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Abstract

Dynamic regression models, including the quantile regression model and Aalen’s additive hazards 

model, are widely adopted to investigate evolving covariate effects. Yet lack of monotonicity 

respecting with standard estimation procedures remains an outstanding issue. Advances have 

recently been made, but none provides a complete resolution. In this article, we propose a novel 

adaptive interpolation method to restore monotonicity respecting, by successively identifying and 

then interpolating nearest monotonicity-respecting points of an original estimator. Under mild 

regularity conditions, the resulting regression coefficient estimator is shown to be asymptotically 

equivalent to the original. Our numerical studies have demonstrated that the proposed estimator is 

much more smooth and may have better finite-sample efficiency than the original as well as, when 

available as only in special cases, other competing monotonicity-respecting estimators. Illustration 

with a clinical study is provided.
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1. Introduction

Quantile regression (Koenker and Bassett 1978) models and estimates potentially dynamic 

covariate effects on quantiles. As popular as it has become, lack of monotonicity respecting 

remains an outstanding issue (e.g., He 1997). For example, an estimated 90th percentile may 

actually exceed its 95th counterpart. Although it may not have received as much attention 

elsewhere, this issue is general with linear dynamic regression models that relate a response 

variable Y with covariate vector X through

(1)

Above, Dx(·) is a functional that has a one-to-one mapping with the distribution function of 

Y given X = x, β(·) is a regression coefficient that quantifies the dynamic covariate effects, 

is an interval index set on the real line, and  is a covariate space. In the case of quantile 
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regression, Dx(·) is the quantile function, possibly upon a transformation. One sub-class, due 

to Peng and Huang (2007), takes a transformation of the survival function as Dx(·); the 

additive hazards model (Aalen 1980) and the additive complementary log-log survival model 

(Peng and Huang 2007) are special cases. With all these models, Dx(t) is a monotone 

function of  for all . However, a standard regression procedure, with coefficient 

estimator , may not respect the monotonicity in the sense that  is not 

monotone over  at least for some . Without loss of generality, monotonicity is 

taken to be monotonically increasing throughout.

To elaborate, consider the typical circumstance that  for any 

given s < t and  is uniformly consistent for β(·). Then, with respect to discrete points in 

and in large sample, lack of monotonicity respecting can be lesser of an issue. Between a 

fixed point and any other one outside a fixed neighborhood,  is monotonicity-respecting 

with respect to them with probability tending to 1 as sample size n increases. So is for any 

finite set of fixed points. Nevertheless,  may not be monotone over all  for most 

 even in large sample. With standard quantile regression of Koenker and Bassett 

(1978),  is monotone when x is the covariate sample average and by continuity in a 

neighborhood thereof. Neocleous and Portnoy (2008) argued that the neighborhood, 

however, is quite small and generally tends to zero in size as n increases. This might also 

explain the roughness of  as typically observed.

There are several notable recent developments to tackle this issue with quantile regression. 

Neocleous and Portnoy (2008) suggested to linearly interpolate the points of an imposed 

grid, and showed that the resulting estimator is asymptotically monotonicity-respecting and 

equivalent to the original Koenker–Bassett estimator if the mesh approaches 0 at an 

appropriate rate. However, monotonicity respecting is not guaranteed in finite sample. Wu 

and Liu (2009) and Bondell et al. (2010) investigated a somewhat different problem to target 

the estimation at discrete points only. Moreover, their methods may not adapt easily for other 

dynamic regression procedures.

As a related problem, curve monotonization has a much longer history in the literature. 

Many well-known methods, including isotonic regression (e.g., Barlow et al. 1972; 

Mammen 1991) and monotone regression splines (e.g., Ramsay 1988), were mostly 

developed for nonparametric regression. Even though they might be adapted, their statistical 

properties are largely unknown in our context (e.g., Chernozhukov et al. 2010), where the 

curve of concern  is dependent across . Only a few are more relevant. For a 

baseline cumulative hazard function, Lin and Ying (1994) suggested to monotonize their 

original estimator by maximizing over the range below, and argued that the asymptotic 

properties are preserved. Recently, Chernozhukov et al. (2009, 2010) proposed and 

investigated the rearrangement method to monotonize an estimated curve. The rearranged 

curve is closer to the estimand in common metrics, and is asymptotically equivalent to the 

original under regularity conditions. Clearly, a curve monotonization method may be used to 

monotonize a fitted curve in a dynamic regression, i.e.,  for a given x, or curves. 
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However, these monotonized curves typically no longer respect the linearity in model (1). 

