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Abstract

Annual influenza vaccinations are currently recommended for all individuals 6 months and older. 

Antibodies induced by vaccination are an important mechanism of protection against infection. 

Despite the overall public health success of influenza vaccination, many individuals fail to induce 

a substantial antibody response. Systems-level immune profiling studies have discerned 

associations between transcriptional and cell subset signatures with the success of antibody 

responses. However, existing signatures have relied on small cohorts and have not been validated 

in large independent studies. We leveraged multiple influenza vaccination cohorts spanning 

distinct geographical locations and seasons from the Human Immunology Project Consortium 

(HIPC) and the Center for Human Immunology (CHI) to identify baseline (i.e., before 

vaccination) predictive transcriptional signatures of influenza vaccination responses. Our 
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multicohort analysis of HIPC data identified nine genes (RAB24, GRB2, DPP3, ACTB, MVP, 

DPP7, ARPC4, PLEKHB2, and ARRB1) and three gene modules that were significantly 

associated with the magnitude of the antibody response, and these associations were validated in 

the independent CHI cohort. These signatures were specific to young individuals, suggesting that 

distinct mechanisms underlie the lower vaccine response in older individuals. We found an inverse 

correlation between the effect size of signatures in young and older individuals. Although the 

presence of an inflammatory gene signature, for example, was associated with better antibody 

responses in young individuals, it was associated with worse responses in older individuals. These 

results point to the prospect of predicting antibody responses before vaccination and provide 

insights into the biological mechanisms underlying successful vaccination responses.

INTRODUCTION

Influenza infection is a serious global public health concern. Vaccination is currently the 

best available tool for protecting against infection. However, current estimates indicate that 

the vaccine is only 51% to 67% effective in adults under age 65 (1). This efficacy is further 

reduced in older adults who are 20% less likely to seroconvert than young adults and often 

fail to generate neutralizing antibodies that are critical to protection (2). A number of 

demographic factors have been associated with differential vaccination response, including 

age, gender, and smoking (3, 4). Furthermore, gene expression patterns can display different 

temporal patterns in young and older individuals (5), as well as in males and females after 

vaccination (4, 6). In addition, immune “states” can be highly variable across individuals (7). 

For instance, although some immune variables have strong genetic determinants (8, 9), many 

can be environmentally determined (10). Despite their substantial influence, preexisting 

molecular and cellular factors tend to account for a relatively modest fraction of the response 

variability (11). Reliable predictors involving a limited number of genes could provide 

useful information at the point of care to modify vaccination strategies or provide counseling 

on increased risk. Further, these signatures could provide insights into the underlying 

biological mechanisms that influence the immune response to vaccination and thus may 

offer clues on novel vaccine candidates and previously unknown vaccination strategies.

A number of systems biology studies have proposed gene expression and cellular signatures 

that are correlated with early vaccination response (7, 12–16). However, all but one (13) 

analyzed relatively small cohorts from single influenza seasons and geographic locations. 

Thus, these studies are not sufficiently powered to account for the substantial heterogeneity 

observed in the world, and their findings have yet to be validated in independent cohorts. 

Despite a number of systems biology studies on vaccination, only one study has found 

baseline predictive signatures that were based on immune cell frequencies after interrogating 

a large number of variables, including peripheral blood mononuclear cell (PBMC) gene 

expression (7), and baseline gene expression signatures were not predictive and thus remain 

elusive.

Here, we leveraged six influenza vaccination cohorts spanning distinct geographical 

locations and vaccination seasons from the Human Immunology Project Consortium (HIPC) 

and the Center for Human Immunology (CHI) (a National Institutes of Health intramural 
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affiliate of HIPC) to conduct a multicenter analysis to identify baseline transcriptional 

signatures predictive of influenza vaccination responses. We took advantage of 

transcriptional profiling and antibody titer measurements across cohorts in HIPC and applied 

a common quantitative metric to stratify relative vaccine responses in all cohorts (7). We 

applied a recently developed framework designed for integrated, multicohort analysis of 

existing data sets. The framework has been shown to be successful in identifying robust and 

reproducible gene signatures by leveraging biological and technical heterogeneity present in 

those data sets (17) and has been successfully applied to a broad range of diseases including 

cancer (18, 19), organ transplants (20), and infectious diseases (4, 21–23). We applied this 

framework to four of our cohorts and successfully identified baseline gene expression 

signatures associated with responses. In addition, we used the Quantitative Set Analysis for 

Gene Expression (QuSAGE) (24) gene set analysis framework to identify baseline gene 

modules robustly associated with vaccination responses. We validated both the gene 

expression and module-based signatures in an independent cohort from a distinct geographic 

location (Fig. 1). These validated signatures were specific to young participants (below 35 

years), and their effect sizes (strength of correlation with antibody responses) were inversely 

correlated in young and older participants.

RESULTS

We selected four large cohorts that each included both young and older adults as discovery 

cohorts to identify robust baseline (i.e., immediately before vaccination) gene expression 

signatures of influenza vaccination responses (see Fig. 2 and Methods for details). The age 

distribution within each cohort was bimodal (Fig. 2A), with participants either below the age 

of 35 or above 60 years. Before initiating this study, we further selected two independent 

validation cohorts for testing any signatures derived from the discovery cohorts (Fig. 2). 

Together, these studies include >500 individuals from four independent institutions within 

the United States across five consecutive vaccination seasons beginning in 2008–2009 (Fig. 

2B). Basic demographic data were available for all of these individuals, along with pre- and 

postvaccination antibody titers from ImmPort and ImmuneSpace. In addition, genome-wide 

transcriptional profiling data were available from blood samples taken immediately before 

vaccination in a subset of 275 individuals.

