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Abstract

Background—Cardiac injury is accompanied by dynamic changes in the expression of 

microRNAs (miRs), small non-coding RNAs that post-transcriptionally regulate target genes. 

MiR-125b-5p is downregulated in patients with end-stage dilated and ischemic cardiomyopathy, 

and has been proposed as a biomarker of heart failure. We previously reported that the β-blocker 

carvedilol promotes cardioprotection via β-arrestin-biased agonism of β1-adrenergic receptor 

while stimulating miR-125b-5p processing in the mouse heart. We hypothesize that β1-adrenergic 

receptor/β-arrestin1-responsive miR-125b-5p confers the improvement of cardiac function and 

structure after acute myocardial infarction.

Methods and Results—Using cultured cardiomyocyte (CM) and in vivo approaches, we show 

that miR-125b-5p is an ischemic stress-responsive protector against CM apoptosis. CMs lacking 

miR-125b-5p exhibit increased susceptibility to stress-induced apoptosis, while CMs 

overexpressing miR-125b-5p have increased phospho-AKT pro-survival signaling. Moreover, we 

demonstrate that loss-of-function of miR-125b-5p in the mouse heart causes abnormalities in 

cardiac structure and function after acute myocardial infarction. Mechanistically, the improvement 
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of cardiac function and structure elicited by miR-125b-5p is in part attributed to repression of the 

pro-apoptotic genes Bak1 and Klf13 in CMs.

Conclusions—In conclusion, these findings reveal a pivotal role for miR-125b-5p in regulating 

CM survival during acute myocardial infarction.
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1. Introduction

MicroRNAs (miRNAs or miRs) are increasingly recognized as important regulators of 

cardiac function and disease [1–3]. We previously showed that the β-blocker carvedilol 

(Carv) promotes cardioprotection via β-arrestin-biased agonism of β1-adrenergic receptor 

(β1AR) [4, 5]. MiR-125b-5p is one of the five miRs that we found to be activated by Carv 

[6], and it is downregulated in patients with end-stage dilated cardiomyopathy (DCM) or 

ischemic cardiomyopathy [7, 8]. Intriguingly, lower levels of miR-125b-5p were also 

associated with an increased occurrence of acute myocardial infarction (AMI) in humans 

[9]. In mouse studies, overexpression of miR-125b-5p protected against ischemia/

reperfusion (I/R) injury by regulating cardiomyocyte (CM) apoptosis [10], while knockdown 

of miR-125b-5p suppressed angiotensin II-induced cardiac fibrosis by regulating fibroblast 

proliferation [11]. Thus, changes in miR-125b-5p expression consequent to cardiac injury 

and pharmacotherapy may play an important role in cardiac remodeling via several 

mechanisms. Despite the increasing data from both human and rodent studies, direct 

evidence demonstrating a role for miR-125b-5p in MI is lacking.

The pro-apoptotic genes bak1 (mitochondrial protein) and klf13 (zinc finger transcription 

factor) have been shown to be regulated by miR-125b-5p in cancer cells [12–16], stem cells 

[17, 18], neural crest cells and mouse embryos [19]. Notably, bak1 was significantly 
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upregulated in mouse hearts during I/R injury and in CMs subjected to simulated I/R [10], as 

well as in patients with DCM and ischemic heart disease [20]. Moreover, an abnormal copy-

number of klf13 was associated with an increased risk of congenital heart defects in humans 

[21], and in Xenopus, klf13 has been implicated to play a developmental role in cardiac 

progenitor cell proliferation and heart morphogenesis [22, 23]. It is unknown, however, 

whether these two genes are functionally regulated by miR-125b-5p in the post-MI heart.

Here, we show that knockdown of miR-125b-5p alters the pathological responses of the 

heart to AMI, and that miR-125b-5p acts as a gatekeeper of CM survival by repressing pro-

apoptotic bak1 and klf13. Therefore, miR-125b-5p may represent a novel therapeutic target 

for combating ischemic heart injury.

2. Materials and Methods

2.1. Animal study approval

Eight to 12-week-old C57BL/6 wild-type (WT) mice and 1- to 2-day-old Sprague-Dawley 

rats were used for this study. Research with animals carried out for this study was performed 

according to approved protocols and animal welfare regulations of Augusta University’s 

Institutional IACUC Committees. All animal procedures were performed in accordance with 

NIH guidelines. Neonatal rats were euthanized by decapitation under anesthesia for CM 

isolation, and mice were euthanized by thoracotomy with 1–4% inhalant isoflurane.