Thus, they may not correspond to a monotonicity-respecting regression coefficient estimator, 

which is of primary interest as a direct and meaningful measure of covariate effect. If the 

covariate space is of a special type, we later devise a procedure for monotonicity-respecting 

regression using a generic curve monotonization method. Nevertheless, this is not a general 

resolution.

In this article, we propose a novel adaptive interpolation method for monotonicity-respecting 

estimation of β(·) with a general covariate space . Starting from a standard estimator, the 

approach restores monotonicity respecting by construction. This general method applies 

across various dynamic regressions. As a byproduct, it also reduces to a new curve 

monotonization method. Section 2 presents the proposed method along with an asymptotic 

study. Simulations are reported in Section 3, and an illustration given in Section 4. Final 

remarks are provided in Section 5. Technical details are deferred to the Appendix.

2. The adaptive interpolation method

Standard dynamic regression procedures typically yield estimators that are cadlag step 

functions, such as cadlag version of the Koenker–Bassett estimator (Huang 2010, Section 

3.4) for quantile regression, the estimator of Huang (2010) of censored quantile regression, 

the generalized Nelson–Aalen estimator under the additive hazards model, and the estimator 

of Peng and Huang (2007) under their dynamic survival regression models. These estimators 

are natural, being invariant to a monotonically increasing transformation of the index scale. 

We shall thus focus on such an original estimator ; see related discussion later in Remark 

3.

For generality, the monotonicity respecting will be restored with respect to an arbitrary 

covariate sub-space, . As such, the proposal also accommodates the usual practical 

situation with unknown , where a natural replacement is the convex hull of observed 

covariate values, or the empirical covariate space . Moreover, the proposal reduces to a 

curve monotonization method when  is singleton. Thus,  can be random, and the linear 

space spanned by  may have a lower dimension than that by .

2·1 The proposed estimator

Without loss of generality, suppose that the interval set  is closed; a boundary point can 

always be included whereby a cadlag function at the boundary point may be set as an 

appropriate limit. Denote the interior and boundary of a set by circle superscript and ∂, 

respectively. Write

which contains all the breakpoints of  along with the boundary points of . From a 

starting point ,
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(2)

is the left nearest monotonicity-respecting neighbor, in the sense that  respects the 

monotonicity at these two points. Recursively each identified point then has its own left 

nearest monotonicity-respecting neighbor determined, until such a neighbor no longer exists. 

In the other direction, right neighbors can be similarly obtained; the right nearest 

monotonicity-respecting neighbor to τ is

(3)

Denote the collection of all these points, including the starting one τ, by . Note that 

may be replaced with the vertex set of its convex hull in these neighbor definitions. Also, 

such nearest monotonicity-respecting neighbors are not necessarily mutual: That point A is 

the left one to point B does not imply that B is the right one to A.

Interpolating  linearly between adjacent points in  then yields a monotonicity-

respecting estimator . for any t within two adjacent points in , say τl < τr,

(4)

Moreover, set  for  and  for . Unlike 

,  is a piecewise-linear continuous function.

The proposed adaptive interpolation method is invariant to linear transformation of the 

covariates in . In the case that  is a singleton, say {x}, the dynamic regression model 

(1) therefore becomes irrelevant and the proposal reduces to a curve monotonization 

procedure, for , just like Lin and Ying (1994) and Chernozhukov et al. (2009, 2010). 

Figure 1 illustrates the procedure in this special case. As an appealing characteristic, the 

monotonicity respecting is induced locally. For the large part, the proposed estimator is thus 

insensitive to potential tail instability of the original estimator so long as the starting point τ 
is positioned away from such a tail or tails. In contrast, the Lin–Ying and rearranged 

estimators are subject to influence by one tail and both tails, respectively. The proposed 

estimator has no more knots than breakpoints of the original estimator, and is always more 

smooth. However, unlike the rearranged estimator, the adaptive interpolation estimator is not 

necessarily closer to the estimand than the original. Nevertheless, it might be so on average 

as suggested by our numerical studies shown later.
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This proposal requires a choice of the starting point, τ. Our asymptotic analysis and 

numerical studies will later show that a wide range of choices would make little difference in 

the resulting estimator. Nevertheless, a starting point at which the original estimator is most 

reliable seems natural; such a point depends on the specific regression model under 

consideration.

