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REPRODUCIBILITY AND GENERALIZABILITY

The sequencing of the human genome and the subsequent availability of inexpensive, robust 

methods for “omics” profiling (e.g., genome-wide association studies, gene expression 

microarrays, and metabolomics) have led to optimism of a new era of biomarkers that would 

allow for a “precision medicine” approach to critical care. Unfortunately, this promise has 

yielded few tangible results, as the general biomedical reproducibility crisis (1–3) is 

particularly troublesome in critical care (4–8) and in omics biomarker studies (9–11). There 

are two broad problems that lead to seemingly similar studies of biomarkers in critical care 

producing different results. One problem is traditional nonreproducibility due to false 

positive biomarker selection or nonrobust statistical models. The other, more importantly, is 

a lack of generalizability in moving from a narrow study population into broader 

applications in critical care. We present here a contextual framework for addressing these 

problems and for assessing new biomarker studies.

SYNDROMIC ILLNESS AND GENERALIZABLE BIOMARKERS

Many critical illnesses are defined syndromically, such as sepsis, acute kidney injury (AKI), 

acute respiratory distress syndrome (ARDS), and delirium. These syndromes typically have 

clear, though changing, clinical criteria (12–14). Still, a syndrome may arise from multiple 

causes; as a result, it is unclear whether all cases of the syndrome really represent the same 

disease. Such uncertainty raises a major problem in the field. For example, if a positive 

clinical trial for adults with ARDS defined by Berlin criteria has failed to reproduce in an 

independent population of children with ARDS also defined by Berlin criteria, was the 

original finding a false positive or do adults and children have a “different” version of 

ARDS? Our reliance on syndromic definitions and the lack of clear gold-standard 

diagnostics linked to pathophysiology thus makes it difficult to assess clinical trial results. In 

theory, if the entire clinical spectrum of a disease has a common molecular pathophysiology, 

then a molecular biomarker should exist that is generalizable to the disease. Thus, finding a 

generalizable biomarker can help to define the disease, improving both patient care and 

clinical trial design, and potentially moving a whole field of study forward.
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There are other practical reasons to search for biomarkers that are generalizable. First, 

requiring context-specific biomarkers for every variant on a clinical condition (e.g., a 

different biomarker for different sources of sepsis, or for each different cause of kidney 

injury) could end up requiring dozens of tests for each critical syndrome. Tests indicated for 

such increasingly fragmented populations will fail to overcome barriers to market entry. In 

addition, those that do make it may have overly specific indications for use, leaving many 

patients without help. Finally, since off-label uses of tests and therapies are common, if 

biomarkers fail to deliver similar performance in seemingly similar conditions, patients will 

be harmed.

We thus argue that research should focus first on finding generalizable, disease-defining 

molecular biomarkers for syndromes in critical illness, or alternatively on showing that such 

biomarkers do not exist (evidence-of-absence studies). If no generalizable biomarker exists, 

then more context-specific biomarkers can direct the effort to accurately characterize 

clinically actionable syndromic subtypes. In other words, we need to clearly define a disease 

before we begin to divide it into subtypes. Both are necessary components of a precision 

medicine approach, but due to the high heterogeneity of critical illness, research of both 

types can be challenging.

HETEROGENEITY IN CRITICAL ILLNESS AND THE CHALLENGE OF 

CLINICAL TRIALS

Clinical trials in the critical care setting are among the hardest to carry out, for reasons of 

practicality, patient protection, and patient heterogeneity; this leads to smaller, mostly 

homogeneous cohorts that do not represent the broad spectrum of critical illness. First, as 

described above, similar acute syndromes (such as sepsis, AKI, and ARDS) often have 

multiple possible definitions and span a range of severities. Second, critically ill patients 

span the entire range of ages, comorbid conditions, and demographics. Third, the medical, 

surgical, neurologic, and pediatric pathways of critical illness have widely varying primary 

problems. Fourth, the practicality of conducting a trial leads to differing sampling times and 

stages of disease at trial enrollment. Finally, the changing treatment patterns over time (such 

as the change in early sepsis resuscitation with early goal-directed therapy) can lead to 

different outcomes for the same intervention. The logistical and budgetary constraints of 

trying to represent all of these sources of heterogeneity means that most single-cohort 

studies cannot capture the broad spectrum of critical illness, and thus may have difficulty 

producing generalizable results.