2.2. Mouse model of MI, intramyocardial injection, and post-MI mortality

WT mice (Jackson Laboratory) were subjected to MI as previously published [24]. Briefly, 

the mice were anesthetized using 1–3% inhalant isoflurane and placed on a heating pad. 

Animals were intubated and ventilated with medical oxygen using a PhysioSuite 

MouseVent™ ventilator. The left anterior descending (LAD) coronary artery was visualized 

under a stereoscope and ligated using an 8-0 prolene suture. Regional ischemia was 

confirmed by visual inspection under a stereoscope by discoloration of the occluded distal 

myocardium. Sham-operated animals were subjected to the same procedure without 

occlusion of the LAD. Immediately after MI or sham surgery, the mice were 

intramyocardially injected with 0.6mg/kg of miRCURY™ locked nucleic acid-based 

miR-125b-5p inhibitor (LNA-antimiR-125b-5p) or scrambled anti-miR control (Exiqon) into 

the ischemic border zone as described previously [25–27]. Briefly, the total volume of single 

injection was 40 µl and the needle was inserted through the myocardium, without passing 

into the cardiac lumen. The needle was first advanced in the border peri-infarct zone, 

covering as much as possible of the infarction perimeter. The antimiRs were then injected 

while the needle was slowly withdrawn. This technique distributes the antimiRs into a larger 

area along the perimeter of the infarct zone and a single intracardiac injection of miRs was 

recently shown to enhance the efficiency in heart tissue [28]. One dose of buprenorphine 

(0.05mg/kg) was given subcutaneously immediately after the surgery. Responses to toe/skin 

pinch, heart rate and blood pressure were used for intra- and post-operative monitoring. We 

also monitored the survival of mice following MI and performed Kaplan-Meier survival 

analysis.
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2.3. Transthoracic echocardiography

Left ventricular performance was assessed by two-dimensional echocardiography using a 

Visual Sonics Vevo 2100 ultrasound at baseline (pre-surgery) and post-MI (3, 5 and 7 days) 

as previously described [24]. M-mode tracings were used to measure anterior and posterior 

wall thicknesses at end diastole and end systole. Left ventricular internal diameter (LVID) 

was measured in either diastole (LVIDd) or systole (LVIDs). End diastolic volume (EDV) 

and end systolic volume (ESV) were also measured. A single observer blinded to the 

experimental groups performed echocardiography and data analysis. Fractional shortening 

(FS) was calculated according to the following formula: FS (%)=[(LVIDd-LVIDs)/LVIDd] × 

100. Ejection fraction (EF) was calculated as: EF (%)=[(EDV- ESV)/EDV] × 100.

2.4. Histology and immunohistochemistry

The hearts were harvested and weighed before undergoing gross anatomical inspection. 

Morphometric analysis of the heart size was performed as previously published [24]. 

Histopathological analysis of the cardiac tissues, including fibrosis (Masson’s trichrome 

staining), was performed using standard procedures as previously described [29–32]. For 

gross histological examination, sections were stained with haematoxylin and eosin (H and 

E). Myocardial sections were also stained for TUNEL to measure apoptosis using In Situ 
Cell Death Detection Kits (Roche) according to the manufacturer’s instructions. The rabbit 

polyclonal Troponin I antibody (sc-15368, Santa Cruz) was used to visualize CMs.

2.5. Cell culture and transfection

Mouse adult atrial CM HL-1 (obtained from Dr. Claycomb) and rat embryonic ventricular 

CM H9c2 cell lines were maintained as previously described [24]. Primary neonatal rat 

ventricular cardiomyocytes (NRVCs) were isolated by dissociation of 1- to 2-day-old 

Sprague-Dawley rats and maintained as previously published [24]. CMs were transfected 

with a siRNA control (sc-37007, Santa Cruz), or siRNAs targeting bak1 (AM16708, 

Ambion) or klf13 (4390771, Ambion) with Lipofectamine™ 2000 reagent (Invitrogen) as 

previously described [4]. To inhibit miR-125b-5p expression in CMs, we transfected 

mirVana™ miR inhibitors (Life Technologies) specific to miR-125b-5p (MH10148) or a 

miR inhibitor negative control (4464076) using Lipofectamine™ 2000 reagent (Invitrogen) 

as described previously [24, 30]. For gain-of-function studies, we transfected mirVana™ 

miR-125b-5p mimics (Life Technologies, MC10148) or a miR mimic negative control. 

Transfected cells were incubated overnight in serum-free medium supplemented with 0.1% 

BSA, 10 mM HEPES (pH 7.4), and 1% penicillin before Carv stimulation. Under serum 

starvation conditions, CMs were stimulated with Carv (1 µM; Sigma-Aldrich) or dimethyl 

sulfoxide (DMSO) as a vehicle for 4 hours as described previously [4]. All in vitro assays 

were performed 60–72 hours after transfection when maximum knockdown efficiency was 

reached.