2·2 An asymptotic analysis

Mild regularity conditions are imposed for this purpose.

Condition 1—(Original estimator)  is consistent for β(·) uniformly on some interval 

. Furthermore,  on [a, b] converges weakly to a tight mean-zero 

Gaussian process with a continuous covariance function.

Condition 2—(Covariates)  is bounded.

Condition 3—(Estimand) The derivative β′(t) exists for all t ∈ [a, b], and 

 strictly.

Condition 4—(Starting point) τ is in [a, b] with probability tending to 1.

Uniform consistency and asymptotic normality as in Condition 1 hold in general for 

standard dynamic regression estimators. See Koenker (2005) for quantile regression, Peng 

and Huang (2008) and Huang (2010) for censored quantile regression, McKeague (1988) for 

the additive hazards model, and Peng and Huang (2007) for their dynamic survival 

regression models, among others.

We first characterize the distance between adjacent points in  and , within interval [a, b]. 

Write the points in  as a ≡ ν1 < ⋯ < νJ ≡ b and those in 

 as a ≡ τ1 < ⋯ < τK ≡ b.

Lemma 1: Under Conditions 1, 2, and 3,

(5)

With Condition 4 in addition,

(6)

This result paves the way for establishing the statistical properties of . Denote the Lp 

norm, p ≥ 1, by ‖ · ‖p.

Theorem 1: Suppose that Conditions 1, 2, 3, and 4 hold. Then,
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(7)

for any small ι > 0. If τ = a or τ = b, the asymptotic equivalence of  and  as above 

holds over an extended interval [a, b − ι] or [a + ι, b], respectively.

Since ι can be made arbitrarily small,  is asymptotically equivalent to  over 

essentially the same interval where the latter is consistent and asymptotically normal. 

Accordingly, for inference with the monotonicity-respecting , both interval estimation 

and hypothesis testing using the original , based on either asymptotic distribution theory 

or re-sampling methods, can be easily adapted. Specifically, the same standard error may be 

used for , and a pointwise confidence interval or simultaneous confidence band with 

can be obtained by re-centering the interval or band with  around . Furthermore, a 

test statistic with  in place of  would typically remain asymptotically equivalent. This 

inference strategy was used in the numerical studies presented later.

As a result of selecting monotonicity-respecting points, the maximum distance between 

adjacent points increases from op(n−1/2) in  to Op(n−1/2) in . if a step function instead is 

used to connect the points in , the resulting monotonicity-respecting estimator then has a 

bias of Op(n−1/2), which is not sufficient for an asymptotic equivalence result like (7). The 

linear interpolation in the proposal ensures a negligible bias of op(n−1/2).

Remark 1: A restricted parameter space is typically associated with improved estimation 

efficiency. It is not so for the monotonicity-respecting estimation in terms of first-order 

asymptotic efficiency, although finite-sample improvement might still be possible.

Remark 2: Although β(·) is introduced through the dynamic regression model (1), the 

model is nonessential whereby β(·) can be interpreted merely as the limit of . However, 

the strict monotonicity of x⊤β(t) over t for all x, given by Condition 3, is critical, so as to 

bound the distance between adjacent points in  and in turn give rise to the asymptotic 

equivalence of  and .

Remark 3: Monotonicity respecting may be restored for a general original estimator 

without much additional difficulty. Approximation by a step function is one approach. 

Alternatively, the proposal may be adapted to include all points in  as candidates in the 

nearest monotonicity-respecting neighbor identification. When the original is actually a 

cadlag step function, the adaptation is not the same as the proposal, however, and our 

proposed estimator tends to be more smooth.

