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Abstract

Interactions of T cell receptors (TCR) to peptides in complex with MHC (p:MHC) are key features 

that mediate cellular immune responses. While MHC binding is required for a peptide to be 

presented to T cells, not all MHC binders are immunogenic. The interaction of a TCR to the 

p:MHC complex holds a key, but currently poorly comprehended, component for our 

understanding of this variation in the immunogenicity of MHC binding peptides. Here, we 

demonstrate that identification of the cognate target of a TCR from a set of p:MHC complexes to a 

high degree is achievable using simple force-field energy terms. Building a benchmark of 

TCR:p:MHC complexes where epitopes and non-epitopes are modelled using state-of-the-art 

molecular modelling tools, scoring p:MHC to a given TCR using force-fields, optimized in a 

cross-validation setup to evaluate TCR inter atomic interactions involved with each p:MHC, we 

demonstrate that this approach can successfully be used to distinguish between epitopes and non-

epitopes. A detailed analysis of the performance of this force-field-based approach demonstrate 

that its predictive performance depend on the ability to both accurately predict the binding of the 

peptide to the MHC and model the TCR:p:MHC complex structure. In summary, we conclude that 

it is possible to identify the TCR cognate target among different candidate peptides by using a 

force-field based model, and believe this works could lay the foundation for future work within 

prediction of TCR:p:MHC interactions.
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1. Introduction

Binding to MHC (Major Histocompatibility Complex) is a prerequisite for peptide T cell 

immunogenicity. Given this, large efforts have been dedicated to the development of 

methods capable of accurately predict this event (some of the most accurate and publicly 

available at the IEDB are described in: Andreatta and Nielsen 2016; Nielsen and Andreatta 

2016; Andreatta et al. 2015; Karosiene et al. 2013; Kim et al. 2009). The accuracy of the 

state-of-the-art methods has proven to be very high (in particularly for MHC class I), and 

most projects will in one way or another apply such prediction tools to guide the process of 

rational T cell epitope discovery (a few examples include Braendstrup et al. 2014; Pérez et 

al. 2008; Paul et al. 2015). However, not all peptides processed along the MHC pathways 

and bound by MHC turn out immunogenic. The main reason for this is the unavailability of 

T cells reactive to the given peptide-MHC (p:MHC) complex due to tolerance. The general 

rules underlying tolerance are well defined and deal with negative selection of T cells 

expressing a T cell receptor (TCR) with binding specificity towards p:MHC complexes of 

self-peptides. However, the details of these rules remain poorly described, and our 

understanding of the rules that define which p:MHCs are the targets of a given TCR remains 

highly limited.

In the last years, many efforts have been made modelling TCR:p:MHC systems. These 

efforts include simulation methods that have evolved from simulating the peptide in the 

MHC binding pocket for 1 nanosecond to simulating the entire TCR:p:MHC complex for 

more than 1 microsecond (Kass et al. 2014). Also, as more TCR:p:MHC complexes have 

been resolved by crystallography, template-based modelling techniques have achieved 

considerable accuracy, either using a single template or multiple templates (Liu et al. 2011). 

In other studies, force fields have been adapted in order to estimate changes in binding 

affinities, proving that structure-based methods are useful tools to design and engineer TCR 

and pMHC (mainly class I) interactions modulating both affinity and specificity (Pierce et 

al. 2014; Laugel et al. 2005). Also, docking approaches have shown that interactions 

between TCRs and pMHC complexes can be modelled when “good” scoring functions are 

used (Riley et al. 2016; Pierce and Weng 2013). Focusing on peptide immunogenicity, TCR 

interactions with pMHC class I complexes, in particular for HLA-A*02:01, have shown that 

CDR loops interactions to unknown epitopes can be predicted using a very simple rule-

based model learning from known complexes of the same allele (Roomp and Domingues 

2011). Also, a particular case (LC13 TCR and HLA-B*08:01) was characterized using 

100ns molecular dynamics simulations. Here, however no strong difference was found 

regarding the binding behaviour between more and less immunogenic peptides (Knapp et al. 

2014).

