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Abstract

In causal inference, interference occurs when the treatment of one subject affects the outcome of 

other subjects. Interference can distort research conclusions about causal effects when not 

accounted for properly. In the absence of interference, inverse probability weighted (IPW) 

estimators are commonly used to estimate causal effects from observational data. Recently, IPW 

estimators have been extended to handle interference. Tchetgen Tchetgen and VanderWeele (2012) 

proposed IPW methods to estimate direct and indirect (or spillover) effects that allow for 

interference between individuals within groups. In this paper, we present inferference, an R 

package that computes these IPW causal effect estimates when interference may be present within 

groups. We illustrate use of the package with examples from political science and infectious 

disease.
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1. Introduction

Interference occurs when the treatment (or exposure) of one subject affects the outcome of 

other subjects (Cox 1958). Without accounting for interference, measuring only a 

treatment’s direct effect may be misleading. For example, a vaccine’s direct effect on an 

individual in a group with a large proportion of vaccinated individuals can be small. 

However, the protective, indirect effect from other group members’ vaccinations may be 

large. In this case the vaccine may be judged to be ineffective based on the direct effect 

despite possibly having great public health utility due to the indirect effect (Clemens et al. 
2011). Other areas where interference may be present include criminology (e.g., Sampson 

2010; Verbitsky-Savitz and Raudenbush 2012), developmental psychology (e.g., Duncan et 
al. 2005; Foster 2010), econometrics (e.g., Sobel 2006; Manski 2013), education (e.g., Hong 

and Raudenbush 2006; VanderWeele et al. 2013), imaging (e.g., Luo et al. 2012), political 

science (e.g., Sinclair et al. 2012; Bowers et al. 2013), social media and network analysis 
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(e.g., VanderWeele and An 2013; Toulis and Kao 2013; Eckles et al. 2014; Kramer et al. 
2014), sociology (e.g., Aronow and Samii 2013), and spatial analyses (e.g., Zigler et al. 
2012; Graham et al. 2013).

Inverse probability weighted (IPW) methods are often used to estimate causal effects when 

interference is absent (Rosenbaum 1987; Robins et al. 2000; Lunceford and Davidian 2004; 

Cole and Hernan 2008). Recent developments have extended IPW estimators to estimate 

causal effects when interference may be present in either randomized or observational 

studies. Tchetgen Tchetgen and VanderWeele (2012) proposed estimators for observational 

studies assuming partial interference (Sobel 2006), i.e., individuals can be partitioned into 

groups where there may be interference between individuals in the same group but not 

between individuals in different groups. Partial interference could be reasonable, for 

example, in study of bovine disease where physical separation of herds precludes pathogen 

transmission between herds. On the other hand, if birds or farm workers could spread the 

pathogen between herds, then partial interference may be questionable. The Tchetgen 

Tchetgen and VanderWeele (2012) IPW estimators require a model for the group-level 

propensity score (i.e., the probability of a group’s observed treatment allocation). The large 

sample properties of these estimators were derived by Perez-Heydrich et al. (2014).

To date, software for analysis of causal effects in the presence of interference is limited. 

Without interference, the R (R Core Team 2014) package ipw provides tools to compute IPW 

estimators (van der Wal and Geskus 2011). Existing interference-related R packages, 

including interferenceCI (Rigdon 2015) and blockTools (Moore 2015), were designed for 

analysis of randomized experiments. In this paper, we present the R package inferference 
which computes the Tchetgen Tchetgen and VanderWeele (2012) IPW estimators and the 

large sample variance estimators developed by Perez-Heydrich et al. (2014).

The outline for the remainder of this paper is as follows. The next section provides 

background on interference and an overview of the mathematical concepts and notation. 

Section 3 describes the package’s main features. Sections 4 and 5 demonstrate the software 

with examples from public health and political science. The example in Section 5 shows 

advanced features of the package. We discuss computational issues with IPW estimators 

when groups have large numbers of individuals in Section 6. We conclude with a brief 

discussion and future directions in Section 7.

2. Preliminaries

2.1. A brief history of interference

Much of causal inference assumes that the exposure of one individual does not affect the 

outcomes of other individuals, i.e., there is no interference between individuals. Rubin 

(1980) bundled no interference with the assumption that treatments for all units are 

comparable (no hidden forms of treatment) into the “Stable Unit Treatment Value 

Assumption” (SUTVA). Despite sporadic efforts, the research community gave little 

attention to this assumption until the early 2000s. One approach to relaxing the no 

interference assumption is to assume partial interference. Under this assumption, space, 
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time, and/or social network groupings preclude interference between individuals in different 

groups, but interference may occur within a group.