Categorization of individual influenza vaccination responses

Vaccination responses were quantified for each individual within each cohort using the 

“adjusted maximum fold change” (adjMFC) metric (7, 11). This metric reflects the 

vaccination-induced increase in antibody titers adjusted for differences in the prevaccination 

titers and was adopted as the primary end point because this measure (i) mitigates the effect 

of prevaccination serology on the predictive signatures given that baseline titers tend to 

correlate negatively with the fold change in titers after vaccination (Fig. 3A) (11), (ii) uses 

the maximum response across all viral strains given that none of the gene expression 

measurements we assessed reflected specificity to any of the individual influenza strains in 

the vaccine, and (iii) reflects the relative response among individuals instead of treating the 

titer values and their fold changes as absolute measurements and thus can potentially 
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mitigate the effect of noise in titer measurements (25). Further details about the adjMFC 

calculation can be found in Methods and in (7, 11).

Given the bimodal age distribution across the discovery cohorts (Fig. 2A) and the previously 

published observation that both the antibody and transcriptional responses to vaccination 

have strong age dependencies (5, 26), we opted to divide each of the cohorts into young (35 

years and below) and older (60 years and above) groups and analyzed them separately. This 

approach allowed us to uncover signatures beyond those driven by age, which was the focus 

of the original studies, as well as other existing studies (3, 5, 14). It allowed us to compare 

response signatures in young versus older adult participants, which is an important issue that 

has been largely unexplored. We thus computed the adjMFC metric separately for each of 

the young and older adult fractions within each cohort. As expected, the adjMFC metric was 

uncorrelated with the prevaccination antibody titers (Fig. 3B). Following Tsang et al. (7), the 

participants were then stratified into “low,” “moderate,” and “high” responder classes based 

on the percentile of each participant’s adjMFC value (see Methods). Thus, this discretized, 

relative response measure delineates lower responders versus higher responders, as opposed 

to the absolute seroconversion status based on a fold change cutoff (i.e., “nonresponders” 

versus “responders”). In total, the discovery cohorts contained 66 low, 53 moderate, and 57 

high responders where transcriptional profiling data were also available for signature 

identification (fig. S1).

Identification of baseline gene and module signatures

To identify individual genes for which baseline expression levels were associated with 

influenza vaccination responses, we compared high responders with low responders in the 

discovery cohorts. We used a previously described computational framework for integrated 

multi-cohort analysis of gene expression profiles (4, 19, 20, 23) to analyze 32,034 total gene 

symbols measured across the discovery cohorts. The analysis of young adults identified nine 

genes (RAB24, GRB2, DPP3, ACTB, MVP, DPP7, ARPC4, PLEKHB2, and ARRB1) with 

significantly increased expression and six genes (PTPN22, PURA, SP4, CASP6, NUDCD2, 

and PPIB) with significantly reduced expression in high responders at a false discovery rate 

(FDR) of <10% (Fig. 4). Only one of these genes identified by the meta-analysis would have 

been identified using a single cohort (RAB24 in SDY212, FDR < 10%), which demonstrates 

the power of multicohort analysis in leveraging evidence across multiple studies to identify 

robust, differentially expressed genes. We observed similar trends for these 15 genes when 

comparing moderate responders versus low responders, although only PTPN22 reached 

statistical significance (fig. S2). No significant heterogeneity among studies was observed 

for any of these genes (P = 0.3 by Cochran’s Q). Among older adults, there were no genes 

that were significantly different between low and high responders, even considering a more 

lenient FDR of 20%. Despite the fact that gender differences are known to affect vaccine 

responses (3, 4, 6), we observed no significant gender association with these signature genes 

at baseline (P = 0.56). To assess the ability of these genes to predict the vaccination response 

of individuals, we defined a “response score” as the geometric mean of the nine genes with 

increased expression in high responders, similar to previous analyses (4, 19, 20). This score 

distinguished low and high responders with high accuracy in the discovery cohorts [area 

under the curve (AUC) = 83 to 100% for young adults, mean AUC = 92%, fig. S3A]. 
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Furthermore, the response score was significantly correlated with adjMFC in the discovery 

cohorts (R = 0.55, P = 1.63 × 10−54). In contrast, an analogous response score calculated 

using only the genes with decreased expression in high responders had lower classification 

accuracy in the discovery cohorts (AUC = 80 to 96% for young adults, mean AUC = 87%, 

fig. S3B). Therefore, we chose to use only the overexpressed genes as our response score for 

validation. Overall, this analysis identified a small gene expression signature for which the 

prevaccination level was predictive of the vaccine-induced antibody response for younger 

adults.

We next sought to identify gene modules associated with the vaccination response using 

QuSAGE (24) on the discovery cohorts. QuSAGE quantifies gene module activity with a 

complete probability density function (PDF) and was designed to detect the perturbation of 

gene modules (i.e., coordinated, but potentially small, changes in sets of related genes). 

QuSAGE was originally designed to operate on a single study. To estimate a combined gene 

module activity for the four discovery cohorts, the QuSAGE PDFs computed for each data 

set were combined into one PDF for each gene module using numerical convolution (see 

Methods). QuSAGE analysis on blood transcription modules (BTMs) (27) identified 11 gene 

modules in young individuals that were significantly different between low and high 

responders (FDR ≤ 30% and P ≤ 0.01) (Fig. 5 and Table 1), including B cell receptor (BCR) 

signaling (M54) and the inflammatory response (M33). An equivalent analysis in older 

individuals did not detect any significant gene modules (FDR ≤ 30% and P ≤ 0.01). Even 

with the use of much less stringent criteria (FDR ≤ 50% and P ≤ 0.01), only two gene 

modules could be detected for older individuals (table S2). Overall, this analysis identified 

several gene modules for which activities before vaccination were associated with altered 

vaccination responses.