Given this background, we seek to answer, given TCR:p:MHC modelled complexes of 

different peptides interacting with the same MHC and TCR molecules, which structural 

properties can be used in order to predict the cognate target (i.e. the p:MHC complex) of the 

TCR. To address this question, first we built a benchmark set based on solved TCR:p:MHC 

of class II and generated homology models for both the bound epitope and a set of natural 

MHC-binding non-epitopes. Next, we used two well-known force fields, FoldX (Guerois et 

al. 2002) and Rosetta’s Talaris2013 (Leaver-Fay et al. 2013; O’Meara et al. 2015), to mimic 
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the molecular interactions and chemical properties between the TCR and the p:MHC 

complex. FoldX (Schymkowitz et al. 2005) has in earlier studies demonstrated high 

performance predicting the impact of a mutation in the context of a given biological 

assembly. Rosetta (Bradley et al. 2005) has been extensively used in a large range of 

applications, from de novo protein design to understanding the folding process. These two 

force fields are described as weighted sums of terms modelling interactions in a given 

molecular assembly. Here, we investigate how these force fields could be used to identify the 

target of a given TCR. The weights of the two force fields were adjusted in a cross-

validation setup in order to detect correlations between each force field term and the peptide 

immunogenicity. This approach allowed us to define a robust model, that given the 

sequences of the MHC alpha and beta subunits, TCR alpha and beta subunits and a set of 

peptides, could discriminate between epitopes and non-epitopes, and thus correctly predict 

the cognate target for the given TCR.

2. Material and Methods

2.1 The TCR:p:MHCII data set

A data set of 43 TCR:p:MHCII was downloaded from the PDB (Berman et al. 2003). Entries 

presenting extreme TCR orientations compared with all other entries in the dataset were 

excluded (4Y1A, 4Y19, 4C56, 3PL6, 2WBJ and 1YMM) (see Supplementary Figure 1). 

Finally, entries found to be single mutants of other cases in the data set were also excluded 

(4P23, 3T0E, 2IAM, 3QIW, 4E41 and 4P46) leaving a final benchmark data set of 31 

TCR:p:MHCII complexes.

2.2 Similarity measures between TCR:p:MHCII complexes

To calculate the structural similarity between two TCR:p:MHCII structures, the two MHC 

beta-chain subunits are aligned using the TMalign software (Zhang and Skolnick 2014) and 

a transformation matrix is obtained. The corresponding alpha (TCRA) and beta (TCRB) 

TCR subunits in the complex are next translated and rotated using this matrix, and RMSD 

values (RMSD-TCRA, RMSD-TCRB) for the alpha and beta chains, respectively, are 

calculated for corresponding alpha carbons according to a pairwise alignment computed 

using CLUSTALW. Finally, we define RMSD-TCR as the average between RMSD-TCRA 

and RMSD-TCRB.

Similarity at the sequence level is calculated using TCR sequence identity from a BLASTP 

local alignment between a pair of structural complexes. Using identities between TCR alpha 

chains (TCRA_ID%) and TCR beta chains (TCRB_ID%), we define TDR_ID% as the 

average between TCRA_ID% and TCRB_ID%.

2.3 Benchmark of MHC class II epitopes and non-epitopes

We defined epitopes as the peptides in the TCR:p:MHCII structures as shown in Table 1. For 

each epitope, 4 peptides of the same length, extracted from the epitope source protein 

sequence, and presenting a similar predicted binding score as the epitope to the 

corresponding MHC, were selected as non-binding epitopes. The binding scores were 

obtained using the predicted percentile rank score obtained from NetMHCIIpan (version 
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3.1), and the non-epitopes were selected, with predicted percentile rank values in the range 

+/-5% of the percentile rank of the epitope so that the epitopes fall, on average, in the middle 

rank between corresponding non-epitopes. In 2 cases (3qib and 3qiu) no other peptide in the 

sequence had a score in the 5% interval, and therefore the range was extended to +/-17%. In 

situations where the epitope had no source protein (non-natural peptides), the non-epitopes 

were selected from UniRef50 as described above.

We clustered the complexes using sequence identity between TCRA, TCRB and peptide to 

eliminate sequence biases. First, clusters were formed using exact peptides match (see 

Supplementary Figure 2A). Next, as similarities were found between some TCRs 

(Supplementary Figure 2B), clusters were joined if TCR_ID% was above 90%.

