Skip to main content
. Author manuscript; available in PMC: 2018 Mar 30.
Published in final edited form as: J Am Stat Assoc. 2017 Mar 30;112(518):613–622. doi: 10.1080/01621459.2016.1149070

Table 4.

Regression coefficient estimation under an additive hazards model

t = 1 t = 2 t = 3 t = 4

Orig B 1 −6 3 −13 5 −15 −12 −4
SD 52 119 104 232 187 444 354 863
SE 52 116 104 231 186 426 340 824
CI 93.8 94.2 95.0 94.2 95.4 94.8 94.0 94.9
AI-𝕏^
MAE 0.83 B 9 −19 11 −22 15 −20 1 36
RMISE 0.94 SD 48 112 101 224 179 417 326 772
BRK 0.31 CI 96.3 94.8 95.0 95.2 96.6 95.5 95.5 96.9
Adapted estimators from curve monotonization
AI-{x} MAE 0.92 B 10 −10 14 −14 27 −7 44 49
RMISE 0.99 SD 49 116 102 230 184 438 352 847
BRK 0.94 CI 96.2 94.7 95.2 94.8 96.5 94.8 95.2 95.5
LY MAE 0.92 B 9 −12 11 −17 19 −14 18 32
RMISE 0.97 SD 49 115 101 228 183 434 344 834
BRK 0.94 CI 96.3 94.8 95.5 94.8 96.3 95.0 94.8 95.9
RA MAE 5.75 B −29 −329 −5 −73 −16 −86 −64 −147
RMISE 4.05 SD 607 4819 109 356 197 479 349 799
BRK 1.96 CI 95.0 86.9 93.5 89.2 93.3 91.8 92.8 94.9
RA, limited MAE 0.87 B 2 −7 3 −14 2 −17 −25 −34
RMISE 0.96 SD 49 116 102 230 183 431 337 776
BRK 1.93 CI 95.5 94.5 95.4 94.4 95.7 95.4 94.9 96.3

Orig: the original estimator; AI-𝕏^: the proposed adaptive interpolation estimator with 𝕏^; AI-{x}: the adaptive interpolation method with 𝕏S taking the singleton of a given covariate; LY: the Lin–Ying method; RA: the rearrangement method; RA, limited: the rearrangement limited to interval [0, 5].

MAE: maximum absolute error over [0, 4]; RMISE: root mean integrated squared error over [0, 4]; BRK: number of knots or breakpoints. All are average measures, reported as relative to the original estimator. B: Empirical bias (×1000); SD: Empirical standard deviation (×1000); SE: Average standard error (×1000); CI: Empirical coverage (%) of 95% Wald confidence interval.

Two columns under each t value correspond to the estimated intercept and slope.