Remark 4: The proposal shares one ingredient, linear interpolation, with the approach of 

Neocleous and Portnoy (2008). However, an important distinction is that ours is adaptive so 

as to guarantee monotonicity respecting in finite sample. Moreover, their results are specific 
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to quantile regression and implicitly require existence of the second derivative of β(·). 

Finally, our gap between knots, as given by (6), is tighter than their grid mesh in order.

3. Simulations

Simulations were conducted to investigate the performance of our proposal under practical 

sample size with various dynamic regressions. Overall precision was assessed using 

maximum absolute error and root mean integrated squared error; for example, in the case of 

estimator  over interval [c1, c2], these measures are given by

respectively.

3·1 Quantile regression models

The first model contained an intercept and two non-constant covariates. The response Y 
followed an extreme value distribution conditionally. The two covariates were independent 

and identically distributed as uniform between 0 and 1. Under formulation (1), Dx(t) was the 

conditional t-th quantile of Y and β(·) consisted of an intercept and two slopes:

Cadlag version of the Koenker–Bassett estimator was taken as the original, and its standard 

error was obtained from the multiplier bootstrap of size 200 as in Huang (2010). With the 

proposed adaptive interpolation method, we considered the covariate space  or its empirical 

counterpart . So far as τ is concerned, it might not take 0 or 1 since β(·) was not even 

bounded at the extremes. Instead, any value in the middle would be viable. A natural choice 

was the left breakpoint of the original estimator closest to 0.5, denoted by τ ≏ 0.5, and we 

also considered τ ≏ 0.8. Meanwhile, two additional estimators were also studied, each 

involving a single component of the two in the adaptive interpolation method. One was the 

linearly interpolated original estimator, and the other was the stairwise monotonicity-

respecting estimator that jumps only at the points in  as obtained with  and τ ≏ 0.5. 

Sample sizes of 200 and 400 were studied.

Table 1 reports the results on the regression coefficient estimators from 1000 replications. 

Not surprisingly, the interpolated original estimator behaved similarly to the original one; 

asymptotically the interpolation is negligible since the adjacent points in  are sufficiently 

close to each other, as given by (5). However, the stairwise monotonicity-respecting 

estimator showed notable bias, highlighting the role of interpolation in the proposed adaptive 

interpolation method. Among the adaptive interpolation estimators, empirical  versus 

theoretical  and τ ≏ 0.5 versus τ ≏ 0.8 made little difference. They all had considerably 

smaller maximum absolute error on average than the original estimator, although the 

magnitude was more modest in terms of root mean integrated squared error; these 

improvements were larger with smaller sample size. Meanwhile, they had roughly 10% as 
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many knots on average as the breakpoints of the original estimator; the average numbers of 

breakpoints were 257 and 517 for the original estimator for sample sizes 200 and 400, 

respectively. At given probability indices, the proposed adaptive interpolation estimators had 

smaller standard deviation than the original estimator, especially in the circumstance of 

smaller sample size, but behaved similarly in bias and coverage of Wald confidence interval.

We also investigated estimated conditional quantile functions. The proposed adaptive 

interpolation method with  yields a monotone estimated conditional quantile function 

for a given covariate x. Meanwhile, a curve monotonization method may also be used to 

monotonize . Such methods include the adaptive interpolation with  and the 

rearrangement of Chernozhukov et al. (2009, 2010). From the same simulations as for Table 

1, Table 2 show the estimated conditional quantile functions corresponding to non-constant 

covariate values of (1, 0)⊤, (0, 1)⊤, and (1, 1)⊤, three out of the four vertices of ; the other 

vertex takes (0, 0)⊤ and the conditional quantile function is the intercept. Note that the lack 

of monotonicity with the original estimator  might be more serious when x is farther 

away from the covariate sample average; see Section 1. Overall, all these different estimated 

conditional quantile functions had comparable performance at given probability indices. 

This is expected since they are all first-order asymptotically equivalent. Nevertheless, the 

adaptive interpolation estimator with  typically had better average maximum absolute 

error and average root mean integrated squared error, as well as far fewer knots on average. 

This suggests that the stronger constraint as imposed helps improve finite-sample estimation 

efficiency.