Sobel (2006), Hudgens and Halloran (2008), and Tchetgen Tchetgen and VanderWeele 

(2012) developed methods based on the assumption of partial interference to estimate causal 

effects in the presence of interference. When an experimenter randomizes units – by design 

– at the group and individual levels, Hudgens and Halloran (2008) defined estimators that, 

under certain assumptions, are unbiased for a treatment’s direct and indirect (or spillover) 

effects.

Observational studies complicate estimation of interference effects. Tchetgen Tchetgen and 

VanderWeele (2012) proposed IPW estimators of causal effects based on group-level 

propensity scores for non-randomized treatment allocation. They showed these estimators to 

be unbiased when the propensity score is known. Perez-Heydrich et al. (2014) derived the 

large sample properties of these estimators when the propensity scores are unknown but 

correctly modeled. They applied these results to draw inference about the direct and indirect 

effects of cholera vaccination in Matlab, Bangladesh.

2.2. Basic partial interference setup

Consider N individuals partitioned into m groups, each with ni individuals for i = 1, …, m. 

The triplet (Yij, Aij, Xij) represents the observed outcome, treatment, and baseline covariate 

vector, respectively, for individual j in group i. We let capitalized letters denote random 

variables, and lowercase letters (e.g., (yij, aij, xij)) denote observed or realized values. Let Xi 

and Ai be the matrix of baseline covariates and vector of treatment allocations for members 

of group i. Let Ai,−j = (Ai1, …, Aij−1, Aij+1, …, Aini) represent a group’s treatment allocation 

excluding the jth subject. Let Yij(aij, ai,−j) = Yij(ai) be the potential outcome for individual j 
in group i if, possibly contrary to fact, group i received ai. By causal consistency, Yij = 

Yij(Ai) (Pearl 2010). Let Yi be the vector of potential outcomes for group i. By assuming no 

interference between groups, an individual’s potential outcome may depend only on the 

treatment allocation of its group. The set (ni) contains all of group i’s possible treatment 

vectors. With a binary treatment, Aij ∈ {a1, a2}, this set has 2ni elements.

Estimands—Without interference, researchers often estimate an average treatment effect, 

which contrasts the average outcome for two treatment allocations: the entire population 

treated versus the entire population untreated. With interference, causal estimands may be 

defined in terms of the continuum of treatment allocation strategies between those extremes. 

In inferference, we consider Bernoulli-type allocation strategies proposed by Tchetgen 

Tchetgen and VanderWeele (2012), where individuals independently receive treatment with 

probability α. For this allocation strategy, the probability of a group’s treatment vector is 

denoted as  and, excluding the jth subject, 

. The analyst may compute the estimators 

described below over a range of α’s to explore hypothetical underlying treatment 

allocations. In their analysis of a cholera vaccine study, Perez-Heydrich et al. (2014) 
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examined strategies between α = 0.3 and α = 0.6 because 75% of the groups had observed 

vaccine coverages in that range.

Define an individual’s average potential outcome when assigned treatment a under strategy 

α by

In words, Ȳij(a; α) is a weighted average of individual j’s potential outcomes under possible 

treatment vectors of the other ni − 1 subjects in group i weighted by the probability of each 

treatment vector. Similarly, define the marginal individual average potential outcome by

Here, the weighted average of individual j’s potential outcomes is across all group treatment 

vectors in (ni).

A simple mean of individual average potential outcomes within a cluster defines group 

average potential outcomes. Then group-level estimands are averaged to make population-

level estimands. For example,  is the population-

level average outcome when individuals receive treatment a and their group adopts 

allocation strategy α. Likewise,  is the population-level 

average outcome when groups adopt allocation strategy α.

Contrasts of the population average potential outcomes define causal effects. Hudgens and 

Halloran (2008) describe four causal effects: direct, indirect, total, and overall (see also 

Tchetgen Tchetgen and VanderWeele 2012). The direct (or unit-level treatment) effect 

compares average potential outcomes within a single allocation strategy:

An indirect effect compares a treatment’s average potential outcomes under different 

allocation strategies:

For a binary treatment, there are two indirect effects for a fixed (α, α′) pair: one for a1 and 

one for a2. If interference is not present, then the indirect effect equals zero. The total effect 

accounts for both the direct and indirect effects:
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The overall effect contrasts the marginal average potential outcomes for two allocation 

strategies:

See Hudgens and Halloran (2008) and Tchetgen Tchetgen and VanderWeele (2012) for 

further discussion of these causal estimands.

