneous phantom, in particular 

around edges, but the amount of variation is site-dependent. Also, PAR tends to increase the 

FA in all cases. AVE(FA) and STD(FA) values are given along with each image to 

demonstrate how well the metric reflects the observable data quality.
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