To evaluate the sensitivity to covariate dimension, seven additional covariates were 

incorporated to the previous model. All these non-constant covariates were independent and 

identically distributed as uniform between 0 and 1, and the seven additional coefficients 

were set to 0 for model comparability. Table 3 shows the simulation results of the original 

Koenker–Bassett estimator versus the proposed adaptive interpolation estimator, using 

empirical  and τ ≏ 0.5, with sample size of 400 and from 1000 replications. In comparison 

with Table 1, b the most notable change in the performance of the proposed estimator was 

the reduced average number of knots relative to that of breakpoints of the original estimator; 

the average numbers of breakpoints for the proposed and original were 8.4 and 831, 

respectively. This reduction was partly attributable to the stronger monotonicity-respecting 

constraint associated with the increase of covariate dimension. Other summary statistics 

remained largely comparable, and the performance of the proposed method was satisfactory.

3·2 Additive hazards model with simplex covariate space

A curve monotonization method may be used to attain monotonicity-respecting regression 

when the covariate space has a simplex convex hull with the same number of affinely 

independent vertices as the coefficient dimension. In this circumstance, the curves of Dx(·) 

corresponding to those vertices have a one-to-one linear mapping with the regression 

coefficient β(·). Accordingly, once these estimated curves are monotonized, they uniquely 

determine a monotonicity-respecting estimator of β(·). This simplex condition is 

automatically satisfied in a model with an intercept and a single non-constant covariate. We 

simulated such an additive hazards model and compared so adapted monotonicity-respecting 
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regression methods with our proposal. Note that the simplex condition, of course, is 

restrictive in general; for example, it is not satisfied by the covariate spaces of the foregoing 

quantile regression models.

For the additive hazards model, Dx(t) in (1) was the conditional cumulative hazard function 

and

The covariate followed the uniform distribution between 0 and 1. Response Y was subject to 

right censoring, with the censoring time being uniformly distributed between 0 and 8 and 

independent of Y and the covariate. The response and censoring time were not directly 

observed but only through their minimum and the censoring indicator. The censoring rate 

was approximately 24.5%. The generalized Nelson–Aalen estimator was used as the 

original. Four methods were investigated to restore monotonicity respecting with respect to 

the empirical covariate space . The first was the adaptive interpolation method taking 

, and the others were adapted from three curve monotonization procedures: the 

adaptive interpolation method taking , i.e., the singleton of a given covariate, the 

Lin–Ying method, and the rearrangement method. For the adaptive interpolation in both 

methods, the starting point τ = 0 was a natural choice for this model and it also guaranteed 

respecting for nonnegative cumulative hazard. The adapted Lin–Ying method ensured this 

additional property as well, but the adapted rearrangement might not. The martingale-based 

standard error was adopted for the original estimator, and also used for inference with all the 

monotonicity-respecting estimators.

Table 4 reports the simulation results with sample size 400 from 1000 replications. On 

average, the proposed adaptive interpolation estimator with  had the smallest 

maximum absolute error and root mean integrated squared error, and far fewer knots than 

breakpoints of other estimators. Its performance was otherwise similar to that of the original, 

the adaptive interpolation with , and adapted Lin–Ying estimators. The adapted 

rearrangement estimator, however, performed poorly, with serious bias, larger standard 

deviation, and confidence interval under-coverage particularly at small t. Apparently, right 

tail instability in the original estimator had a substantial impact on the rearrangement 

method; see the discussion in Section 2. This was verified by the improved performance of a 

limited rearrangement where the original estimator beyond t = 5 was curtailed. As a note, t = 

1, 2, 3, 4, 5 correspond to the 29, 58, 79, 91, 97-th percentiles, respectively, of the marginal 

Y distribution.

3·3 Remark on computation

All these numerical studies and others exhibited high computational efficiency of the 

proposed adaptive interpolation method, despite that our implementation was seemingly 

primitive. Particularly in the case that the empirical covariate space  was adopted, each and 

every observation in a sample was assessed for the purpose of identifying nearest 

monotonicity-respecting neighbors as in (2) and (3). Nevertheless, the computation time was 
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only a small fraction of that for the original estimator. Taking quantile regression as an 

example, the adaptive interpolation method took only about 3% of the computation time for 

point estimation of the Koenker–Bassett estimator over a wide range of sample size and 

covariate dimension; the efficient algorithm of Huang (2010) was used for the latter. This 

provided little impetus for an obvious and more sophisticated implementation that takes the 

vertex set of the empirical  instead in the nearest neighbor identification. The vertex set 

size could be much smaller than the sample size when the covariate dimension is small, say, 

2 or 3. However, the difference reduces fast with a higher covariate dimension. Meanwhile, 

the cost of computing the vertex set escalates tremendously. Therefore, such an 

implementation may not always fare well and we have not pursued it further beyond the 

initial exploration.

