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Abstract

Dynamic regression models, including the quantile regression model and Aalen’s additive hazards
model, are widely adopted to investigate evolving covariate effects. Yet lack of monotonicity
respecting with standard estimation procedures remains an outstanding issue. Advances have
recently been made, but none provides a complete resolution. In this article, we propose a novel
adaptive interpolation method to restore monotonicity respecting, by successively identifying and
then interpolating nearest monotonicity-respecting points of an original estimator. Under mild
regularity conditions, the resulting regression coefficient estimator is shown to be asymptotically
equivalent to the original. Our numerical studies have demonstrated that the proposed estimator is
much more smooth and may have better finite-sample efficiency than the original as well as, when
available as only in special cases, other competing monotonicity-respecting estimators. Illustration
with a clinical study is provided.
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1. Introduction

Quantile regression (Koenker and Bassett 1978) models and estimates potentially dynamic
covariate effects on quantiles. As popular as it has become, lack of monotonicity respecting
remains an outstanding issue (e.g., He 1997). For example, an estimated 90th percentile may
actually exceed its 95th counterpart. Although it may not have received as much attention
elsewhere, this issue is general with linear dynamic regression models that relate a response
variable Y with covariate vector X through

Dy(t)=x"B(t) (teT,x €X). (1)
Above, Dy() is a functional that has a one-to-one mapping with the distribution function of

Ygiven X =X, B(-) is a regression coefficient that quantifies the dynamic covariate effects, T
is an interval index set on the real line, and X is a covariate space. In the case of quantile
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regression, Dy(:) is the quantile function, possibly upon a transformation. One sub-class, due
to Peng and Huang (2007), takes a transformation of the survival function as 2y(-); the
additive hazards model (Aalen 1980) and the additive complementary log-log survival model
(Peng and Huang 2007) are special cases. With all these models, Dy () is a monotone
function of t € T for all x € X. However, a standard regression procedure, with coefficient

estimator B(.), may not respect the monotonicity in the sense that f)x(t):xTB(t) is not
monotone over ¢t € T at least for some x € X. Without loss of generality, monotonicity is
taken to be monotonically increasing throughout.

To elaborate, consider the typical circumstance that in f, .x " {8(t) — B(s)} >0 for any

given s < tand B(.) is uniformly consistent for B(-). Then, with respect to discrete points in T
and in large sample, lack of monotonicity respecting can be lesser of an issue. Between a

fixed point and any other one outside a fixed neighborhood, 3(.) is monotonicity-respecting
with respect to them with probability tending to 1 as sample size nincreases. So is for any

finite set of fixed points. Nevertheless, XTB(t) may not be monotone over all ¢ € T for most
x € Xeven in large sample. With standard quantile regression of Koenker and Bassett

(1978), D,(-) is monotone when x is the covariate sample average and by continuity in a
neighborhood thereof. Neocleous and Portnoy (2008) argued that the neighborhood,
however, is quite small and generally tends to zero in size as 77 increases. This might also

explain the roughness of 3(.) as typically observed.

There are several notable recent developments to tackle this issue with quantile regression.
Neocleous and Portnoy (2008) suggested to linearly interpolate the points of an imposed
grid, and showed that the resulting estimator is asymptotically monotonicity-respecting and
equivalent to the original Koenker—Bassett estimator if the mesh approaches 0 at an
appropriate rate. However, monotonicity respecting is not guaranteed in finite sample. Wu
and Liu (2009) and Bondell et al. (2010) investigated a somewhat different problem to target
the estimation at discrete points only. Moreover, their methods may not adapt easily for other
dynamic regression procedures.