Still, the bedrock of continued progress toward generalizable biomarkers is continued 

publication of clinical trials. One way to improve trials is to focus on not just size but also 

heterogeneity. Single-cohort studies are more likely to yield reproducible results when they 

are appropriately powered, and are more likely to yield generalizable results when they are 

designed with broad inclusion criteria that attempt to match the full spectrum of the 

condition under study. Thus, a biomarker that has been tested in 500 adults with pneumonia 

and ARDS at admission is more reliable than one that has been tested in only 50 such 

patients. However, until it is tested in children, or in ARDS arising from other causes, or at 
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other clinical timepoints, its generalizability is unknown. We thus caution against the false 

security of solely relying on a high sample size in evaluating the robustness of a single study.

MULTICOHORT ANALYSIS AND DATA SHARING

An efficient, inexpensive way of tackling the problem of heterogeneity is to combine studies 

that represent the broad spectrum of disease. At a fixed total sample size, greater 

reproducibility is gained when the samples are integrated from a greater number of smaller 

sized studies, rather than vice versa (15). Our group has worked with many collaborators in 

repeatedly demonstrating that leveraging biological and technical heterogeneity across 

multiple cohorts can identify generalizable diagnostic and prognostic biomarkers in a diverse 

set of diseases including organ transplant, cancer, and autoimmune and infectious diseases 

(16–24). These early successes of multicohort analysis are firmly rooted in the hypothesis 

that although a broad representation of a disease could make the discovery of a biomarker 

challenging; such biomarkers are more likely to be reproducible and generalizable when 

tested in novel circumstances (Fig. 1). On the other hand, making full use of these studies 

often requires making imperfect comparisons (e.g., integrating datasets that use multiple 

different definitions for AKI). Although no hard rule can be set, we feel it both reasonable 

and pragmatic to use data to their fullest extent, even if the statistical methods are simple or 

some assumptions are slightly violated, as long as such caveats are fully explained and 

discussed.

However, multicohort studies are only possible when data are shared (such as is now 

required for most genome-wide expression studies). We thus argue for the increased 

appropriate sharing of molecular data from clinical trials, so that multiple cohorts can be 

combined in the discovery of new biomarkers (25). In many research areas, data are held 

privately, preventing such reuse. For instance, we searched the literature for metabolomics, 

clinical studies in critical care and identified 28 studies (total n = 2,322), out of which only 

two studies made their raw data publically available (Table 1) (26–53). Public sharing of 

these data would allow for meta-analysis and data-driven hypotheses generation, avoiding 

the need for each new cohort to “reinvent the wheel.” It is clear that studies that are 

performed on single cohorts can be successful at producing robust biomarkers if pitfalls are 

avoided; but we propose that these investigators make their data available for (and 

themselves take part in) efforts at later meta-analysis.

To aid the broader community in this effort, we have made available on our website (http://

khatrilab.stanford.edu/sepsis) a large number of existing studies of gene expression in sepsis 

along with source code for analysis (20, 21). This is one resource any researcher can use to 

further explore their biomarkers in broader clinical context and to test their generalizability 

in silico prior to embarking on a clinical trial.

BIG DATA AND BIOMARKERS

One of the biggest benefits of the data-driven omics approach to biomarker discovery is the 

possibility of discovering novel pathobiology in the heterogeneity of critical illness. 

Although hypothesis-driven studies of familiar cytokines (e.g., those resulting from 
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activation of the nuclear factor-kB or interferon pathways) may be warranted by preclinical 

models, many common pathways are activated by multiple stimuli at a cellular level (54) and 

so are unlikely to be highly specific for a given syndrome. Similarly, clinical scores that use 

similar data available in an electronic health record (vitals, common laboratories, etc.) are 

unlikely to be highly specific for multiple conditions. An omics approach, by contrast, can 

sift through thousands or tens of thousands of candidate biomarkers to find the best fit for a 

given condition. Unfortunately, the promise of omics is also thus its major pitfall: false 

positives are likely when there are many more variables than samples in a study. This has 

contributed to some early failures in the field. It is thus worthwhile to have a general 

framework with which to approach biomarker development studies.