4. Illustration with a clinical study

Huang (2010) analyzed the Mayo primary biliary cirrhosis study (Fleming and Harrington 

1991, Appendix D) using his censored quantile regression procedure. The data consisted of 

416 primary biliary cirrhosis patients, with a median follow-up time of 4.74 years and a 

censoring rate of 61.5%. The survival time, on the logarithmic scale, was regressed over five 

covariates: age, edema, log(bilirubin), log(albumin), and log(prothrombin time). We applied 

our proposal to obtain monotonicity-respecting regression.

With censored quantile regression, choice of the starting point τ is not obvious. Typically, 

β(t) becomes non-identifiable as t approaches 1 but the identifiability upper bound is 

unknown. Huang (2013) suggested an estimate that is less than the identifiability bound with 

probability tending to 1, yet with its limit reasonably close to the bound nevertheless. For 

this data set, we obtained such an identifiability bound surrogate, 0.828, corresponding to 

Huang (2013, Equation 12) with κ = 0.05dim(X); dim(X) is the dimension of covariate vector 

X including the unity element. Our starting point τ was taken to be the left breakpoint of the 

original estimator closest to half of the identifiability bound surrogate. The monotonicity 

respecting was restored with respect to the empirical covariate space .

Figure 2 displays both the original estimate of Huang (2010) and our proposed adaptive 

interpolation estimate for the regression coefficients. The former is fairly rugged, with 267 

breakpoints, a large part of which results presumably from random noise. In contrast, the 

latter is much more smooth, and has only 9 knots with  and  being 0.0397 and 

0.856, respectively. Nevertheless, the latter tracks the former quite well, except for the tails 

as expected. Thus, the monotonicity-respecting estimation might help prevent an over-

interpretation of the dynamic effects. Figure 3 shows that estimated conditional quantile 

functions have their monotonicity restored by the proposed method.

5. Discussion

The proposed method can be applied more generally. Additional pertinent models include 

those with a mixture of constant and varying effects (e.g., Qian and Peng 2010) and for 

recurrent events (Fine et al. 2004; Huang and Peng 2009). The proposal may also 

accommodate time-dependent covariates in, e.g., the additive hazards model, provided that 
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the covariate space across  remains the same. In fact, it suffices to consider time-

independent covariates only in the monotonicity respecting induction, since monotonicity of 

the estimated Dx(·) corresponding to any time-dependent covariate process then would also 

be guaranteed.

Alternative definition for the nearest monotonicity-respecting neighbor was explored. A 

more stringent left neighbor to starting point  is given by

and the right counterpart can be accordingly defined. As such, the monotonicity respecting is 

also required with respect to the current point and every point beyond the neighbor. Fewer 

knots would thus be involved in the interpolation. Despite that the asymptotic results remain 

largely the same, finite-sample performance can be inferior since the estimator might 

become sensitive to tail behavior of the original estimator; see related discussion in Section 

2.

As a small price to pay, our monotonicity-respecting estimator is not invariant to a 

monotonically increasing transformation of the index scale in the dynamic regression model 

(1). By the same token, the interpolation of our proposal may be generalized since the linear 

interpolation on a nonlinearly transformed index scale is no longer linear on the original 

scale. To be slightly more general, the interpolated value given by (4) at t between adjacent 

points τl and τr can be extended to

for a given monotonically increasing function  specific to the interval [τl, τr]. If 

 is differentiable and its derivative is bounded away from both 0 and ∞ uniformly for 

all τl and τr, then the resulting estimator has the same asymptotic equivalence result as 

given by Theorem 1. This generalization offers the possibility to further subject a 

monotonicity-respecting estimator to, e.g., certain smoothness, which merits further 

investigation.