As a related problem, curve monotonization has a much longer history in the literature.
Many well-known methods, including isotonic regression (e.g., Barlow et al. 1972;
Mammen 1991) and monotone regression splines (e.g., Ramsay 1988), were mostly
developed for nonparametric regression. Even though they might be adapted, their statistical
properties are largely unknown in our context (e.g., Chernozhukov et al. 2010), where the

curve of concern D, (¢) is dependent across ¢ € T. Only a few are more relevant. For a
baseline cumulative hazard function, Lin and Ying (1994) suggested to monotonize their
original estimator by maximizing over the range below, and argued that the asymptotic
properties are preserved. Recently, Chernozhukov et al. (2009, 2010) proposed and
investigated the rearrangement method to monotonize an estimated curve. The rearranged
curve is closer to the estimand in common metrics, and is asymptotically equivalent to the
original under regularity conditions. Clearly, a curve monotonization method may be used to

monotonize a fitted curve in a dynamic regression, i.e., f)x(t) for a given X, or curves.
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However, these monotonized curves typically no longer respect the linearity in model (1).
Thus, they may not correspond to a monotonicity-respecting regression coefficient estimator,
which is of primary interest as a direct and meaningful measure of covariate effect. If the
covariate space is of a special type, we later devise a procedure for monotonicity-respecting
regression using a generic curve monotonization method. Nevertheless, this is not a general
resolution.

In this article, we propose a novel adaptive interpolation method for monotonicity-respecting
estimation of B(:) with a general covariate space X. Starting from a standard estimator, the
approach restores monotonicity respecting by construction. This general method applies
across various dynamic regressions. As a byproduct, it also reduces to a new curve
monotonization method. Section 2 presents the proposed method along with an asymptotic
study. Simulations are reported in Section 3, and an illustration given in Section 4. Final
remarks are provided in Section 5. Technical details are deferred to the Appendix.

2. The adaptive interpolation method

Standard dynamic regression procedures typically yield estimators that are cadlag step
functions, such as cadlag version of the Koenker—Bassett estimator (Huang 2010, Section
3.4) for quantile regression, the estimator of Huang (2010) of censored quantile regression,
the generalized Nelson—Aalen estimator under the additive hazards model, and the estimator
of Peng and Huang (2007) under their dynamic survival regression models. These estimators
are natural, being invariant to a monotonically increasing transformation of the index scale.

We shall thus focus on such an original estimator j3(.); see related discussion later in Remark
3.

For generality, the monotonicity respecting will be restored with respect to an arbitrary
covariate sub-space, X C X. As such, the proposal also accommodates the usual practical
situation with unknown X, where a natural replacement is the convex hull of observed
covariate values, or the empirical covariate space . Moreover, the proposal reduces to a
curve monotonization method when X is singleton. Thus, X can be random, and the linear
space spanned by . may have a lower dimension than that by X.

2:1 The proposed estimator

Without loss of generality, suppose that the interval set T is closed; a boundary point can
always be included whereby a cadlag function at the boundary point may be set as an
appropriate limit. Denote the interior and boundary of a set by circle superscript and g,
respectively. Write

D={t e T:B(t-) # B(t) } U AT,

which contains all the breakpoints of B(.) along with the boundary points of T. From a
starting point 7 € D,
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max |t € Dit<r, sup {x B(t) —x'B(r)} < 0],

x€Xg (2)

is the left nearest monotonicity-respecting neighbor, in the sense that B(.) respects the
monotonicity at these two points. Recursively each identified point then has its own left
nearest monotonicity-respecting neighbor determined, until such a neighbor no longer exists.
In the other direction, right neighbors can be similarly obtained; the right nearest
monotonicity-respecting neighbor to zis

min |t € Dit>7, inf {xB(t) —x ' B(r)} > 0] .
xeXg (3)

Denote the collection of all these points, including the starting one z, by M. Note that X
may be replaced with the vertex set of its convex hull in these neighbor definitions. Also,
such nearest monotonicity-respecting neighbors are not necessarily mutual: That point A is
the left one to point B does not imply that Bis the right one to A.

Interpolating B(.) linearly between adjacent points in M then yields a monotonicity-

respecting estimator ﬁ(.). for any #within two adjacent points in M, say z; < z,

Moreover, set 3(t)=p(min M) for t< min M and B(¢)=8(max M) for t>max M. Unlike

B(-), B(-) is a piecewise-linear continuous function.