2.3. IPW estimation

Tchetgen Tchetgen and VanderWeele (2012) proposed IPW estimators of the causal 

estimands defined above assuming partial interference. Their estimator weights an 

individual’s outcome by the inverse of the group-level propensity score, Pr(Ai|Xi), the 

probability of a group’s treatment allocation given the covariates of the group’s individuals. 

Tchetgen Tchetgen and VanderWeele (2012) showed the IPW estimators to be unbiased 

when the group-level propensities are known, under the following assumptions:

1. Conditional independence: Pr(Ai = ai|Xi, Yi) = Pr(Ai = ai|Xi)

2. Positivity: Pr(Ai = ai|Xi) > 0 ∀ai ∈ (ni)

The true propensity scores are not generally known in observational studies and must be 

estimated. Tchetgen Tchetgen and VanderWeele (2012) suggested estimating Pr(Ai|Xi) using 

a generalized mixed effects model. We denote these models as fAi|Xi(Ai|Xi; θx, θs), where θx 

represents fixed effects parameters and θs a group random effect parameter. Model 

parameters may be estimated by maximum likelihood methods, which we denote θ̂ = (θ̂x, 

θ̂s). For a binary treatment, a model for the group’s propensity score might be:

(1)

where hij(bi; θx) = Pr(Aij = 1|Xij, bi, θx) = logit−1(Xijθx + bi) and fb(·; θs) is the density of a 

Normal random variable with mean 0 and variance θs. This is the default group-level 

propensity score model in inferference; the examples below show how the user can modify 

the default group propensity score model. Validity of inferences drawn using the methods 

described below requires correct specification of the group propensity score model. 

Therefore, it is important in practice to conduct diagnostics to assess the fit of the model 

employed. For example, if (1) is assumed, then the Tchetgen Tchetgen and Coull (2006) 

diagnostic test can be used to assess whether the random effects are Normally distributed.

The IPW estimator for the group-level average potential outcomes is a straightforward 

weighted sum,

(2)
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as is the estimator for group-level marginal potential outcomes,

(3)

From (2) and (3), one constructs population-level average potential outcome and marginal 

population-level average potential outcome estimators by 

and . Estimators for direct, indirect, total, and overall effects 

simply contrast population-level estimators,

IPW variance estimation—Perez-Heydrich et al. (2014) derived asymptotic distributions 

of the IPW estimators using standard estimating equation theory. Briefly, the IPW estimators 

above are consistent and asymptotically Normal as the number of groups m tends to infinity. 

When the group-level propensity scores are known (as in the case of simulation or 

randomized studies), a large sample estimator of the variance of  is

Results for , and  are analogous. As explained below, when 

variance_estimation = ‘naive’ in the interference function, this formula is used 

to compute standard errors and Wald-type confidence intervals.

When the propensity scores are unknown and instead estimated using a parametric model, 

computing variance estimators is more complicated and involves derivatives of the group 

propensity with respect to each parameter and derivatives of the propensity model’s log 

likelihood. The supplementary materials in Perez-Heydrich et al. (2014) contain the 

mathematical details, and this method is available with the variance_estimation = 

‘robust’ option. The robust option computes consistent variance estimates which 
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account for the estimation of the weights, whereas the naive option computes variance 

estimates described in the preceding paragraph which ignore estimation of the weights and 

are conservative (i.e., tend to be too large).

3. Using inferference

3.1. User’s guide

To start, install the package from CRAN using install.packages(‘inferference’). 

The list below details the arguments for interference, the primary function in 

inferference. Special attention should be given to the propensity_integrand and 

formula arguments.

• formula: formula used to define the causal model. formula has a minimum of 

4 parts, separated by | and ~ in a specific structure: outcome | exposure ~ 

covariates | group. The order matters, and the pipes (|) split the data frame 

into corresponding pieces (Zeileis and Croissant 2010). The exposure ~ 

covariates piece is passed as a single formula to the chosen model_method 

(defined below) used to estimate or fix propensity parameters.

– The following includes a random effect for the group: outcome | 

exposure ~ covariates + (1|group) | group. In this 

instance, the group variable appears twice.

– If the study design includes a ‘participation’ variable (as in both 

examples below), this is easily added to the formula: outcome | 

exposure | participation ~ covariates | group.