Baseline signatures can predict vaccination response in young adults

To validate the gene and module signatures identified in the discovery cohorts, we tested 

them in independent cohorts. At the time this study was initiated, no additional large cohorts 

that included both young and older adults were available. Thus, we validated the young and 

older signatures using two different cohorts with comparable age distributions: Predictions 

based on the young discovery cohort were validated in SDY80, whereas predictions from the 

older discovery cohort were validated in SDY67.

Validation was carried out for the nine individual genes in young adults with significantly 

increased expression in high vaccine responders in the discovery cohorts. Because two genes 

(RAB24 and DPP3) were not measured in SDY80, the response score for validation in this 

case was composed of seven genes (GRB2, ACTB, MVP, DPP7, ARPC4, PLEKHB2, and 

ARRB1). Even with the use of this reduced signature, the response score showed a 

significant trend of increasing values when comparing low, moderate, and high responders 

(Fig. 6A, P = 0.02 using Jonckheere-Terpstra trend test) and was significantly correlated 

with the adjMFC in SDY80 (R = 0.44, P = 0.016). Further, the response score effectively 

distinguished low and high responders with high accuracy (AUC = 79%, P = 0.02 Fig. 6B). 

Low and moderate antibody responders could also be distinguished but with lower accuracy 

(AUC = 74%, P = 0.10; Fig. 6B), which is noteworthy because moderate responders were 
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not included in the signature identification from the discovery cohort. However, high and 

moderate responders could not be distinguished (AUC = 62%, P = 0.27). Furthermore, four 

genes from the response signature were individually significantly more highly expressed 

when comparing high responders versus low responders in the validation cohort (GRB2, P = 

0.036; ACTB, P = 0.002; MVP, P = 0.09; DPP7, P = 0.651; ARPC4, P = 0.031; PLEKHB2, 

P = 0.154; ARRB1, P = 0.027). In addition to the baseline time point (taken immediately 

before vaccination), the validation study included several additional time points where 

transcriptional profiling was carried out, including 7 days before vaccination, as well as 1, 7, 

and 70 days after vaccination. Consistent with the baseline analysis, we found a marginally 

significant difference in the response scores between low and high responders 1 week before 

vaccination (P = 0.06) and a significant difference at 70 days after vaccination (P = 0.05). 

However, the vaccination response appeared to transiently modulate these signature genes. 

We observed a significant increase in the response score when comparing baseline to day 1 

after vaccination (Fig. 6C, P = 0.01), and there was no significant difference between low 

and high responders at day 1 or 7 after vaccination (day 1, P = 0.21; day 7, P = 0.37). No 

significant genes were identified in older adults in the discovery cohorts; thus, no additional 

validation of individual genes was carried out. Overall, these results identify a 

prevaccination gene expression signature in young adults predictive of the antibody 

response. This signature was also modulated by vaccination as evidenced by significant 

changes after vaccination.

We also carried out a validation of the gene module signatures identified in the discovery 

cohorts. Of the 11 gene modules associated with vaccination response in young adults, 3 

were also significant in the validation cohort (FDR ≤ 10%). These included BCR signaling 

(M54) (Fig. 7), platelet activation (III) (M42) (fig. S4), and inflammatory response (M33) 

(fig. S5). Gene module activity of all three gene modules was higher in high responders in 

both the combined discovery and validation cohorts. If we included an additional restriction 

of P ≤ 0.01 (as was used in the discovery cohort analysis), then only two modules, BCR 

signaling (M54) and platelet activation (III) (M42), were significant. We observed that the 

individual genes within these signature modules tended to display a consistent pattern of 

association with vaccination response in each of the cohorts (Fig. 5B). Like the case for the 

individual gene signature, the gene modules were significantly different between low and 

high responders at most time points in the validation cohort (Fig. 7C and figs. 4C and 5C). 

This included both baseline and day 70 after vaccination for all three modules, suggesting 

that they were temporally stable over a course of more than 2 months. However, the 

vaccination response appeared to transiently modulate some of these modules. We observed 

significant increases in the activity of the inflammatory response (M33) and platelet 

activation (III) (M42) and a significant decrease in the activity of BCR signaling (M54), 

when comparing baseline to day 1 after vaccination (fig. S5C). Neither of the two gene 

modules identified in older adults was associated with vaccination response in the older 

validation cohort (table S2). These results show that there exist temporally stable, 

prevaccination states of the immune system that are significantly associated with the 

antibody response in young participants (7).

These analyses used the set of BTMs that are based on correlated expression patterns 

identified in diverse public data sets (27). To determine whether the biological functions 
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implied by these modules were robustly correlated with vaccination response, we identified 

related modules from other sources. Specifically, we identified 24 modules related to 

inflammation, B cells or platelets from the Kyoto Encyclopedia of Genes and Genomes 

(KEGG) (28), Reactome (29), and the modules used in Obermoser et al. (16) (table S3). In 

support of the BTM analysis, we found that 13 of these modules were significantly different 

between high and low responders in a QuSAGE meta-analysis including both the discovery 

and validation cohorts (FDR ≤ 5%). Most of the modules that were not significantly 

different were related to platelets, and the identification of this module (M42) in the BTM 

analysis (Table 1) may have been due to its high overlap with the BCR signaling (M54) 

module (5 of the 10 genes in M42 overlap with M54 in the BTM definition). These results 

implicate the prevaccination status of B cell signaling and inflammation as important 

indicators of immune state that influence the vaccination response.