The proposed adaptive interpolation method is invariant to linear transformation of the
covariates in X . In the case that X _ is a singleton, say {x}, the dynamic regression model
(1) therefore becomes irrelevant and the proposal reduces to a curve monotonization

procedure, for Dx(t), just like Lin and Ying (1994) and Chernozhukov et al. (2009, 2010).
Figure 1 illustrates the procedure in this special case. As an appealing characteristic, the
monotonicity respecting is induced locally. For the large part, the proposed estimator is thus
insensitive to potential tail instability of the original estimator so long as the starting point ¢
is positioned away from such a tail or tails. In contrast, the Lin—Ying and rearranged
estimators are subject to influence by one tail and both tails, respectively. The proposed
estimator has no more knots than breakpoints of the original estimator, and is always more
smooth. However, unlike the rearranged estimator, the adaptive interpolation estimator is not
necessarily closer to the estimand than the original. Nevertheless, it might be so on average
as suggested by our numerical studies shown later.
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This proposal requires a choice of the starting point, . Our asymptotic analysis and
numerical studies will later show that a wide range of choices would make little difference in
the resulting estimator. Nevertheless, a starting point at which the original estimator is most
reliable seems natural; such a point depends on the specific regression model under
consideration.

2:2 An asymptotic analysis

Mild regularity conditions are imposed for this purpose.

Condition 1—(Original estimator) B(.) is consistent for B(-) uniformly on some interval

[a,b] € T, Furthermore, 71/1/2{[3(.) — B(-)} on [a 4] converges weakly to a tight mean-zero
Gaussian process with a continuous covariance function.

Condition 2—(Covariates) X is bounded.

Condition 3—(Estimand) The derivative B (9 exists for all £€ [a, 4], and
infrexicanX B (£)>0strictly.

Condition 4—(Starting point) zis in [&, 4] with probability tending to 1.

Uniform consistency and asymptotic normality as in Condition 1 hold in general for
standard dynamic regression estimators. See Koenker (2005) for quantile regression, Peng
and Huang (2008) and Huang (2010) for censored quantile regression, McKeague (1988) for
the additive hazards model, and Peng and Huang (2007) for their dynamic survival
regression models, among others.

We first characterize the distance between adjacent points in D and M, within interval [&, 4].
Write the points in (0 N [a,0]) U{a,b} as 4 =+ < -+ < v;=hand those in
(MN[a,b]) U{a,blasa=1 << i =h.

Lemma 1: Under Conditions 1, 2, and 3,

: S -1/2
ax (vj = vj-1)=op(n”"%). )

With Condition 4 in addition,

B _ —1/2
1I<I}faSXK(Tk Tr—1)=0p(n" /). ©)

This result paves the way for establishing the statistical properties of B(.). Denote the LP
norm, p =1, by Il - Il

Theorem 1: Suppose that Conditions 1, 2, 3, and 4 hold. Then,
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sup ||B(t) = B(t)||2=0p(n~"/?)
telatt,b—1] @)

for any small > 0. If z= aor == b, the asymptotic equivalence of 3(.)and B(.) as above
holds over an extended interval [a, 6— 2] or [a+ 1, 0], respectively.

Since 2 can be made arbitrarily small, 3(.) is asymptotically equivalent to B(.) over
essentially the same interval where the latter is consistent and asymptotically normal.

Accordingly, for inference with the monotonicity-respecting ﬁ(.), both interval estimation

and hypothesis testing using the original B(.), based on either asymptotic distribution theory
or re-sampling methods, can be easily adapted. Specifically, the same standard error may be

used for 3(-), and a pointwise confidence interval or simultaneous confidence band with 3(.)
can be obtained by re-centering the interval or band with 3(.) around j(.). Furthermore, a

test statistic with 3(.) in place of 3(.) would typically remain asymptotically equivalent. This
inference strategy was used in the numerical studies presented later.