• propensity_integrand: a function, which may be created by the user, used to 

compute the IP weights. This defaults to the function logit_integrand(), 

which calculates the product of inverse logits for individuals in a group: 

, where hij(bi) = logit−1(Xijθx + 

bi), bi is a group-level random effect, fb is a N(0, θs) density, and r is a known 

constant. In an observational study typically r = 1. The examples below include 

individual randomized experiments in which case r denotes the randomization 

probability among trial participants. logit_integrand() is the integrand of 

(1) where hij(bi) is scaled by a constant r term. If no random effect is included in 

the formula, logit_integrand() ignores the random effect. IP weights are 

computed by numerically integrating propensity_integrand over the 

random effect distribution using stats::integrate() to which arguments 

may be passed via … (see below). The default logit_integrand() also takes 

the following argument that can be passed via the … argument in 

interference():

– randomization: a scalar. This is the r in the formula just above. It 

defaults to 1 in the case that a participation vector is not included. 

The vaccine study example in Section 4 demonstrates use of this 

argument.
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• loglihood_integrand: a function, which may be created by the user, that 

defines the log likelihood of the propensity score model. This should generally 

be the same function as propensity_integrand, which is the default.

• allocations: a vector of values in [0, 1]. These are the α’s defined in Section 

2.2. Increasing the number of elements of the allocation vector increases 

computation time; however, a larger number of allocations will make plotted 

effect estimates smoother. A minimum of two allocations is required.

• data: the analysis data frame. This must include all the variables defined in the 

formula.

• model_method: the method used to estimate or set the propensity model 

parameters. Must be one of ‘glm’, ‘glmer’, or ‘oracle’. For a fixed effects 

only model use ‘glm’, or to include random effects use lme4’s ‘glmer’ (Bates 

et al. 2014). logit_integrand only supports a single random effect for the 

grouping variable, corresponding to bi. When the propensity parameters are 

known (as in simulations) or if estimating parameters for the propensity model 

outside of interference, use the ‘oracle’ option. See model_options for 

details on how to pass the oracle parameters. Defaults to ‘glmer’.

• model_options: a list of options passed to the function in model_method. 

Defaults to list(family = binomial(link = ‘logit’)). When 

model_method = ‘oracle’, the list must have two elements, 

fixed.effects and random.effects. If the model does not include random 

effects, set random.effects = NULL.

• causal_estimation_method: currently only supports and defaults to ‘ipw’.

• causal_estmation_options: a list with a single item 

variance_estimation, which is either ‘naive’ or ‘robust’. See Section 

2.3 for details. Defaults to ‘robust’.

• conf.level: level for confidence intervals. Defaults to 0.95.

• rescale.factor: a scalar multiplication factor by which to rescale outcomes 

and effects. Defaults to 1.

• integrate_allocation: indicator of whether the integrand function uses the 

allocation parameter. Defaults to TRUE.

• …: used to pass additional arguments to internal functions such as 

numDeriv::grad() or stats::integrate(). Arguments can also be passed 

to the propensity_integrand and loglihood_integrand functions.

3.2. The interference object

An interference() call results in an S3 object of class interference which contains:

• estimates: a data frame of causal effect estimates;

• models$propensity_model: the glm or glmer object;
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• summary: a list of objects summarizing the causal model such as the number of 

groups, number of allocations, and the formula used in the interference call;

• weights: (# of groups) × (# of allocations) matrix of group-level weights:

If variance_estimation = ‘robust’, then the object also includes:

• weightd: (# of groups) × (# of allocations) × (# of parameters) array of weights 

computed using derivatives of the propensity function with respect to each 

parameter;

• scores: (# of groups) × (# of parameters) matrix of derivatives of the log 

likelihood.

3.3. Utility functions

The package includes tools to extract effect estimates of interest from the S3 object. The 

functions direct_effect, indirect_effect (or ie), total_effect (or te), and 

overall_effect (or oe) select appropriate records from the estimates data frame in the 

interference object. Section 4 shows an example.

4. Example: vaccine study

This section illustrates the use of inferference with an example drawn from vaccine 

research. The package includes a single dataset based on the same set of parameters used in 

the simulation study by Perez-Heydrich et al. (2014). The vaccinesim dataset consists of 

3000 units in 250 groups and contains two covariates (X1 = age in decades and X2 = distance 

to river), a vaccination indicator (A), a participation indicator (B), a binary outcome (Y) 

indicating cholera infection (1 yes, 0 no), and the unit’s group.