2.4 TCR:p:MHCII modeling pipeline

We developed a pipeline to model TCR:p:MHCII complexes as shown in Figure 1A, which 

takes as input 5 sequences, MHC alpha and beta subunits, the peptide and TCR alpha and 

beta subunits. We first created a template library for homology modelling based on the set of 

available TCR:p:MHCII structures described in subsection 2.3. From each TCR:p:MHCII 

structure, the first complex, following the chain order in the original PDB file, was taken in 

the cases where more than one appeared in a given PDB entry. Next, the MHC binding core 

was identified for each epitope as the nine consecutive residues after P1, that was in turn 

defined as the residue with the largest number of contacts (residues with less than 8.0Å 

between alpha carbons) with the MHC molecule. Note that epitope cores were defined only 

to align target and template peptides. Full-length peptides were used for force field 

predictions (see later).

For template selection, a BLASTP search was performed against the template library 

(excluding entries in the same cluster as the query), and templates were sorted according to 

TCR_ID%. Next, the top template was included and, iterating over templates from the sorted 

list, additional templates were added if no other templates in the same sequence cluster or 

with similar conformation (RMSD-TCR<3.0Å) were previously included. This procedure 

was repeated until no more templates were left.

Once the templates have been selected, alignments between MHC and TCR chains were 

computed using CLUSTALW. Target peptides and template peptides were aligned on the 

binding core. In the case of non-epitopes, the cores were predicted using NetMHCIIpan 

(version 3.1). Next, 10 models were built with MODELLER (Sali et al. Blundell 1993) using 

the multiple template approach on selected templates. For each model, decoys were 

produced using a docking protocol based on the Monte Carlo Minimization implemented 

within PyRosetta (Chaudhury et al. 2010). First, the position of the TCR dimer was 

perturbed by random translations in 1Å and rotations in 1°. Second, the distance between the 

TCR and p:MHC was adjusted using the SlideIntoContact procedure. Third, high resolution 

MCM optimized the complex orientation with respect to the PyRosetta Talaris2013 full-

atom scoring function. This was repeated 20 times for each model producing a total of 200 

decoys for each entry in the benchmark.
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2.5 Scoring of TCR:p:MHCII complexes

To score each decoy, two force fields were tested: Talaris2013 (hereafter referred to as 

PyRosetta) and FoldX. Both force fields are linear compositions of terms that evaluate 

several types of properties related to protein interactions. Interaction energies between TCR 

and p:MHC were calculated and each energy term was saved separately after this 

calculation. In the case of PyRosetta, the energy was calculated computing the energy of the 

entire complex and subtracting the energy of the TCR and p:MHC in isolation. In the case of 

FoldX, the energy was calculated using the analyzecomplex method on each complex. For 

each term, 30th percentile was calculated from the distribution of 200 decoys, obtaining a 

single value. This approach is similar to what has been suggested earlier for interaction 

energy landscapes characterizations in similar systems (Yanover and Bradley 2011). Here 

however, we calculate the distributions per energy term and next evaluate the percentile 

score independently of the overall score. Finally, for each input the pipeline produces 20 

values (6 from PyRosetta and 14 from FoldX) corresponding to the force field terms with a 

non-zero values when calculating the interaction energy between TCR and p:MHC.

2.6 Cross-validation setup

As depicted in Figure 1B, for the sake of validation, we clustered the benchmark data as 

mentioned previously and each entry was modelled using the previously explained pipeline 

excluding all templates in the cluster of the query molecule in order to reduce the effect of 

redundancy and overfitting.

Leave-one-cluster-out experiments were performed searching for optimal weights on the 

different force filed terms using as training set the benchmark data excluding a given cluster 

and next evaluating the predictive performance on the left out cluster. This was performed 

over all clusters. In this setup, a model was thus developed leaving out all data belonging to 

one cluster, and the model development was performed without ever referring to the left out 

data for model refinement. Optimization of the force field weights was performed on the 

training data using linear regression models computed to fit the weighted features to a binary 

target value Epitope=1 and Non-epitope=0. Models were built for each force field separately 

(PyRosetta and FoldX) and merging all terms together. For the three models, all values were 

normalized before fitting, subtracting the minimum and dividing by the max-min difference. 

AUC values were calculated from predictions over the complete benchmark data set 

measuring a global prediction performance. Also, for each epitope and its corresponding 

non-epitopes, a per-structure AUC value was calculated. To compare the performance of 

different models, a binomial test was used comparing those entries with better predictions 

excluding ties.