As a result of selecting monotonicity-respecting points, the maximum distance between
adjacent points increases from o,(/71/2) in D to Oy(7Y/?) in M. if a step function instead is
used to connect the points in M, the resulting monotonicity-respecting estimator then has a
bias of Op(n‘l’z), which is not sufficient for an asymptotic equivalence result like (7). The
linear interpolation in the proposal ensures a negligible bias of op(n‘llz).

Remark 1: A restricted parameter space is typically associated with improved estimation
efficiency. It is not so for the monotonicity-respecting estimation in terms of first-order
asymptotic efficiency, although finite-sample improvement might still be possible.

Remark 2: Although §() is introduced through the dynamic regression model (1), the

model is nonessential whereby () can be interpreted merely as the limit of B(.). However,
the strict monotonicity of x T 5(#) over tfor all x, given by Condition 3, is critical, so as to
bound the distance between adjacent points in M and in turn give rise to the asymptotic

equivalence of 3(-)and 3(.).

Remark 3: Monotonicity respecting may be restored for a general original estimator
without much additional difficulty. Approximation by a step function is one approach.
Alternatively, the proposal may be adapted to include all points in T as candidates in the
nearest monotonicity-respecting neighbor identification. When the original is actually a
cadlag step function, the adaptation is not the same as the proposal, however, and our
proposed estimator tends to be more smooth.

Remark 4: The proposal shares one ingredient, linear interpolation, with the approach of

Neocleous and Portnoy (2008). However, an important distinction is that ours is adaptive so
as to guarantee monotonicity respecting in finite sample. Moreover, their results are specific
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to quantile regression and implicitly require existence of the second derivative of 5().
Finally, our gap between knots, as given by (6), is tighter than their grid mesh in order.

3. Simulations

3-1 Quantile

Simulations were conducted to investigate the performance of our proposal under practical
sample size with various dynamic regressions. Overall precision was assessed using
maximum absolute error and root mean integrated squared error; for example, in the case of

estimator B(.) over interval [¢1, ¢], these measures are given by

max [1B() — B0, {JIB(E) - B2t} ",

t€[c1,c2]

respectively.

regression models

The first model contained an intercept and two non-constant covariates. The response Y
followed an extreme value distribution conditionally. The two covariates were independent
and identically distributed as uniform between 0 and 1. Under formulation (1), Dy() was the
conditional #th quantile of Y'and g(-) consisted of an intercept and two slopes:

B(t)=[log{—log(1 —t)},1,#*] .

Cadlag version of the Koenker—Bassett estimator was taken as the original, and its standard
error was obtained from the multiplier bootstrap of size 200 as in Huang (2010). With the
proposed adaptive interpolation method, we considered the covariate space X or its empirical
counterpart . So far as zis concerned, it might not take 0 or 1 since B(-) was not even
bounded at the extremes. Instead, any value in the middle would be viable. A natural choice
was the left breakpoint of the original estimator closest to 0.5, denoted by == 0.5, and we
also considered == 0.8. Meanwhile, two additional estimators were also studied, each
involving a single component of the two in the adaptive interpolation method. One was the
linearly interpolated original estimator, and the other was the stairwise monotonicity-
respecting estimator that jumps only at the points in M as obtained with ¢ and z=0.5.
Sample sizes of 200 and 400 were studied.

Table 1 reports the results on the regression coefficient estimators from 1000 replications.
Not surprisingly, the interpolated original estimator behaved similarly to the original one;
asymptotically the interpolation is negligible since the adjacent points in D are sufficiently
close to each other, as given by (5). However, the stairwise monotonicity-respecting
estimator showed notable bias, highlighting the role of interpolation in the proposed adaptive
interpolation method. Among the adaptive interpolation estimators, empirical ; versus
theoretical X and == 0.5 versus == 0.8 made little difference. They all had considerably
smaller maximum absolute error on average than the original estimator, although the
magnitude was more modest in terms of root mean integrated squared error; these
improvements were larger with smaller sample size. Meanwhile, they had roughly 10% as
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many knots on average as the breakpoints of the original estimator; the average numbers of
breakpoints were 257 and 517 for the original estimator for sample sizes 200 and 400,
respectively. At given probability indices, the proposed adaptive interpolation estimators had
smaller standard deviation than the original estimator, especially in the circumstance of
smaller sample size, but behaved similarly in bias and coverage of Wald confidence interval.