Baseline signatures remain predictive after correcting for major cell subset frequencies

The transcriptional profiling data used to identify these signatures were obtained from 

PBMCs or whole blood and thus can reflect both changes in cell subset proportions, as well 

as differences in gene expression state (30, 31). To test whether the signatures we found 

were simply capturing differences in cell subset frequencies, we used regression to adjust the 

young validation cohort data for variation in major cell subset proportions (B cells, 

monocytes, and CD4 and CD8 T cells measured by flow cytometry) that were measured on 

the same samples (see Methods). Although classification performance was decreased after 

this adjustment (high versus low AUC = 68%, moderate versus low AUC = 75%), the gene 

expression signature retained modest predictive power, suggesting that the performance 

cannot be attributed solely to differences in cell subset composition (fig. S6, A and B). The 

response score calculated on the adjusted data was not correlated with the nonadjusted data 

(r = −0.02). Inspection of the individual genes composing the response score showed that the 

predictive signal was almost entirely due to ACTB in the adjusted data. Two of the gene 

modules [BCR signaling (M54) and platelet activation (III) (M42)] also remained significant 

after correcting for major cell subset frequencies (with similar P values to the nonadjusted 

analysis), whereas the P value for the inflammatory response (M33) module increased from 

0.02 to 0.11. Overall, these results suggest that the signatures reflect biological phenomena 

that are, at least in part, independent of major cell subset variation.

Inverse correlation between young and older individuals

Because our analysis of the vaccination response in older adults failed to identify any 

prevaccination signature that could be validated in an independent cohort, we sought to 

determine how the signature genes and modules identified in young individuals behaved in 

older adults. To do this, we correlated signature gene and module effect sizes between young 

and older individuals across all discovery cohorts and found that they generally exhibited 

opposite trends in these two age groups (Fig. 8). For instance, although the expression of the 

nine signature genes was significantly increased in high vaccine responders among young 

adults, their expression was decreased in high vaccine responders among older adults (Fig. 

8A). A similar pattern was observed for signature gene modules (Fig. 8B). To determine 

whether this inverse relationship was restricted only to the signatures, we determined the 

individual gene and module effect sizes for all measured genes and BTMs. We observed a 
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strong negative correlation between the effect sizes in young and older adults for both the 

individual genes (R = −0.28 and P = 2.2 × 10−16) and the modules (R = −0.65 and P = 2.2 × 

10−16). This negative correlation was observed both for the summary effect sizes (calculated 

across the discovery cohorts, Fig. 8) and for the effect sizes in multiple individual discovery 

cohorts. These observations suggest that immune states that are good for the vaccination 

response in young individuals may actually be detrimental to the response in older 

individuals.

DISCUSSION

The move toward precision medicine has underscored the importance of understanding 

whether and how information on an individual’s immune states can help predict disease 

progression and treatment outcomes (11, 32). Influenza vaccination provides a model 

perturbation to study this issue in the context of assessing immune response quality. Healthy 

individuals given the influenza vaccine exhibit a wide variation in the extent of the induced 

antibody response. We identified and validated baseline (i.e., before vaccination) gene and 

module-based signatures that are associated with the vaccine-induced antibody response.

Signature validation using independent cohorts is critical, because genes associated with an 

outcome in one study may fail to be significantly associated with that same outcome in other 

studies. This lack of reproducibility may have several underlying causes. First, if the studies 

involve a small number of individuals or geographic sites, then random fluctuations or 

confounding factors may lead to spurious associations. Second, when large numbers of 

potential predictors are tested (e.g., the expression of every gene in the genome), a failure to 

properly account for statistical issues involved in multiple testing and overfitting may lead to 

poor specificity. Last, it is well-known that experimental measurements are subject to batch 

effects (33), and failure to account for these differences may hinder comparisons across 

studies. Although multiple studies have suggested postvaccination transcriptional signatures 

that are associated with titer responses to influenza vaccination (5, 12, 15, 34, 35), only a 

few have identified baseline signatures that are significantly associated with the antibody 

response (3, 7, 13, 14), and none of these baseline signatures were found and then further 

validated using independent cohorts. Furman et al. (14) analyzed a cohort of 91 individuals 

(SDY212) and identified an age- and apoptosis-related gene module that was correlated with 

the hemagglutination inhibition assay (HAI) response. In a separate study of the same 

cohort, Furman et al. (3) identified a gene module enriched for lipid biosynthesis (also 

containing many genes modulated by testosterone) that was associated with sex and 

testosterone-dependent differences in the antibody response. Nakaya et al. (13) identified 

several gene modules for which expression was correlated with antibody response in 

multiple cohorts, but this result has not yet been validated in independent cohorts. Tsang et 
al. (7) found that baseline transcripts robustly correlated with antibody responses were 

enriched for functions such as pattern recognition and interferon signaling, but baseline 

predictive models (as assessed by cross-validation analysis of the same cohort, SDY80) 

involving transcripts alone could not be built. Instead, they were able to build machine-

learning models predictive of the antibody response (as reflected by the adjMFC metric) 

independent of age and gender by using the frequency of a few temporally stable cell 

populations from the baseline. Thus, our current study is distinct in identifying baseline 
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transcriptional signatures associated with antibody responses after influenza vaccination in 

young adults and subsequently validating these signatures using an independent cohort.