2.6. In vitro simulated ischemia/reperfusion (sI/R) assays

Cells plated on coverslips or 6 well plates were transfected with miR inhibitors, miR mimics 

or siRNAs as aforementioned, washed, and placed in an ischemia buffer that contained 

118mM NaCl, 24mM NaH2CO3, 1mM NaHPO4, 2.5mM CaCl2, 1.2mM MgCl2, 20mM 
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sodium lactate, 16mM KCl and 10mM 2-deoxyglucose (pH 6.2). CMs were then incubated 

in an anoxic chamber (5% CO2, 0% O2) for 1 hour followed by 4 hours of reperfusion-

mimicking conditions (by replacing the ischemic buffer with normal cell medium under 

normoxia conditions) as described [24]. Coverslips or plates were processed for qRT-PCR, 

immunoblotting and TUNEL staining as mentioned below.

2.7. RNA Isolation and Quantitative Real-Time RT-PCR

Total RNA from CMs and mouse hearts was prepared using Trizol Reagent (Invitrogen) and 

treated with RNase-free DNase I to remove genomic DNA as described [4, 33, 34]. For 

detection of mature miR-125b-5p, the TaqMan MicroRNA Reverse Transcription Kit 

(ThermoFisher Scientific) was used to synthesize cDNA for TaqMan MicroRNA Assays. 

The following probes (ThermoFisher Scientific), which can detect both rat and mouse miRs, 

were used to amplify and measure the amount of mature miR by Real-Time RT-PCR: 

miR-125b-5p, 000449 and U6 snRNA, 001973 for endogenous controls. The following 

reaction components were used for each probe: 2 µL cDNA, 10 µl 2× TaqMan Universal 

PCR Master Mix (ThermoFisher Scientific), 1 µl probe, and 7 µl water in a 20 µL total 

volume.

cDNA for detection of genes was synthesized using ThermoFisher Scientific SuperScript III 

reverse transcriptase and oligo-dT primers. Expression of genes was detected using Taqman 

Gene expression assays for mouse or rat (Anp, Mm00435329_m1; Col3a1, 

Mm01254476_m1; Bax, Mm00432051_m1; Tnf-α, Mm00443258_m1; p53, 

Mm00495793_m1; Bak1, Mm00432045_m1 or Rn00587491_m1; Klf13, Mm00727486_s1 

or Rn01477773_m1 and Hprt1, Mm00446969_m1 or Rn01527840_m1 for endogenous 

controls). The following reaction components were used for each probe: 2 µL cDNA, 10 µl 

2× TaqMan Universal PCR Master Mix (ThermoFisher Scientific), 1 µl probe, and 7 µl water 

in a 20 µL total volume.

Real time PCR reactions were amplified and analyzed in triplicate using an ABI Sequence 

Detection System as described previously [34]. PCR reaction conditions were as follows: 

Step 1: 50°C for 2 minutes, Step 2: 95°C for 10 minutes, Step 3: 40 cycles of 95°C for 15 

seconds followed by 60°C for 1 minute. Expression relative to endogenous controls was 

calculated using 2−ΔΔCt and levels were normalized to control. We performed at least four 

independent experiments in triplicate using different batches of RNAs each time.

2.8. Immunoblotting and detection

Cells were washed once with PBS, solubilized in 1 ml of lysis buffer (5 mM HEPES, 250 

mM NaCl, 10% glycerol, 0.5% Nonidet P-40, 2 mM EDTA, and protease inhibitors) as 

previously described [4]. Lysate samples were resolved by SDS-PAGE and transferred to 

PVDF (Bio-Rad) for immunoblotting. Bak1 (sc-832, Santa Cruz), Klf13 (WH0051621M1, 

Sigma-Aldrich), β-actin (A2228, Sigma-Aldrich), p-AKT (4060, Cell Signaling) and t-AKT 

(9272, Cell Signaling) antibodies were purchased and used at dilutions of 1:1,000 each. 

Detection was carried out using ECL (Amersham Biosciences).
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2.9. Cardiomyocyte apoptosis by TUNEL staining

DNA fragmentation was detected in situ using TUNEL [24]. In brief, CMs were incubated 

with proteinase K, and DNA fragments were labeled with fluorescein-conjugated dUTP 

using terminal deoxynucleotidyl transferase (Roche Diagnostics). The total number of nuclei 

was determined by manual counting of DAPI-stained nuclei in 6 random fields per coverslip 

(original magnification, ×200). Digital photographs of fluorescence were acquired with a 

Zeiss microscope (ApoTome.2; Carl Zeiss) and processed with Adobe Photoshop CS5.1.