Throughout, we have focused on the linear dynamic regression model (1). Its restoration of 

monotonicity respecting is distinct from that of a nonparametric dynamic regression model, 

which imposes little structure on the covariate effects. For the latter, it is a matter of curve 

monotonization only, for estimated Dx(·) with given x. Dette and Volgushev (2008) and Qu 

and Yoon (2015), among others, recently developed monotone estimation for nonparametric 

quantile regression. These methods share similar ideas with Chernozhukov et al. (2009, 

2010) and Neocleous and Portnoy (2008) to exploit rearrangement and interpolation for 

monotonization. Our proposed adaptive interpolation as a curve monotonization procedure 

might also be applicable, and in-depth analytical and numerical studies are warranted.
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Appendix: Proofs of Lemma 1 and Theorem 1

We first establish a result on  that will be used repeatedly in the proofs. Write ϕ(·) as the 

limit of , on [a, b]. Denote the first elements of ϕ(·), , and β(·) by ϕ(1)

(·), , and β(1)(·), respectively. Since  converges weakly to the 

tight Gaussian process ϕ(1)(·) by Condition 1, it is implied that, for every ε > 0,

where Pr* denotes outer probability and ρ(s, t) = [var{ϕ(1)(s) − ϕ(1)(t)}]1/2 (Kosorok 2008, 

Theorem 2.1). Meanwhile, the covariance function of ϕ(1)(·) is continuous by Condition 1, 

and hence uniformly continuous by the Heine–Cantor theorem. Therefore, for any δ > 0, 

there exists η > 0 such that |s − t| < η implies ρ(s, t) < δ for all s, t ∈ [a, b]. Consequently, 

ρ(s, t) in the above equation can be replaced with |s − t|. Furthermore, the same result applies 

to each and every other element of . Thus, for every ε > 0,

(A.1)

In words,  is asymptotically uniformly equicontinuous in probability.

Proof of Lemma 1

Write , where c > 0 by Condition 3. Then, for any  and 1 < j 
≤ J,

by Cauchy–Schwarz inequality and Condition 2. Meanwhile,

(A.2)
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by Condition 1. Therefore,

In light of (A.1), the above result implies that the right-hand side of (A.2) is actually op(n
−1/2). Accordingly, the refinement (5) is obtained.

For any  and any s, t ∈ [a, b] such that t − s = n−1/2,

From (A.1),

Therefore, with probability tending to 1,

and subsequently

under Condition 4. Thus, equation (6) is obtained.

Proof of Theorem 1

By definition (4), for t ∈ [τl, τr],
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Lemma 1 implies that, with probability tending to 1, each and every point in [a + ι, b − ι] is 

within two adjacent points in . Given bound (6) on the gap, result (A.1) implies 

that the supremum over t ∈ [a + ι, b − ι] of the first line on the right-hand side above is op(n
−1/2). Moreover, by Taylor expansion, the second line above is o(τr − τl). Combining them 

yields (7).

If the starting point τ is equal to a or b, each and every point in [a, b − ι] or [a + ι, b], 

respectively, then lies within adjacent points in  with probability tending to 1. 

Thus, the asymptotic equivalence of  and  holds on the extended interval.
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Figure 1. 
An illustration of the proposed adaptive interpolation method in the case that  is a 

singleton, {x}. The light line is the original . The dark line is the adaptive interpolation 

estimate, where each arrow points to a nearest monotonicity-respecting neighbor.
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Figure 2. 
Estimated regression coefficients from the Mayo primary biliary cirrhosis study. The light 

lines are the original regression coefficient estimate, , with their pointwise Wald 95% 

confidence intervals in shaded areas, from censored quantile regression (Huang 2010). The 

dark lines correspond to the proposed adaptive interpolation estimate . Portions of these 

estimates beyond the identifiability bound surrogate, 0.828, are denoted with dashed lines.
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Figure 3. 
Estimated conditional quantile functions from the Mayo primary biliary cirrhosis study. The 

original estimates, in light, and those from the adaptive interpolation method, in dark, are 

shown for 12 covariate values as chosen from the 102 vertices of . Portions of these 

estimators beyond the identifiability bound surrogate, 0.828, are denoted with dashed lines.
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