3. Results

3.1 Benchmark for epitope model training and validation

A total of 31 PDBs with TCR:p:MHCII complexes were included in the study; 17 human 

and 14 mouse complexes. The number of structures is not equally spread across the different 

species and loci since there is only one entry for DP, 10 DQ and 6 for DR, respectively. For 

mouse, only one entry is included for IAk and IAg, whereas 5 entries are included for IAb, 
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and 3 and 4 for IAu and IEk respectively. For each of these cases, 4 non-epitopes were 

generated as described in material and methods, resulting in a total number of 155 entries 

(epitopes and non-epitopes). 13 clusters were obtained grouping the benchmark by sequence 

identities (Supplementary Table 1). As shown in Supplementary Table 2, for all cases, non-

epitopes are separated on average by only 1.9% from their corresponding epitope in terms of 

predicted percentile rank binding value (maximal difference is less than 17%).

3.2 TCR:p:MHCII modeling pipeline

Structures of TCR:p:MHCII complexes were constructed using a multiple template 

homology modelling pipeline in addition to a docking protocol (for details materials and 

methods). A critical issue when constructing a modelling pipeline is to access its ability to 

generate accurate models. To validate this, we built 10 models for both multiple and single 

template approaches and analysed the best model (in terms of RMSD-TCR) obtained for 

each epitope with its native structure. Comparing the non-redundant multiple template 

approach to an approach using only single templates revealed that the former produced more 

accurate models (binomial p-value<0.05, Supplementary Figure 3A). Also, the non-

redundant multiple template approach achieved better results when comparing against 

models built using all templates (binomial p-value<0.2, Supplementary Figure 3B). This 

latter finding suggests that using all templates is sub-optimal because the underlying 

templates is biased in terms of sequence diversity and docking orientations. After the initial 

model construction, decoys were produced using the PyRosetta docking protocol. To access 

if this docking step increased the ability to generate accurate models, we built 200 models 

using MODELLER and 200 models using the PyRosetta docking protocol, and next 

compared the lowest RMSD-TCR conformations between both approaches. As shown in 

Supplementary Figure 3C, this docking procedure resulted in significantly improved model 

accuracy compared to the MODELLER procedure (binomial p-value=5.5e-04). In 

conclusion, the TCR:p:MHCII modelling pipeline is found to be robust and contain good 

models with minimum RMSD-TCR values (among 200 decoys) to the native structure in the 

range 2-5Å. Note, that we here only have evaluated the ability of the modelling pipeline to 

produce ensembles containing one or more accurate models. We have not evaluated our 

ability to identify these accurate models within the ensembles. We do not address this 

otherwise critical issue here, since we in the final modelling pipeline use all the models in 

the ensemble, and hence at no point include or in other ways use the native structure to make 

predictions.

3.3 Global prediction performance

For each peptide (epitope and non-epitope), the TCR:p:MHCII force field scoring computes 

20 interaction terms (6 from PyRosetta and 14 from FoldX). We first assessed the prediction 

capabilities of PyRosetta and FoldX to distinguish between epitopes and non-epitopes in 

terms of the AUC. For both cases, the original function with default weights showed random 

performance (data not shown). Next, we fitted models performing leave-one-cluster-out 

(LOCO) validation experiments, where the weight for each force field term was refitted 

using data from all clusters but one, and evaluating performance on the epitopes and non-

epitopes from the left-out clusterv (for details see material and method). Here, we evaluated 

the performance either “globally”, merging predictions from epitopes and non-epitopes from 
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all structures, or on per-structure level, comparing the rank of the epitope to the 4 non-

epitope peptides in each structure. As shown in Figure 2, these LOCO experiments resulted 

in better than random predictions for both PyRosetta (AUC=0.62) and FoldX (AUC=0.68). 

Performing the LOCO experiments on the combined set of 6 PyRosetta and 14 FoldX terms, 

resulted in a further improve in global performance with an AUC of 0.72. In Supplementary 

Figure 4, we display a heatmap of the weights for each force field term obtained in each 

LOCO experiments. From this figure, it is apparent that the different terms consistently have 

either positive or negative weights in the different LOCO models, confirming that force field 

refitting is highly robust and reproducible. Analysing each term individually, several were 

found to have substantial predictive performance (Supplementary Figure 5A). In particular, 2 

PyRosetta and 5 FoldX terms where found to have an average predictive performance 

(measured in terms of Pearson correlation) of more than +/-0.05. However, as expected, no 

single term outperforms the combined linear model (Supplementary Figure 5B).

