Skip to main content
. Author manuscript; available in PMC: 2018 Mar 30.
Published in final edited form as: J Am Stat Assoc. 2017 Mar 30;112(518):613–622. doi: 10.1080/01621459.2016.1149070

Table 3.

Regression coefficient estimation under a quantile regression model with ten coefficients

t = 0.2 t = 0.5 t = 0.8

Orig B 25 1 −13 −8 8 −9 −15 −8 −18 −13 −8 −11
SD 620 442 450 448 493 344 347 330 460 307 310 312
SE 701 466 465 463 536 360 358 357 477 318 321 319
CI 96.8 96.6 96.2 95.3 96.2 95.0 95.6 96.4 95.2 94.3 94.6 95.6
AI-𝕏^
MAE 0.87 B −27 14 −9 −4 7 −9 −15 −8 4 −22 −21 −6
RMISE 0.95 SD 593 414 434 431 493 343 347 329 431 287 297 287
BRK 0.01 CI 97.8 97.1 96.4 95.9 96.2 95.2 95.5 96.3 96.1 96.1 95.9 96.6

Orig: the original estimator; AI-𝕏^: the proposed adaptive interpolation estimator with 𝕏^ and τ ≏ 0.5.

MAE: maximum absolute error over [0.1, 0.9]; RMISE: root mean integrated squared error over [0.1, 0.9]; BRK: number of knots or breakpoints. All are average measures, reported as relative to the original estimator. B: Empirical bias (×1000); SD: Empirical standard deviation (×1000); SE: Average standard error (×1000); CI: Empirical coverage (%) of 95% Wald confidence interval.

Under each t value are the first four estimated coefficients; the fourth is representative of the last seven.