Skip to main content
. Author manuscript; available in PMC: 2018 Mar 30.
Published in final edited form as: J Am Stat Assoc. 2017 Mar 30;112(518):613–622. doi: 10.1080/01621459.2016.1149070

Table 1.

Regression coefficient estimation under a quantile regression model

t = 0.2 t = 0.5 t = 0.8

sample size: 200
Orig B −40 47 17 −27 28 9 −17 13 −3
SD 466 631 611 343 470 480 308 440 435
SE 485 659 657 347 491 493 314 448 451
CI 93.4 95.1 95.9 94.3 94.7 94.8 94.3 94.6 95.2
IO MAE 0.99 B −30 49 19 −22 31 11 −11 15 1
RMISE 1.00 SD 466 630 609 341 467 479 307 438 436
SW MAE 1.02 B −181 26 −2 −120 −5 −14 −62 −41 −63
RMISE 1.05 SD 516 668 653 353 480 482 314 337 439
AI-𝕏^
MAE 0.87 B −45 60 26 −26 32 12 7 −1 −12
RMISE 0.96 SD 440 598 578 339 464 478 299 422 421
BRK 0.11 CI 94.9 95.8 97.3 94.5 94.8 94.7 95.0 94.9 95.2
AI-𝕏
MAE 0.86 B −48 60 28 −26 32 12 13 −4 −20
RMISE 0.95 SD 438 593 573 339 464 478 298 422 416
BRK 0.10 CI 95.1 95.7 97.1 94.4 94.8 94.7 95.6 94.9 95.9
AI-𝕏^
MAE 0.87 B −46 61 26 −37 41 31 −14 15 0
τ ≏ 0.8 RMISE 0.96 SD 440 598 578 333 457 465 306 437 435
BRK 0.11 CI 94.9 95.8 97.3 95.3 94.7 95.2 94.8 95.0 94.8

sample size: 400
Orig B 2 8 −5 −4 8 7 −1 −1 −2
SD 330 429 446 241 338 320 215 314 304
SE 338 456 457 242 345 343 219 314 313
CI 94.2 95.0 94.2 92.9 94.5 96.1 94.2 93.9 94.1
IO MAE 0.99 B 8 8 −5 −1 9 7 2 1 −1
RMISE 1.00 SD 330 429 445 240 338 320 214 314 302
SW MAE 0.99 B −68 −7 −9 −51 −9 −3 −25 −30 −43
RMISE 1.03 SD 346 437 458 246 344 320 217 314 310
AI-𝕏^
MAE 0.90 B 1 12 0 −3 9 7 11 −6 −12
RMISE 0.98 SD 324 420 434 240 339 320 210 307 299
BRK 0.10 CI 94.8 95.1 94.4 92.8 94.5 96.0 94.3 94.7 95.0
AI-𝕏
MAE 0.90 B 1 14 −1 −3 9 7 12 −7 −13
RMISE 0.97 SD 322 419 432 240 339 319 210 307 298
BRK 0.10 CI 94.9 95.2 94.5 92.8 94.5 96.1 94.3 95.1 95.2
AI-𝕏^
MAE 0.91 B 1 12 0 −11 19 18 0 1 −1
τ ≏ 0.8 RMISE 0.97 SD 324 420 434 239 335 316 213 313 301
BRK 0.10 CI 94.8 95.1 94.4 93.3 94.7 96.0 94.2 93.6 94.6

Orig: the original estimator; IO: the interpolated original estimator; SW: the stairwise monotonicity-respecting estimator; AI-𝕏S: the proposed adaptive interpolation estimator with 𝕏S and, unless otherwise specified, τ ≏ 0.5.

MAE: maximum absolute error over [0.1, 0.9]; RMISE: root mean integrated squared error over [0.1, 0.9]; BRK: number of knots or breakpoints. All are average measures, reported as relative to the original estimator. B: Empirical bias (×1000); SD: Empirical standard deviation (×1000); SE: Average standard error (×1000); CI: Empirical coverage (%) of 95% Wald confidence interval.

Three columns under each t value correspond to the estimated intercept and two slopes.