R> library("inferference")

R> head(vaccinesim)

  Y        X1       X2 A B group

1 1 5.3607405 1.715527 0 0     1

2 0 0.1964597 1.730802 0 1     1

3 0 0.4846243 1.769546 1 1     1

4 0 0.8012977 1.715527 0 1     1

5 0 2.1426629 1.772158 1 1     1

6 0 1.2861017 1.715527 0 1     1

>
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Like the original study (Ali et al. 2005) that inspired the simulation, individuals were 

randomized to vaccine with a known probability of 2/3, but subjects could opt to not 

participate in the trial. In essence, there are both experimental and observational aspects to 

the data. The interference function handles this design when logit_integrand’s 

randomization argument is used and a participation variable is included in the formula.

R> example1 <- interference(

+     formula = Y | A | B ~ X1 + X2 + (1|group) | group,

+     allocations = c(.3, .45,  .6),

+     data = vaccinesim,

+     randomization = 2/3,

+     method = 'simple')

>

The only arguments required for interference to run are formula, allocations, and 

data. When using the ‘robust’ method (the default) to compute the variance, the internal 

workings call numDeriv::grad (Gilbert and Varadhan 2012) and stats::integrate 

frequently. The option method = ‘simple’ greatly speeds up the numDeriv::grad 

function. For more accurate derivatives, leave out this option. See ?numDeriv::grad for 

more options.

The print.interference function provides an overview of the causal effect estimates, 

estimated standard errors, and Wald-type confidence intervals. In the output, alpha1 and 

alpha2 refer to α and α′, while trt1 and trt2 refer to a1 and a2, respectively.

R> print(example1)

 --------------------------------------------------------------------------

                               Model Summary

 --------------------------------------------------------------------------

 Formula: Y | A | B ~ X1 + X2 + (1 | group) | group

 Number of groups:  250

 3 allocations were used from 0.3 (min) to 0.6 (max)

 --------------------------------------------------------------------------

                          Causal Effect Summary

                         Confidence level: 0.95

                         Variance method: robust

 --------------------------------------------------------------------------

 Direct Effects
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 alpha1 trt1 alpha2 trt2 estimate std.error conf.low conf.high

   0.30    0   0.30    1   0.1605   0.02474  0.11202    0.2090

   0.60    0   0.60    1   0.1086   0.01857  0.07219    0.1450

   0.45    0   0.45    1   0.1339   0.01778  0.09904    0.1687

 Indirect Effects

 alpha1 trt1 alpha2 trt2 estimate std.error conf.low conf.high

   0.30    0   0.60    0  0.15907   0.02617  0.10777    0.2104

   0.30    0   0.45    0  0.08657   0.01732  0.05263    0.1205

   0.45    0   0.60    0  0.07250   0.01408  0.04490    0.1001

 Total Effects

 alpha1 trt1 alpha2 trt2 estimate std.error conf.low conf.high

   0.30    0   0.60    1   0.2677   0.02435   0.2199    0.3154

   0.30    0   0.45    1   0.2205   0.02469   0.1721    0.2688

   0.45    0   0.60    1   0.1811   0.01841   0.1450    0.2172

 Overall Effects

 alpha1 trt1 alpha2 trt2 estimate std.error conf.low conf.high

   0.30   NA   0.60   NA  0.17607  0.019247  0.13835    0.2138

   0.30   NA   0.45   NA  0.09867  0.014207  0.07083    0.1265

   0.45   NA   0.60   NA  0.07740  0.008981  0.05980    0.0950

 --------------------------------------------------------------------------

>

The utility functions return selected effect estimates.

R> direct_effect(example1, .3)

  alpha1 trt1 alpha2 trt2  estimate  std.error  conf.low conf.high

1    0.3    0    0.3    1 0.1605036 0.02473782 0.1120184 0.2089888

R> ie(example1, .3)

  alpha1 trt1 alpha2 trt2   estimate  std.error   conf.low conf.high

1    0.3    0   0.30    0 0.00000000 0.00000000 0.00000000 0.0000000

2    0.3    0   0.45    0 0.08656992 0.01731878 0.05262574 0.1205141

3    0.3    0   0.60    0 0.15906887 0.02617398 0.10776882 0.2103689
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>

4.1. Plotting effect estimates

Plots of effect estimates over a range of α levels may be helpful in summarizing results. 

Perez-Heydrich et al. (2014) present several such graphical displays. Here we demonstrate 

how to generate similar plots of effect estimates using inferference.

First, we estimate the effects over a dense sequence of allocations so that lines will be 

smooth.

R> example2 <- interference( formula = Y | A | B ~ X1 + X2 + (1|group) | 

group,

+     allocations = seq(.2, .8, by = .01),

+     data = vaccinesim, randomization = 2/3, method = 'simple')

>

In Figure 1, we present the direct and indirect effect estimates over this range of allocations. 