We also investigated estimated conditional quantile functions. The proposed adaptive
interpolation method with X =X yields a monotone estimated conditional quantile function
for a given covariate x. Meanwhile, a curve monotonization method may also be used to

monotonize x”'3(.). Such methods include the adaptive interpolation with X .= {x} and the
rearrangement of Chernozhukov et al. (2009, 2010). From the same simulations as for Table
1, Table 2 show the estimated conditional quantile functions corresponding to non-constant
covariate values of (1, 0)T, (0, 1) T, and (1, 1) T, three out of the four vertices of X; the other
vertex takes (0, 0) T and the conditional quantile function is the intercept. Note that the lack

of monotonicity with the original estimator XTB(.) might be more serious when x is farther
away from the covariate sample average; see Section 1. Overall, all these different estimated
conditional quantile functions had comparable performance at given probability indices.
This is expected since they are all first-order asymptotically equivalent. Nevertheless, the
adaptive interpolation estimator with =X typically had better average maximum absolute
error and average root mean integrated squared error, as well as far fewer knots on average.
This suggests that the stronger constraint as imposed helps improve finite-sample estimation
efficiency.

To evaluate the sensitivity to covariate dimension, seven additional covariates were
incorporated to the previous model. All these non-constant covariates were independent and
identically distributed as uniform between 0 and 1, and the seven additional coefficients
were set to 0 for model comparability. Table 3 shows the simulation results of the original
Koenker—Bassett estimator versus the proposed adaptive interpolation estimator, using
empirical % and z = 0.5, with sample size of 400 and from 1000 replications. In comparison
with Table 1, b the most notable change in the performance of the proposed estimator was
the reduced average number of knots relative to that of breakpoints of the original estimator;
the average numbers of breakpoints for the proposed and original were 8.4 and 831,
respectively. This reduction was partly attributable to the stronger monotonicity-respecting
constraint associated with the increase of covariate dimension. Other summary statistics
remained largely comparable, and the performance of the proposed method was satisfactory.

hazards model with simplex covariate space

A curve monotonization method may be used to attain monotonicity-respecting regression
when the covariate space has a simplex convex hull with the same number of affinely
independent vertices as the coefficient dimension. In this circumstance, the curves of Dy(')
corresponding to those vertices have a one-to-one linear mapping with the regression
coefficient B(:). Accordingly, once these estimated curves are monotonized, they uniquely
determine a monotonicity-respecting estimator of B(-). This simplex condition is
automatically satisfied in a model with an intercept and a single non-constant covariate. We
simulated such an additive hazards model and compared so adapted monotonicity-respecting
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regression methods with our proposal. Note that the simplex condition, of course, is
restrictive in general; for example, it is not satisfied by the covariate spaces of the foregoing
quantile regression models.

For the additive hazards model, Dy(4 in (1) was the conditional cumulative hazard function
and

B(t)=(0.1¢%,0.5t) .

The covariate followed the uniform distribution between 0 and 1. Response Y was subject to
right censoring, with the censoring time being uniformly distributed between 0 and 8 and
independent of Y'and the covariate. The response and censoring time were not directly
observed but only through their minimum and the censoring indicator. The censoring rate
was approximately 24.5%. The generalized Nelson—Aalen estimator was used as the
original. Four methods were investigated to restore monotonicity respecting with respect to
the empirical covariate space . The first was the adaptive interpolation method taking

X=X, and the others were adapted from three curve monotonization procedures: the

adaptive interpolation method taking X = {x}, i.e., the singleton of a given covariate, the
Lin-Ying method, and the rearrangement method. For the adaptive interpolation in both
methods, the starting point z= 0 was a natural choice for this model and it also guaranteed
respecting for nonnegative cumulative hazard. The adapted Lin—Ying method ensured this
additional property as well, but the adapted rearrangement might not. The martingale-based
standard error was adopted for the original estimator, and also used for inference with all the
monotonicity-respecting estimators.