In the analysis presented here, we attempted to identify robust signatures through several 

means. First, the six studies (four discovery and two validation) used were highly diverse 

and heterogeneous. They included data from multiple geographic areas (including 

California, Connecticut, Maryland, and Minnesota) using vaccines from different 

manufacturers, across multiple influenza vaccination seasons, and profiled different types of 

biological samples (PBMCs and whole blood) using multiple experimental platforms [such 

as Illumina and Affymetrix microarrays, and RNA sequencing (RNA-seq)]. Second, the data 

were strictly separated into discovery and validation cohorts, which were drawn from 

independent studies at different institutions. The choice of which studies to include and their 

designation as discovery or validation were made before the initiation of the analysis. 

Despite the presence of biological and technological heterogeneity, by integrating the 

discovery data sets and then validating in independent data, we demonstrated the robustness 

of the baseline transcriptional signatures that were associated with antibody responses to 

vaccination. Although the effect sizes we detected in individual cohorts were high, they were 

not statistically significant in any of the discovery cohorts due to high variance among 

participants within individual cohorts. Hence, despite their high effect size, these genes (with 

the exception of RAB24 in SDY212) would not have been found without integration of data 

across multiple independent cohorts. Overall, our analysis revealed temporally stable 

baseline signatures both at the gene expression and at the module level, as was observed in 

previously identified baseline predictive signatures involving peripheral immune cell subset 

frequencies (7). Such stable signatures are particularly attractive biomarkers for potential 

clinical use because they are robust to the timing of measurement and potentially reflect the 

inherent biological state of individuals (11).

In addition to recapitulating many known findings, the signatures identified by our analysis 

revealed the involvement of previously unreported genes and pathways. RAB24 is a small 

Ras-like guanosine triphosphatase that regulates protein trafficking and mediates autophagy 

(36). Autophagy is important for antiviral innate immunity, antigen presentation, and 

cytokine secretion. Although not directly implicated in viral responses, the RAB family of 

proteins has been extensively studied in the context of trafficking in immune cells, especially 

dendritic cells and macrophages (37). GRB2 is an adaptor protein with involvement in BCR 

signaling (38, 39). It has been implicated in mediating viral entry in retroviruses (40) and 

has also been associated with chronic leukemia, breast cancer, and Wiskott-Aldrich 

syndrome, a condition characterized by severe immunodeficiency and inability to clot (41). 

DPP3 is a metallopeptidase that is essential for the intracellular replication of the influenza 

virus and inhibits proapoptotic genes while promoting inflammation (42). The role of DPP3 
in inflammation is consistent with our implication of the inflammatory response module in 

the vaccination response. Previous studies have also suggested the involvement of 

proapoptotic (14) and inflammation-related (13) genes with vaccine response but with an 

inverse relationship to that found here. It is possible that this discrepancy is caused by the 

inclusion of older patients in these previous studies, which we have shown to be inversely 

correlated with younger participants at the gene level. DPP3 is expressed in many types of 

immune cells, although its function in these contexts has not been described in detail (43, 
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44). In neutrophils, it may be involved in regulating inflammation in peripheral tissue (45). 

DPP7, another member of the metallopeptidase family of DPP3 (46), has been shown to 

exhibit similar anti-apoptotic functions in lymphocytes (47). ACTB, the gene encoding for 

β-actin, is a pivotal component of the cell cytoskeleton and is necessary for viral cell 

interactions and endocytosis across many different types of viruses (48–51). ARPC4 is a 

subunit of the human Arp2/3 complex, which is responsible for actin polymerization (52) 

and further supports the role of β-actin in promoting response to vaccine. Increased levels of 

these actin-associated genes can affect cell motility and may help promote antigen 

presentation in response to the vaccine. ARRB1 is a member of the arrestin/β-arrestin 

protein family expressed at high levels in peripheral blood leukocytes and implicated in 

regulating receptor-mediated immunological activity (53). It is also an essential gene for 

Marburg virus infection (54) and is further involved in dendritic cell activation and 

maturation in response to HIV virus-like particles (55). PLEKHB2 is involved in retrograde 

transport of recycling endosomes (56), a pathway exploited by many viruses throughout 

their life cycle (57) that may also be relevant to cross-presentation in the context of a vaccine 

response (58). Last, MVP is the major subunit of the vault complex, a multiprotein structure 

involved in nucleocytoplasmic transport. It is induced by double-stranded RNA and virus 

infection and is essential for the induction of interleukin-6 (IL-6) and IL-8, suggesting an 

important role in host proinflammatory response (59). High expression of MVP has been 

shown to suppress viral replication by inducing a type 1 interferon response through nuclear 

factor κB, establishing a further link with the inflammatory component identified in the 

module analysis (60). The implication of the B cell signaling module is broadly consistent 

with the findings of Tsang et al. (7), who identified predictive populations before vaccination 

that included CD20+ transitional and memory B cells that express CD38. Together, the 

implication of B cell signaling and inflammatory response modules suggests that overall 

immune status at the time of vaccination can influence the course of the vaccine response. 

Collectively, these findings support the idea of an active basal immunological state that can 

enhance antigen presentation and inflammatory response, hence resulting in a more effective 

vaccine response. Further studies are needed to determine whether these signatures are 

associated specifically with influenza vaccination or rather reflect vaccination responses in 

general.