For direct effects, a simple scatterplot showing the point-wise confidence intervals suffices. 

One approach with indirect effects fixes α and plots estimates over a range of α′, whereas a 

contour plot displays all pairwise (α, α′) comparisons over a range of allocation strategies.

R> deff <- direct_effect(example2)

R> x <- deff$alpha1

R> y <- as.numeric(deff$estimate)

R> u <- as.numeric(deff$conf.high)

R> l <- as.numeric(deff$conf.low)

R> plot(c(min(x), max(x)), c(−.15, .25), type = 'n', bty = 'l',

+      xlab = expression(alpha), ylab = " )

R> title(ylab = expression(widehat(DE) * "(" * alpha  * ")"),

+       line = 2)

R> polygon(c(x, rev(x)), c(u, rev(l)), col = 'skyblue', border = NA)

R> lines(x, y, cex = 2)

R> ieff.4 <- ie(example2, allocation1 = .4)

R> x <- ieff.4$alpha2

R> y <- as.numeric(ieff.4$estimate)

R> u <- as.numeric(ieff.4$conf.high)

R> l <- as.numeric(ieff.4$conf.low)

R> plot(c(min(x), max(x)),c(−.15, .25), type = 'n', bty = 'l',

+      xlab = expression(alpha * "'"), ylab = ")

R> title(ylab = expression(widehat(IE) * "(" * 0.4 * "," * alpha * "'" * 

")"),
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+       line = 2)

R> polygon(c(x, rev(x)), c(u, rev(l)), col = 'skyblue', border = NA)

R> lines(x, y, cex = 2)

R> ieff <- subset(example2[["estimates"]], effect == 'indirect')

R> x <- sort(unique(ieff$alpha1))

R> y <- sort(unique(ieff$alpha2))

R> z <- xtabs(estimate ~ alpha1 + alpha2, data= ieff)

R> contour(x, y, z, xlab = expression(alpha),

+         ylab = expression(alpha * "'"), bty = 'l')

>

4.2. Diagnostics

IPW estimators are known to be unstable if the weights range greatly. The package includes 

a basic utility to check the performance of the group-level weights, wi,k, for multiple 

allocations. The function diagnose_weights plots histograms of weights for chosen 

allocation levels. If the allocations argument is left NULL, the function plots histograms 

for five allocation levels used in the interference call. Figure 2 shows the resulting 

histogram for a single allocation. The analyst should examine groups with extreme weights, 

which may unduly influence population-level estimates.

R> diagnose_weights(example2, allocations = .5, breaks = 30)

>

5. Example: voting experiment

The preceding example used the default logit_integrand function to define the group-

level propensities. The following example demonstrates how to customize the propensity 

score function.

Nickerson (2008) reported an experiment on voter behavior to examine peer-to-peer indirect 

effects on voting participation. The experiment randomized households with only two 

registered voters in Denver and Minneapolis to receive one of three assignments: voting 

encouragement, recycling encouragement, or nothing. Canvassers knocked on doors of 

households randomized to the voting or recycling groups a week before the 2002 primary. If 

a registered voter answered the door, the canvassers delivered a scripted message about 

voting (treatment) or recycling (control). The researchers used voter turnout records to 

determine if each member of the household then voted in the election. Nickerson was 

interested in the potential spillover effect of the voting encouragement to the untreated 

individual via the treated individual. From analysis of the observed data, he concluded there 

was a “secondary effect” where the household members not contacted by the canvassers 

voted more often in the treatment groups compared to the control groups.
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The dataset voters contains information for 3861 households, 2549 in Denver and 1312 in 

Minneapolis, including covariates such as age, gender, previous voting history, and party 

affiliation. Our estimand of interest involves average voting outcomes when households 

receive voting encouragement compared to when household receive the recycling message, 

hence we exclude households not contacted by canvassers. We also exclude the single 

household where a canvasser appears to have contacted both registered voters.