Table 4 reports the simulation results with sample size 400 from 1000 replications. On

average, the proposed adaptive interpolation estimator with x =3 had the smallest
maximum absolute error and root mean integrated squared error, and far fewer knots than
breakpoints of other estimators. Its performance was otherwise similar to that of the original,
the adaptive interpolation with X = {x}, and adapted Lin-Ying estimators. The adapted
rearrangement estimator, however, performed poorly, with serious bias, larger standard
deviation, and confidence interval under-coverage particularly at small £ Apparently, right
tail instability in the original estimator had a substantial impact on the rearrangement
method; see the discussion in Section 2. This was verified by the improved performance of a
limited rearrangement where the original estimator beyond #= 5 was curtailed. As a note, =
1, 2,3, 4,5 correspond to the 29, 58, 79, 91, 97-th percentiles, respectively, of the marginal
Y distribution.

3:3 Remark on computation

All these numerical studies and others exhibited high computational efficiency of the
proposed adaptive interpolation method, despite that our implementation was seemingly
primitive. Particularly in the case that the empirical covariate space  was adopted, each and
every observation in a sample was assessed for the purpose of identifying nearest
monotonicity-respecting neighbors as in (2) and (3). Nevertheless, the computation time was
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only a small fraction of that for the original estimator. Taking quantile regression as an
example, the adaptive interpolation method took only about 3% of the computation time for
point estimation of the Koenker—Bassett estimator over a wide range of sample size and
covariate dimension; the efficient algorithm of Huang (2010) was used for the latter. This
provided little impetus for an obvious and more sophisticated implementation that takes the
vertex set of the empirical  instead in the nearest neighbor identification. The vertex set
size could be much smaller than the sample size when the covariate dimension is small, say,
2 or 3. However, the difference reduces fast with a higher covariate dimension. Meanwhile,
the cost of computing the vertex set escalates tremendously. Therefore, such an
implementation may not always fare well and we have not pursued it further beyond the
initial exploration.

4. lllustration with a clinical study

Huang (2010) analyzed the Mayo primary biliary cirrhosis study (Fleming and Harrington
1991, Appendix D) using his censored quantile regression procedure. The data consisted of
416 primary biliary cirrhosis patients, with a median follow-up time of 4.74 years and a
censoring rate of 61.5%. The survival time, on the logarithmic scale, was regressed over five
covariates: age, edema, log(bilirubin), log(albumin), and log(prothrombin time). We applied
our proposal to obtain monotonicity-respecting regression.

With censored quantile regression, choice of the starting point zis not obvious. Typically,
B9 becomes non-identifiable as zapproaches 1 but the identifiability upper bound is
unknown. Huang (2013) suggested an estimate that is less than the identifiability bound with
probability tending to 1, yet with its limit reasonably close to the bound nevertheless. For
this data set, we obtained such an identifiability bound surrogate, 0.828, corresponding to
Huang (2013, Equation 12) with x = 0.059M(X); dim(X) is the dimension of covariate vector
X including the unity element. Our starting point z was taken to be the left breakpoint of the
original estimator closest to half of the identifiability bound surrogate. The monotonicity
respecting was restored with respect to the empirical covariate space <.

Figure 2 displays both the original estimate of Huang (2010) and our proposed adaptive
interpolation estimate for the regression coefficients. The former is fairly rugged, with 267
breakpoints, a large part of which results presumably from random noise. In contrast, the
latter is much more smooth, and has only 9 knots with min M and max M being 0.0397 and
0.856, respectively. Nevertheless, the latter tracks the former quite well, except for the tails
as expected. Thus, the monotonicity-respecting estimation might help prevent an over-
interpretation of the dynamic effects. Figure 3 shows that estimated conditional quantile
functions have their monotonicity restored by the proposed method.