BIOMARKER STUDIES: A CONCEPTUAL FRAMEWORK

There are two excellent guidelines for how to determine the rigor of multivariable prediction 

models (the Transparent Reporting of a multivariable prediction model for Individual 

Prognosis Or Diagnosis [TRIPOD] statement [www.tripod-statement.org] [55]) and of 

diagnostic accuracy studies generally (the Standards for Reporting Diagnostic accuracy 

studies [STARD] statement [www.stard-statement.org] [56]). In addition to these reporting 

guidelines, we suggest the following list of questions that we use to help place a study in 

context:

1. What is the context of the reported diagnostic comparison? Are there existing 

comparators/gold standards for this question, and what is their diagnostic 

accuracy in practice? Ideally, a study will compare a new biomarker to a gold 

standard, possibly with a net reclassification, but this is often not possible and 

only reported in later validations.

2. How “locked down” is the reported biomarker? Are the biomarkers themselves 

being selected? Is a statistical model being retrained in the new cohort (i.e., if 

using a regression model, were the coefficients determined prior to testing)? If a 

cutoff is used, was it determined prospectively, and is it standard?

3. How generalizable is the validation cohort being studied? Is this merely a 

random held-out set of the original discovery cohort? Is it from the same center 

as the discovery cohort? Does it represent a new area of application?

4. Is this biomarker useful? If applied clinically, would it change practice?

5. Is there a link to known biology? In our opinion, this may not be necessary at 

first, especially if the study is searching in spaces that are not well-studied 

(outside the “street lamp” of common studies). Procalcitonin, for instance, had 

not been well-characterized as part of the immune response (and the biology 

remains somewhat unclear today) at its first testing as a biomarker for bacterial 

infection (57).

6. Can the biomarker be measured in a reasonable amount of time to make it useful 

in critical care? Although not a reason to dismiss results, many of the diagnostic 

applications in critical care require a rapid turnaround time. A more complex 

process, or one that relies on new technologies, may take longer to be clinically 
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translated, and will be harder to replicate in validation studies. For example, 

neutrophilic CD64 as measured by flow cytometry is highly diagnostic for sepsis 

but has a turnaround time of several hours (58).

In addition, it is helpful to put a study into context in terms of biomarker development (Fig. 

2). Early validation may be simply the generation of receiver-operating characteristic curves 

in similar cohorts to the initial discovery cohort. As evidence accumulates, however, such 

studies should 1) investigate the application of the biomarker in a broader variety of cohorts 

that represent the full spectrum of disease and 2) compare the test to known standards for 

easy comparison. For instance, the later-stage validation of a biomarker for the prognosis of 

sepsis that is not compared to either lactate or clinical severity scores (e.g., Sequential Organ 

Failure Assessment) is unhelpful. Similarly, a study examining the diagnostic power for a 

locked, commercially available biomarker is important, but not as helpful as one examining 

outcome after intervention.

MOVING FORWARD IN THE BIG DATA ERA

The promise of precision medicine is to have the right treatment for the right patient at the 

right time. In critical care, our immediate need is to get the basics right. For instance, we 

should first try to answer urgent clinical questions (such as which patients need antibiotics), 

and then pose new ones that may not have been previously answerable (such as whether 

there are molecular subtypes of sepsis). As omics and big data technologies proliferate, so 

too will studies utilizing them as biomarkers in critical illness (studying the genome, 

epigenome, transcriptome, proteome, metabolome, lipidome, microbiome, and quantified 

self, to name a few). In all cases, we must remember the extreme heterogeneity of critical 

illness, and strive for generalizable disease-defining diagnostics and robust biomarkers that 

can help the entire spectrum of critical care research and delivery.
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Figure 1. 
The benefit of incorporating heterogeneity. Biomarkers discovered in a homogeneous cohort 

are highly likely to work in external cohorts that are similar to the original cohort, but less 

likely to work in different settings. Biomarkers that are discovered in heterogeneous cohorts 

are more likely to be generalizable across a broad spectrum of patients.
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Figure 2. 
Maturity of biomarkers: a conceptual framework. ROC = receiver-operating characteristic.
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