The cohorts analyzed in this study included both young and older individuals, which were 

analyzed separately based on the observation that these groups display qualitatively different 

antibody and transcriptional responses to influenza vaccination. Our own analysis of the 

combined age groups in the discovery cohort found that the response was dominated by the 

young adults, and the older cohort did not provide additional insights. Although the number 

of individuals was similar in both age groups, significant gene and pathway signatures could 

only be validated for young individuals. Our superior performance in the young may be 

expected because of the increased heterogeneity in older adults given the presence of age-

related diseases and a larger age span. Surprisingly, we found that the effect sizes of these 

genes were negatively correlated in young and older individuals. That is, genes that were 

positively associated with higher vaccination responses in young individuals tended to be 

negatively associated with higher vaccination responses in older individuals. Thus, increased 

expression levels of our gene signature before vaccination were associated with better 
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antibody responses in the young but were inversely correlated with those in older individuals 

(Fig. 8). The same negative correlation was observed for gene modules. For example, 

although the presence of an inflammatory gene signature was associated with an improved 

vaccination response in young individuals, it was associated with a worse response in older 

individuals. There are many potential explanations for this observation, including differences 

in cell composition, cell activation state, the extent of chronic inflammation in older 

individuals, the possibility of intrinsic differences in vaccination responses of young and 

older adults, and the observed age-related change in transcriptional noise and cell-to-cell 

protein expression variation in immune cells (61–63). The underlying reason for this inverse 

relationship is unclear and warrants further study.

There are several potential limitations of the current study. Although the results are based on 

multiple independent studies, the validation of the young and older signatures was each 

based on a single independent cohort, and it will be important to further confirm these 

observations in additional studies. The integration of additional studies will also provide 

increased power to detect subtle differences in immune state that are associated with 

vaccination responses. Lack of power may be one explanation for why the current analysis 

failed to identify validated signatures in older adults. The failure to validate signatures 

identified in older adults may also be due to the fact that the average age of the validation 

cohort was substantially lower than that of the discovery cohort. Another concern relates to 

the influence of differences in cell subset frequencies. The transcriptional profiling data 

analyzed here were based on PBMCs and whole blood and thus reflect a mix of cell types. 

We used deconvolution analysis to confirm that the signatures we identified did not simply 

reflect variations in frequencies of major cell subsets. However, because of sample size 

limitations, the adjustment included only four major cell subsets (B cells, monocytes, and 

CD4 and CD8 T cells) and did not include potential effects conferred by cell subsets that lie 

deeper in the hematopoietic hierarchy.

In summary, we have integrated data from the HIPC and the CHI to conduct a multicohort 

analysis to identify baseline (i.e., before vaccination) predictive transcriptional signatures of 

influenza vaccination responses, and the effects of these signatures were inversely correlated 

between young and older individuals. In addition to potentially enabling the prediction of 

antibody responses before vaccination in the clinic and in vaccine trials, these results 

provide hypotheses on potential biological mechanisms underlying successful influenza 

vaccination responses and how these mechanisms could change with age. More broadly, the 

discovery of baseline signatures offers the possibility of modulating an individual’s immune 

state before vaccination to improve the resulting antibody response. All of the data used in 

this study are available from ImmPort and ImmuneSpace.

METHODS

Influenza vaccination response cohorts and data

All participants received injectable trivalent influenza vaccine. Raw and processed data are 

available from ImmuneSpace (https://immunespace.org), and data can also be obtained from 

ImmPort (http://immport.org). The discovery cohorts are identified by ImmPort study 

numbers SDY63, SDY400, SDY404, and SDY212. The validation cohorts are SDY80 and 
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SDY67. To match the age composition of the discovery cohorts, we only included 

individuals below 35 or above 60 years of age in the analysis of the validation cohorts. The 

SDY212 data set was derived from whole blood, whereas all others were derived from 

PBMC samples. Transcriptional profiling of SDY63, SDY404, and SDY400 used 

HumanHT-12 V4.0 expression beadchip (Illumina), whereas SDY212 was performed on 

HumanHT-12 V3.0 expression beadchip (Illumina). Illumina data from the above four 

studies were log-transformed and quantile-normalized using the Lumi package in R. The 

microarray data from SDY80 was run on HuGene-1_0-st array (Affymetrix) and normalized 

by robust multichip average. SDY67 was an RNA-seq study run on HiSeq 2000 (Illumina), 

and read count data were summarized by gene and normalized using DESeq (64). The 

transcriptional profiling data from SDY67 were obtained in two experimental batches, and 

only data from the larger batch were used in this study.

Identification of low, moderate, and high vaccine responders

We adopted the adjMFC metric used in a previous systems biology study of influenza 

vaccination [SDY80; see the extended experimental procedure of Tsang et al. (7) for details]. 

This metric was adopted for three main reasons. First, this measure mitigates the effect of 

prevaccination serology on the predictive signatures. This is important given that preexisting 

titers against influenza are highly prevalent, exhibit substantial variability across individuals, 

and are observed to correlate in a nonlinear manner with the fold change in titers after 

vaccination (Fig. 3A) (11). The adjMFC metric captures the response variability among 

individuals with similar preexisting titers and thus “decorrelates” the initial titers from the 

response based on fold change to enable the identification of predictive signatures 

independent of initial serology (7). Second, given that none of the gene expression 

measurements we assessed reflected specificity to any of the individual influenza strains that 

comprised the vaccines, using the maximum response across all viral strains, as captured by 

the adjMFC metric, is more appropriate and can potentially provide better sensitivity, 

compared with using the response to each strain individually (7, 12). Last, the adjMFC 

metric reflects the relative response across individuals instead of treating the titer values and 

their fold changes as absolute measurements and thus can potentially mitigate the effect of 

noise in titer measurements (25).

Here, we provide a concise description of how adjMFC was computed. Given that the 

vaccines used in our cohorts contained three to four strains (usually three, but in the 2009 

season, the seasonal strains were supplemented with an additional pandemic H1N1 strain), 

we quantitated both preexisting (baseline) and response serology by computing the 

maximum across all strains. Titer calculations were performed separately for each cohort 

and age group (young and older; see above). Titers were measured at days 0 and 28 by HAI 

for all studies except SDY80, which used virus neutralization assay (VNA) at days 0 and 70. 