5. Discussion

The proposed method can be applied more generally. Additional pertinent models include
those with a mixture of constant and varying effects (e.g., Qian and Peng 2010) and for
recurrent events (Fine et al. 2004; Huang and Peng 2009). The proposal may also
accommodate time-dependent covariates in, e.g., the additive hazards model, provided that
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the covariate space across ¢t € T remains the same. In fact, it suffices to consider time-
independent covariates only in the monatonicity respecting induction, since monotonicity of
the estimated Dy(:) corresponding to any time-dependent covariate process then would also
be guaranteed.

Alternative definition for the nearest monotonicity-respecting neighbor was explored. A
more stringent left neighbor to starting point 7 € D is given by

max |t € Dit<T,  sup {XTB(S) — XTB(T)} <0],
xeX,seD:s<t

and the right counterpart can be accordingly defined. As such, the monotonicity respecting is
also required with respect to the current point and every point beyond the neighbor. Fewer
knots would thus be involved in the interpolation. Despite that the asymptotic results remain
largely the same, finite-sample performance can be inferior since the estimator might
become sensitive to tail behavior of the original estimator; see related discussion in Section
2.

As a small price to pay, our monotonicity-respecting estimator is not invariant to a
monotonically increasing transformation of the index scale in the dynamic regression model
(1). By the same token, the interpolation of our proposal may be generalized since the linear
interpolation on a nonlinearly transformed index scale is no longer linear on the original
scale. To be slightly more general, the interpolated value given by (4) at ¢between adjacent
points z;and z,can be extended to

hThTr(TT) — th ,Tr (t)
hey 7. (7r) = By . (T2)

hThTr(t) — th',TT (Tl) p

S o gy o VA0S

for a given monotonically increasing function ., . (-) specific to the interval [z, z/]. If
h+, -, (-) is differentiable and its derivative is bounded away from both 0 and co uniformly for

all zyand z, then the resulting estimator has the same asymptotic equivalence result as B(.)
given by Theorem 1. This generalization offers the possibility to further subject a
monotonicity-respecting estimator to, e.g., certain smoothness, which merits further
investigation.

Throughout, we have focused on the linear dynamic regression model (1). Its restoration of
monotonicity respecting is distinct from that of a nonparametric dynamic regression model,
which imposes little structure on the covariate effects. For the latter, it is a matter of curve
monotonization only, for estimated Dy (:) with given x. Dette and Volgushev (2008) and Qu
and Yoon (2015), among others, recently developed monotone estimation for nonparametric
quantile regression. These methods share similar ideas with Chernozhukov et al. (2009,
2010) and Neocleous and Portnoy (2008) to exploit rearrangement and interpolation for
monotonization. Our proposed adaptive interpolation as a curve monotonization procedure
might also be applicable, and in-depth analytical and numerical studies are warranted.
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Appendix: Proofs of Lemma 1 and Theorem 1
We first establish a result on B(.) that will be used repeatedly in the proofs. Write ¢(-) as the
limit of ,'/2{B(-) — B(-)}, on [a, b]. Denote the first elements of ¢(-), B(-), and A() by ¢

), B<1)(.), and AY(.), respectively. Since nl/Q{B(l) () — B (.)} converges weakly to the
tight Gaussian process ¢)(-) by Condition 1, it is implied that, for every > 0,

zgfozzimsuppr*{ sup  nll? {B“)(s)ﬂ“)(s)}{ﬁ“)(t)ﬂ“><t>}\>s}o

n—00 stela,b):p(s,t)<d

where Pr* denotes outer probability and p(s, #) = [var{¢(1)(s) — g1(H}12 (Kosorok 2008,
Theorem 2.1). Meanwhile, the covariance function of ¢g(1)(-) is continuous by Condition 1,
and hence uniformly continuous by the Heine—Cantor theorem. Therefore, for any &> 0,
there exists 7> 0 such that [s— 4 < nimplies p(s, ) < &§for all s, t€ [4, b]. Consequently,
(s, 9 in the above equation can be replaced with |s— 4. Furthermore, the same result applies

to each and every other element of 3(.) — B(-). Thus, for every £> 0,

limlimsupPr* { sup 02| {B(s) —~ Bs)} — {B®) - Bt} |2>5} =0.