3.4 Pipeline accuracy on epitope rankings

To evaluate predictions at per-structure level, we calculated the AUC for each epitope and its 

corresponding 4 non-epitopes. First of all, as shown in Figure 3, the predictive performance 

of the model is clearly different from random. 24 cases had AUC above 0.5 and only 5 cases 

obtained an AUC less than 0.5, corresponding to a p-value=0.0005 (binomial test excluding 

ties). We analysed how the pipeline accuracy depended on two parameters that can be 

deduced from its input. First, MHC binding, which is required for a peptide to be presented 

to the T cell. Second, the availability of TCR:p:MHC template structures used to build the 

models, which was analysed in terms of maximum TCR beta sequence identity between the 

query and all the templates used. Similar analyses were performed for the MHC alpha, MHC 

beta and TCR alpha sequences, in all cases showing lower predictive performance (data not 

shown). Of the 15 entries with predicted percentile rank binding to the MHC of less than 

25% and with the maximum sequence identity (over all templates) to the TCR beta subunit 

above 75%, 13 (87%) had AUC>0.5 and only 2 (13%) had AUC<=0.5 (p-value=0.0074). For 

the remaining 16 entries (predicted rank MHC binding above 25% or TCR beta sequence 

identity less than 75%), only 68% (11) had AUC>0.5 and 5 had AUC<=0.5 (p-value=0.21). 

These values suggest as expected that the accuracy of the proposed pipeline is dependent on 

both the binding strength of the peptide-MHC interaction and the availability of suitable 

templates.

3.5 TCR:p:MHC Pipeline in a real application

Focusing on the subset of 19 epitopes with predicted binding to the restrictive MHC 

(percentile rank <=25%), we turned to construct a real-life benchmark of the TCR:p:MHCII 

scoring pipeline. To do this, we selected from the benchmark the source protein sequence for 

each epitope, and predicted for all overlapping peptides of the length of epitopes MHC 

binding and TCR:p:MHC interaction. Next, all peptides were scored using a combined 

model α*(100-MHCrank/100) + (1-α)*TCR:p:MHC, where MHCrank is the percentile rank 

score reported by NetMHCIIpan (version 3.1), and TCR:p:MHC is the interaction score 

obtained using the model proposed here. Based on these prediction scores, an AUC value 

was calculated taking the known epitope as positive and all other peptides as negatives. The 

optimal value of α was found using a simple grid search in a leave one out experiment (see 
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Supplementary Figure 6), and was consistently found to be 0.9. The result of this benchmark 

is summarized in Table 2 and shows that the combined model outperform the MHC binding 

method alone in 12 cases (p-value 0.075), and the TCR:p:MHC interaction method alone in 

14 cases (p-value 0.03) confirming that also in such a real-life experiment does the proposed 

model achieve improved predictive performance values.

4. Discussion

In this work, we have demonstrated that reliable predictions of the cognate target of a TCR 

can be achieved using refined version of the conventional FoldX and Rosetta force fields. 

We built a benchmark of TCR:p:MHCII complexes, structures of epitopes and non-epitopes 

in complex with MHC and TCR were constructed using homology modelling techniques. 

Peptide immunogenicity was evaluated calculating interaction energies between TCR and 

each p:MHC complex. Weights assigned to each force field term were refitted, observing 

that some terms were not correlated with peptide immunogenicity. Leave-one-cluster-out 

experiments showed that TCR cognate identification can be predicted at a significant level 

(p-value<0.0005). We found a higher predictive performance of our approach for complexes 

where we could accurately predict the peptide binding to the restrictive MHCII element. 

Given this, we conclude that prediction of the TCR cognate target on basis of interaction 

energies is possible when MHC binding can be predicted. Likewise, we found that our 

TCR:p:MHCII scoring pipeline achieved superior performance in situations were TCR 

templates with high sequence identity (TCR-beta > 75%) to the query TCR were available.

Generally, epitopes are ranked using MHC binding information as the main prioritization 

factor. Here, investigated if our proposed TCR:p:MHC pipeline combined with MHC 

binding affinity predictions could result in improved predictions. In a simulated real life 

application, we took as input the MHC class II sequences, the TCR sequence, and a target 

protein sequence. Next, all overlapping peptides of length corresponding to the epitope were 

sorted according to a score combining predicted MHC binding and TCR recognition aiming 

to identify the most immunogenic peptides in the top of the ranking. In this benchmark, we 

found a consistent increase in predictive performance of the combined model compared to 

each of the two models (MHC binding, and TCR interaction) individually.