R> voters <-  within(voters, {

+     treated     = (treatment == 1 & reached == 1) * 1

+     c_age       = (age - mean(age))/10

+    })

R> reach_cnt <- tapply(voters$reached, voters$family, sum)

R> voters <- voters[!(voters$family %in% names(reach_cnt[reach_cnt > 1])), ]

R> voters <- voters[voters$hsecontact == 1, ]

>

5.1. Household-level propensity

Unlike the vaccine study example, in this data set randomization occurred at the group level 

but individual level treatment was not randomized. With only two subjects, Ai = (Ai1, Ai2) is 

the treatment allocation for group i and Xi = (Xi1, Xi2) is the matrix of individuals’ covariate 

matrices for group i. Let Bi = (Bi1, Bi2) be indicators of being reached by a canvasser in 

group i. Since we only consider households where someone answered the door, Bi ∈ {(1, 0), 

(0, 1)} and Pr(Bi1 = 1|Xi) + Pr(Bi2 = 1|Xi) = 1. Let hij = Pr(Bij = 1|Xi; θ) = logit−1(Xiθx). Let 

Gi ∈ {0, 1} be the indicator that group i is randomized to treatment (1) or control (0). By 

design, Pr(Gi = 1) = 0.5. Since Pr(Ai1|Xi; θ) = 1 − Pr(Ai2|Xi; θ), Pr(Ai|Xi; θ) can arbitrarily 

be defined in terms of either household member. By convention we use the first subject 

(subject one) of each group found in the dataset. Among treated groups, the probability of 

subject one being treated is the probability that a canvasser reached subject one. That is, 

. Thus, the group-level propensity can be 

expressed:

Thus, hi1 is sufficient to determine the group-level propensity. If we know whether or not the 

first subject was reached by a canvasser, then we know if the second was. Therefore, we can 

estimate parameters for hi1 with a dataset that includes only subject one from each group. To 

do this, we must estimate the parameters outside of inferference and use model_method = 
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‘oracle’. We include centered age (in decades) in the propensity model for demonstration 

purposes.

R> voters1 <- do.call(rbind, by(voters, voters[, 'family'], function(x) 

x[1, ]))

R> coef.voters <- coef(glm(reached ~ c_age, data = voters1,

+                      family = binomial(link = 'logit')))

>

5.2. Coding the propensity function

Custom propensity_integrand and loglihood_integrand functions must have at 

least one argument:

• b: the first argument is the variable for which the integrate function computes 

the integral. As in this example, the function can be written so that the integral 

evaluates to 1 and has no effect.

For example, the following function will fix the group-level propensity to 0.5 for all groups 

when variance_estimation = ‘naive’:

R> fixed_propensity <- function(b){

R>  return(0.5 * dnorm(b))

R> }

>

For more realistic models, additional arguments may be passed to the custom function:

• X: the covariate matrix (determined by the formula) for the ith group

• A: the vector of treatment indicators for the ith group

• parameters: vector of estimated parameters from the model_method

• allocation: the allocation level for which the propensity is currently being 

estimated

• …: other arguments can be passed via the ellipsis in interference

Now we have the pieces to write the propensity function for the voting example.

R> household_propensity <- function(b, X, A,

+                                  parameters,

+                                  group.randomization = .5){

+   if(!is.matrix(X)){

+     X <- as.matrix(X)
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+   }

+   if(sum(A) == 0){

+     pr <-  group.randomization

+   } else {

+     X.1 <- X[1 ,]; A.1 <- A[1]

+     h   <- plogis(X.1 %*% parameters)

+     pr  <-  group.randomization * dbinom(A.1, 1, h)

+   }

+   out <- pr * dnorm(b)

+   out

+ }

>

5.3. Evidence of a peer influence effect

The influence of the door opener on the non-door opener’s voting behavior corresponds to 

an indirect effect. Though the Bernoulli-type parametrization of the estimands allows us to 

look at a range of allocations,  makes the sensible comparison between a world 

where individuals receive a voting message with probability 0.5 to a world where individuals 

have zero probability of receiving the voting message.

R> example3 <- interference(

+   formula = voted02p | treated | reached ~ c_age | family,

+   propensity_integrand = 'household_propensity',

+   data = voters,

+   model_method = 'oracle',

+   model_options =  list(fixed.effects = coef.voters, random.effects = 

NULL),

+   allocations   =  c(0, .5),

+   integrate_allocation  = FALSE,

+   causal_estimation_options  = list(variance_estimation = 'robust'),

+   conf.level = .9)

R> ie(example3, .5, 0)[ , c('estimate', 'conf.low', 'conf.high')]

    estimate    conf.low  conf.high

1 0.03151501 0.002290586 0.06073944

>

The point estimate suggests an individual receiving the voting encouragement increases the 

voting likelihood of the other household member by 3.2%. The 90% confidence interval 

excludes zero, indicating a significant indirect effect corroborating the analysis in Nickerson 

(2008).
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For comparison, suppose that a flip of a fair coin determined which registered voter opened 

the door. We exclude age as a covariate and instead set hi1 = 0.5. Here we assume to know 

the propensity score, so we use variance_estimation = ‘naive’.