A titer of half the first dilution was assigned to samples in which the first dilution was 

negative except for SDY404, for which the first dilution (1:8) was reported. In all studies, 

the largest dilution was reported if the largest dilution was positive. To help ensure that 

baseline titers and response fold changes of individual strains were comparable, so that the 

maximum is meaningful, we standardized titers for each strain at baseline (day 0) by 

subtracting the median and then scaling by the SD. We then defined the baseline (relative) 
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titer for each individual as the maximum across standardized baseline values for all strains. 

Similarly, we used the same approach to standardize the titer response fold change (usually 

day 28 over day 0) and called these the MFC. In addition, we applied the inverse normal 

transformation to the MFC values to avoid extreme skews in the distribution. We next 

plotted baseline and MFC, and as previously observed, we saw a strong nonlinear inverse 

correlation between them in all of our data sets. To compute adjMFC (i.e., removing the 

nonlinear correlations), we binned the individuals based on their baseline titer so that the 

correlation between baseline and response titers within each bin was not statistically 

significant, and at the same time, we tried to keep the number of bins as low as possible so 

that each bin would have a reasonable number of individuals for decorrelation. Typically, 

two to three bins were used. In some of our cohorts, there were a few outlier individuals with 

extremely high baseline titers and correspondingly small response fold changes; they were 

removed from further analysis. For each bin, we computed the decor-related responses 

(adjMFC) by standardizing the MFC values within each bin, that is, subtracting the median 

and scaling by the SD. Last, individuals within each cohort were defined as low, moderate, 

and high responders using percentile cutoffs (7). To accommodate the relatively small 

number of individuals in some of the cohorts, we defined low, moderate, and high 

responders as those whose adjMFC was lower than the 30th percentile value, between the 

30th and the 70th percentile values, and above the 70th percentile value, respectively. After 

applying the decorrelation procedure, we also performed a number of diagnostic checks to 

ensure that our approach had achieved the desired effects. Specifically, we confirmed the 

following: (i) The correlation between baseline titer and the adjMFC was removed on the 

basis of the Spearman rank correlation; (ii) at the individual strain level, the correlation 

between the baseline titer and the response fold change was statistically insignificant (i.e., 

before aggregation of the individual titer per strain via computing the maximum); (iii) the 

identity of the strain that contributed to the baseline (or response fold change) maximum did 

not correlate with adjMFC. In all of the above checks, two variables were considered not 

correlated if the Spearman correlation P value was greater than 0.1.

Integrated multicohort analysis

Gene expression data sets were analyzed using a computational framework for integrated 

multicohort analysis (17, 20, 23). Briefly, for each gene expression data set used as a 

discovery cohort, we labeled samples either as a case or as a control and then computed a 

Hedges’ g effect size for each gene in each data set. The individual effect sizes were then 

integrated into a single summary effect size per gene across all discovery data sets. 

Significant genes were then identified using z statistics, and P values were corrected for 

multiple hypothesis testing using Benjamini-Hochberg FDR correction. We generated a 

response score from signature genes by computing the geometric mean of the expression of 

the individual genes within a given individual. We then estimated the response score 

accuracy in discriminating high and low responders by generating a receiver operating 

characteristic (ROC) curve and computing the AUC. A t test was carried out to compare 

response scores between low and high responders at various post-vaccination time points in 

the validation cohort (SDY80).
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Gene module analysis

The set of 346 BTMs were obtained from (27). Gene module activity was calculated using 

QuSAGE version 2.0.0 (24). The activity of each gene module (comparing high vaccine 

responders versus lower vaccine responders) was first quantified independently for each of 

the discovery cohorts using QuSAGE to produce a PDF. A meta-analysis was then carried 

out by combining the activity PDFs generated for each of the discovery cohorts into a single 

PDF using numerical convolution. The sizes of each cohort were used as weight factors 

during numeric convolution. P values for each gene module were calculated by testing 

whether the activity was different from zero using a two-sided test. Gene modules associated 

with influenza vaccination response were detected by P ≤ 0.01 and FDR ≤ 0.3. To identify 

related gene modules from KEGG (28) and Reactome (29) and the modules defined in 

Obermoser et al. (16), we used regular expressions to extract gene modules containing the 

keywords “inflamm,” “b[_]*cell,” and “platelet.”

Correction for cell proportion variations

Flow cytometry measurements for the validation cohort (SDY80) were obtained from http://

chi.nhlbi.nih.gov/DATA/chi/09-H-0239/flow. The transcriptional profiles associated with 

this cohort were then adjusted for variation in four major cell subset proportions (B cells, 

monocytes, and CD4 and CD8 T cells) using the flow cytometry data expressed as 

percentage of total PBMCs. For each gene separately, we fit a linear model with intercept 

(using the R function lm) on the normalized non–log-transformed data, including 

proportions as covariates. The complete adjusted transcriptional profiling data were then 

computed as the sum of the intercept coefficient and the residuals, and back log2–

transformed.

Availability of data in ImmPort and ImmuneSpace

The data used in this study were generated by HIPC and CHI, a National Institutes of Health 

intramural affiliate of HIPC. The HIPC program is a major collaborative effort that is 

generating large amounts of human immune profiling data—including high-dimensional 

data— to characterize the status of the immune system in diverse populations under both 

normal conditions and in response to stimuli (e.g., vaccination). Data management is an 

integral part of the program, and to address the issues involved with integrating and 

disseminating such data, HIPC has developed ImmuneSpace (https://immunespace.org), a 

high-quality public web interface to HIPC data. ImmuneSpace facilitates retrieval, 

exploration, and comparison of data across independent studies. To support the wide range 

of immunological experiments being carried out, HIPC is taking advantage of the 

considerable infrastructure already developed as part of the National Institute of Allergy and 

Infectious Diseases (NIAID) Immunology Database and Analysis Portal (ImmPort) system 

(https://immport.niaid.nih.gov), which serves as a repository of data generated by 

investigators funded by the NIAID Division of Allergy, Immunology, and Transplantation. 