n—00 s,tela,b]:|s—t|<d

(A1)

Inwords, n'/2{3(-) — B(-)} is asymptotically uniformly equicontinuous in probability.
Proof of Lemma 1

. T
Write C:’”l/fxeKS telab X B (t), where ¢> 0 by Condition 3. Then, forany x € X and 1 </
s

c(vi—vi-1) < x {Bwj)=B(¥j-1)} < [x[2lB(vj)—=B(vj-1)[2=O(IB(v))—B(¥j-1)ll)
by Cauchy-Schwarz inequality and Condition 2. Meanwhile,

1<5<J 1<5j<J

max [|B(v;)=B(vj-1)lla=max  sup )H{E‘(S) —B(s)} — {B(t) = B!}y < 2f€8[upb]HB(t)*ﬂ(ﬂIIz:Op(n*l/Q)

ste[vj—1,v5

(A2)
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by Condition 1. Therefore,

121?SXJ(VJ' - Vj—l):Op(n_l/Z)-

In light of (A.1), the above result implies that the right-hand side of (A.2) is actually oy(n
-12) Accordingly, the refinement (5) is obtained.

Forany x € X_and any s, £€ [a, 4] such that - s= 717,

x {B(t)~B(s)}=x"{B(1)~B(s)}+x"[{B(t)-B(1)}—{B(5)-B(5)}] = en™ 2 —||z|l2| {B(s)~B(s)} ~{B(1)~B(1)}|2-

From (A.1),

sup 1/2”{8(8) —B(s)} — {B(t) — B(t)}|y=0p(n"1/?).

s,tela,b|t—s=n—

Therefore, with probability tending to 1,

min x{B(t) — B(s)}>0

x€Xg,s,t€[a,bl:it—s=n—1/2

and subsequently

L)< /2 .
e T T S T v = v

under Condition 4. Thus, equation (6) is obtained.

Proof of Theorem 1
By definition (4), for t€ [z, ],
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B(t) —B(1)
Tr—1t
= {B(m)
- B(n)}
—{B(t)
t—T A
- BN+ ——[{B()
Tr — T
- B(r)}
—{B(t)
—B(t)}]
T — 1
Ty — TZ'B(TI)
t—T1
+—B() — A1)
Lemma 1 implies that, with probability tending to 1, each and every pointin [a+ z, b — 1] is
within two adjacent points in M N [a,b]. Given bound (6) on the gap, result (A.1) implies
that the supremum over € [a+ 2, b — 1] of the first line on the right-hand side above is o7
-12) Moreover, by Taylor expansion, the second line above is o(z, - ). Combining them
yields (7).
If the starting point zis equal to aor b, each and every pointin[a, 6 — ] or [a+ 1, 4],
respectively, then lies within adjacent points in M N [a, b] with probability tending to 1.
Thus, the asymptotic equivalence of B(.) and B(.) holds on the extended interval.
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Figurel.
An illustration of the proposed adaptive interpolation method in the case that X _ is a

singleton, {x}. The light line is the original D, (¢). The dark line is the adaptive interpolation
estimate, where each arrow points to a nearest monotonicity-respecting neighbor.
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Figure2.
Estimated regression coefficients from the Mayo primary biliary cirrhosis study. The light

lines are the original regression coefficient estimate, 3(.), with their pointwise Wald 95%
confidence intervals in shaded areas, from censored quantile regression (Huang 2010). The

dark lines correspond to the proposed adaptive interpolation estimate B(.). Portions of these
estimates beyond the identifiability bound surrogate, 0.828, are denoted with dashed lines.
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Figure 3.
Estimated conditional quantile functions from the Mayo primary biliary cirrhosis study. The

original estimates, in light, and those from the adaptive interpolation method, in dark, are
shown for 12 covariate values as chosen from the 102 vertices of ;. Portions of these
estimators beyond the identifiability bound surrogate, 0.828, are denoted with dashed lines.
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