R> example4 <- interference(

+   formula = voted02p | treated | reached ~ 1 | family,

+   propensity_integrand = 'household_propensity',

+   data = voters,

+   model_method = 'oracle',

+   model_options =  list(fixed.effects = 0, random.effects = NULL),

+   allocations   =  c(0, .5),

+   integrate_allocation  = FALSE,

+   causal_estimation_options  = list(variance_estimation = 'naive'),

+   conf.level = .9)

R> ie(example4, .5, 0)[ , c('estimate', 'conf.low', 'conf.high')]

    estimate    conf.low  conf.high

1 0.03144654 0.002209019 0.06068406

>

Examining the group-level weights may help diagnose coding errors in the propensity score 

function. In the case of a fixed probability as in example4, the propensity weights are easily 

computed by hand. For example, for α = 0.5,

which we can confirm the software computed.

R> G <- tapply(voters[1:12, 'treated'], voters[1:12, 'family'], sum)

R> W <- head(example4[["weights"]]) [, 2]

R> cbind(G, W)

   G   W

2  1 1.0

4  0 0.5

5  0 0.5

6  0 0.5

9  1 1.0

10 0 0.5
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>

6. Computational issues with IPW estimators

We show in this section how computation of the group-level weights may affect estimation 

as the number of individuals in groups grows. To illustrate, consider the IPW estimator of 

the overall effect, which weights individual outcomes in group i with:

or equivalently,

or,

While mathematically equivalent, these weights may be computationally dissimilar. In the 

case of w1i, the product term within the integral entails multiplying probabilities and thus 

will tend to 0 as ni increases, causing the denominator of w1i to get arbitrarily large. In 

contrast, the product term in w2i entails multiplying values which may be less than or greater 

than 1 and thus tends to be less susceptible to numerical instability. Summing log(hij/α) or 

log(1 − hij)/(1 − α)) and then exponentiating the result may provide greater numerical 

stability. Internally, inferference uses w3i.

When group sizes are small, the differences between these weights tend to be infinitesimal, 

but as group sizes grow the differences become important. To be specific, consider the code 

below comparing w1i, w2i, and w3i for increasing group sizes where α = 0.5, all units are 

treated, there is no random effect, and hij is fixed at 0.5.

R> compare_weights <- function(n, alpha = .5, h = .5){

+   pi  <- rep(alpha, n)

+   PrA <- rep(h, n)

+   c(w1 = prod(pi)/prod(PrA),

+     w2 = 1/prod(PrA/pi),

+     w3 = 1/exp(sum(log(PrA/pi))))

+ }

R>
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R> n <- c(50, 100, 500, 1074, 1075, 10000)

R> cbind(n, t(sapply(n, FUN = compare_weights)))

         n  w1 w2 w3

[1,]    50   1  1  1

[2,]   100   1  1  1

[3,]   500   1  1  1

[4,]  1074   1  1  1

[5,]  1075 NaN  1  1

[6,] 10000 NaN  1  1

>

For group sizes up to 1074 there is no difference, but when n reaches 1075, w1i returns NaN 

while w2i and w3i correctly return 1.

Perez-Heydrich et al. (2014) used w1i to calculate weights, but 15 groups in their analysis 

had over 1000 subjects. These groups had missing values for weights for all the values of α 
considered and were excluded from computing the average IPW estimate. Rather than 

computing the average IPW across 700 groups, they inadvertently took the average across 

685 groups. Correcting the estimates by using w2i or w3i did not alter the conclusions in this 

case, but analysts should be aware of this issue when dealing with large groups.

7. Discussion

The R package inferference computes inverse probability weighted estimators of causal 

effects in the presence of interference. The package currently supports the IPW methods of 

Tchetgen Tchetgen and VanderWeele (2012) and Perez-Heydrich et al. (2014). These 

methods require a model for the group-level propensity scores. The package provides useful 

defaults for the propensity models but allows for non-standard models.

Development and application of statistical methods for inferring causal effects in the 

presence of interference is an active area of research. Future versions of inferference may 

incorporate other estimation methods, such as doubly robust methods and stratification. 

Also, additional methods for estimating variances and effect bounds may be incorporated 

into the software.
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Figure 1. 
Plots of the estimates from example2. The top plot shows the direct effect estimates. The 

bottom two plots demonstrate different ways of viewing the indirect effect estimates. The 

shaded regions show the point-wise 95% confidence intervals.
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Figure 2. 
A histogram of group-level weights, wi,k, for αk = 0.2.
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