Data from ImmPort are automatically loaded into ImmuneSpace and joined with basic 

metadata (e.g., cohort membership and treatment information) to facilitate data exploration, 

visualization, and analyses. ImmuneSpace also provides additional standardization to 

facilitate data integration. For example, gene expression data in ImmuneSpace are 
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preprocessed using standardized pipelines ensuring that the same normalization is used, 

gene names are consistent, etc. ImmuneSpace also provides a “Data Finder” interface for 

filtering participants across assays and studies based on a set of predefined study and assay 

variables, making it easy to browse and search extremely large combined data sets from 

dozens of studies and tens of thousands of participants. An R package (ImmuneSpaceR) is 

also available to facilitate programmatic access to data. Using these interfaces, the studies 

included in the analysis presented here can easily be identified, combined, and explored to 

gain further insights. For details, please see https://immunespace.org/IS1.url.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Overview of the data analysis strategy
The meta-analysis was carried out on young and older influenza vaccination cohorts. 

Individual gene and module signatures were validated using independent cohorts.
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Fig. 2. Vaccination cohorts used to define and validate influenza vaccination response gene and 
module signatures
(A) The four discovery cohorts each included young and older participants. Age cutoffs are 

indicated by the dashed horizontal lines. In several studies, gene expression data were 

collected for a subset of individuals (filled circles) enriched for high and low responders, as 

previously described (5). Two cohorts were used to independently validate the young and 

older response signatures. (B) The discovery and validation cohorts spanned five vaccination 

seasons. Numbers indicate the total count of participants in each study. The number of 

participants who met the age range criteria used for the young and older groups and the 

subset used in the transcriptional profiling analysis are shown in fig. S1.
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Fig. 3. The adjMFC end point is independent of baseline titers
An illustration of our approach for computing adjMFC. The relationship between baseline 

titers and (A) MFC or (B) adjMFC in SDY404. Vertical lines separate the bins used for 

standardization, and the inset table indicates the P value resulting from the test for 

correlation. Correlation strengths and P values shown were based on Spearman’s rank 

correlation. Note that in this example, an outlier with high day 0 titer was removed when 

computing the adjMFC (see Methods).
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Fig. 4. Identification of individual genes that predict vaccination response in young individuals
The x axes correspond to standardized mean difference, referred to as effect size (ES), 

between high and low responders, computed as Hedges’ g, in log2 scale. The size of the 

rectangles is inversely proportional to the standard error of mean (SEM) in the individual 

cohort. Whiskers represent the 95% confidence interval. The diamonds represent overall 

mean difference for a given gene with combined support across the discovery cohorts. The 

width of the diamonds represents the 95% confidence interval of overall mean difference.
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Fig. 5. Identification of gene modules that predict vaccination response in young or older 
individuals
(A) The QuSAGE activity for all gene modules that were significantly different between low 

and high responders in the discovery cohorts. Red indicates increased average expression of 

genes in the module among high vaccine responders. (B) Individual genes that comprise the 

three gene modules that predict vaccination response and were validated in the validation 

cohort (FDR ≤ 10%) in young individuals. Colors indicate the log2 gene expression fold 

changes comparing high responders versus low responders, with red indicating increased 

expression among high vaccine responders.
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Fig. 6. Validation of gene expression signature as a baseline predictor of the influenza vaccination 
response in young individuals
(A) The geometric mean of GRB2, ACTB, MVP, DPP7, ARPC4, PLEKHB2, and ARRB1 
z-scored expression values (response score) was calculated for low, moderate, and high 

responders in the validation cohort (SDY80). (B) ROC curve for classifiers designed to 

separate individual participants as high responders versus low responders or moderate 

responders versus low responders in the validation cohort (SDY80). CI, confidence interval. 

(C) Temporal behavior of response score in the validation cohort (SDY80) for low, 

moderate, and high responders. Each point depicts an individual participant, and each point 

group is summarized by a boxplot. Significant P values are indicated above the data for 

comparisons of low and high responders and below the data for comparison between 

baseline and day 1 after vaccination.

and Page 25

Sci Immunol. Author manuscript; available in PMC 2018 February 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. Baseline activity of the BCR signaling gene module (M54) is associated with influenza 
vaccination responses in young individuals
QuSAGE was used to calculate the PDF for the gene module activity using baseline data in 

the (A) discovery cohorts (SDY63, SDY404, SDY400, SDY212, and the combination) and 

(B) validation cohort (SDY80). (C) Temporal behavior of gene module in the validation 

cohort (SDY80) for low, moderate, and high responders. Each point depicts an individual 

participant, and each point group is summarized by a boxplot. Significant P values are 

indicated above the data for comparisons of low and high responders and below the data for 

comparison between baseline and day 1 after vaccination.
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Fig. 8. Inverse correlation of baseline differences between young and older participants
(A) Gene effect sizes and (B) module activities comparing high and low responders were 

calculated in young and older individuals. All values were calculated using data from the 

discovery cohorts. (A) Significant genes for young (squares) individuals in the discovery 

cohorts are highlighted in black. (B) Significant modules for young (squares) and older 

(triangles) individuals in the discovery cohorts are highlighted in black.
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