As stipulated for the MHC class II antigen presenting pathway, MHC binding is required for 

a given peptide to be presented to the T cell. Ideally, MHC binding predictors used in 

addition to TCR cognate identification methods are required to fully understand peptide 

immunogenic behaviour. However, some of epitopes used in this work showed extreme low 

predicted MHC binding potential. At this point, we do not fully descern the source of this 

seemingly inconsistency but it could suggest that we need to learn more about the 

underlying principles that govern MHC binding since these epitopes can not be explained 

using state-of-the-art MHC binding predictions.

In our analysis, we have found that, in order to achieve accurate predictive performance, 

refined versions of the conventional FoldX and Rosetta force fields, with optimized relative 

weights on the different energy terms, was needed. In the last few years there have been 

several works performing such optimisation on different classes of proteins (Leaver-Fay et 
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al. 2013; O’Meara et al. 2015; Park et al. 2016; Alford et al. 2017). In most of the cases, and 

particularly for the force fields used in this work, such optimisation was performed on both 

intra- and extra-cellular proteins, that are subject to completely different environments. 

Given the very special nature of TCR:p:MHC interactions, and the relatively small 

difference in energy between immunogenic and non-immunogenic peptides (Knapp et al. 

2014; Harndahl et al. 2012), we believe that it is fundamental to perform such optimisation 

in a targeted way, only using TCR:p:MHC complexes.

Another issue to address is the energy relaxation of the structures. In this work we did not 

relax structures after the modelling and docking procedures. Despite of this, we obtained 

robust linear models and performance values significantly better than random. We believe 

that by sampling the single-term energy distributions over 200 models provides enough 

samples to stabilize the distribution of each term so that relaxation is unneeded. We also 

tried to adjust the weights using 30th percentiles with fewer than 200 models and we saw a 

drop in the accuracy of the predictions. A more profound analysis of the effect of relaxation 

and the number of models sampled is suggested to address these issues and their impact on 

the predictive performance of the proposed pipeline. Such analyses could also include other 

force fields, beyond FoldX and PyRosetta to investigate if other terms could be included to 

obtain even better predictions.

In conclusion, the work presented demonstrates that prediction of the cognate TCR target is 

possible given accurate predicted MHC binding of the target peptides and high sequence 

identity of the TCR beta subunit to the template database. When these conditions are 

satisfied, the suggested force-field based model performs significantly better than random 

when it comes to identification of the cognate TCR target. We believe this work lays the 

foundation for future works within prediction of TCR:p:MHCII interactions, and expect that 

refined models will be developed along the lines outlined here as more structural and 

sequence data describing TCR:p:MHCII interactions becomes available.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Identification the TCR cognate target is achieved using force-field based 

models.

• Performance depends on the ability to both accurately predict the binding of 

the peptide to the MHC and modeling the TCR:p:MHC complex structure

• A modeling pipeline for TCR:p:MHC structure prediction is proposed and 

evaluated.

• Cross-validation experiments confirms model robustness.
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Figure 1. Flow diagram of the TCR:p:MHCII modelling pipeline and the cross-validation
A) The pipeline input consists in a set of 5 sequences corresponding to MHC alpha and Beta 

subunits, the peptide sequence and TCR alpha and beta chains, and outputs a set of 

percentile values that describe the interaction energies between TCR and p:MHC using 200 

models. B) The setup validates the pipeline splitting the set of epitopes in clusters and 

leaving one cluster out at a time. It models each peptide excluding the templates in the same 

cluster during the modelling step and also the percentile values when the model is trained. 

Finally, each cluster is tested separately avoiding the effect of overfitting.
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Figure 2. Global prediction performance
ROC curves for the prediction performance using different sets of terms to fit linear models. 

All terms together are depicted in solid line, PyRosetta terms in dashed line and FoldX terms 

in dotted line. FPR: False positive proportion, TPR: True positive proportion. The x=y 

diagonal is included as a reference corresponding to random predictions.
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Figure 3. Prediction performance refitting all terms together
Peptide rankings tested on each benchmark entry individually (epitopes shown in circles, 

non-epitopes in crosses). The x-axis gives the entry evaluated and epitope ranking (AUCs 

given in parenthesis).
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