2.10. In silico miR-125b-5p target prediction analysis

We used several prediction algorithms based on evolutionary conservation of target sites 

across species including miRDB [35], PicTar [36] and Targetscan [37]. Each of these 

algorithms predicts hundreds of possible targets for miR-125b-5p, and we focused on 

putative anti-proliferative or pro-apoptotic targets that were predicted by all of these 

programs.

2.11. Statistical analysis

Data are expressed as mean ± SEM from at least four independent experiments with 

different biological samples per group. Statistical significance was determined using one-

way ANOVA with Bonferroni correction for multiple comparisons or Student unpaired t-

tests (GraphPad Prism version 5). A P value <0.05 was considered statistically significant.

3. Results

3.1. In vivo knockdown of miR-125b-5p results in enhanced post-AMI mortality and left 
ventricular dysfunction

To investigate the role of miR-125b-5p in experimental MI, we intramyocardially injected 

LNA™-antimiR-125b-5p into WT mice immediately after LAD occlusion or sham surgery. 

First, we demonstrated efficacy of the antimiR-125b-5p by showing that the level of 

miR-125b-5p was reduced, for instance, by ~75% after 7 days compared with anti-miR 

controls in both the sham and MI groups (Figure 1A and data not shown). We further 

showed that the hearts of antimiR-125b-5p-injected mice at baseline were functionally 

normal (Supplementary Table 1–4 and Figure 1C–E), suggesting that miR-125b-5p does not 

affect cardiac function and structure in the absence of a pathological insult. This conclusion 

is in line with previous reports in mice with miR-125b-5p knockdown or overexpression at 

baseline [10, 11].

Despite the normal phenotype at baseline, the mice with knockdown of miR-125b-5p 

responded differently to ischemic cardiac injury, exhibiting a significant increase in 

mortality as compared with control mice following ligation of the LAD. The detrimental 

effect of miR-125b-5p knockdown on survival became obvious 4 days following MI (Figure 

1B). Because miR-125b-5p is involved in regulation of the innate immunity [38], which may 

contribute to ventricular rupture after MI [39], we performed necropsy to detect evidence of 

hemopericardium. Indeed, knockdown of miR-125b-5p was associated with increased 

susceptibility to cardiac rupture as compared with anti-miR control (antimiR-125b-5p, 45% 

compared to anti-miR control, 11%, P<0.01). Moreover, mice with knockdown of 
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miR-125b-5p developed pronounced left ventricular dysfunction (as evidenced by 

significantly decreased EF and FS as well as increased LVIDs), and increased ratio of heart 

weight/body weight at 3 days (Figure 1C–F and Supplementary Table 2), 5 days 

(Supplementary Table 3) and 7 days (Figure 1C–F and Supplementary Table 4) after MI, 

when compared to the anti-miR control group.

We also found that anti-miR-125b-5p-injected hearts exhibited more loss of normal 

architecture and cellular integrity at 3 and 7 days after MI as compared to anti-miR control 

hearts (Figure 2A), which is consistent with our biochemical data showing that anti-

miR-125b-5p-injected hearts had increased mRNA levels of fetal ANP and pro-

inflammatory TNF compared to anti-miR controls (Figure 2B). To further assess the 

consequence of miR-125b-5p knockdown following MI, we examined fibrosis. Masson’s 

trichrome staining of hearts at 3 and 7 days post-MI revealed small areas of fibrosis in anti-

miR control hearts, while the hearts with loss-of-function of miR-125b-5p contained larger 

fibrotic regions (Figure 2C–D). Anti-miR-125b-5p-injected MI hearts also exhibited 

increased mRNA levels of fibrotic Col3a1 compared to anti-miR controls (Figure 2D).

We next demonstrated that anti-miR-125b-5p-injected hearts had higher numbers of 

TUNEL-positive cells in the heart sections of peri-ischemic border area after 3 and 7 days of 

MI as compared to anti-miR control MI hearts (Figure 3A). This is consistent with our 

biochemical data showing that anti-miR-125b-5p-injected hearts had increased mRNA levels 

of pro-apoptotic Bax compared to anti-miR controls (Figure 3B). Because we reported that 

miR-125b-5p is activated by β1AR (expressed only in CMs in the heart) [6], and because 

programmed CM death has been suggested to underlie progressive ventricular remodeling 

and ischemic cardiac failure [40–43], we next determined whether CMs undergo apoptosis 

in the mice with loss-of-function of miR-125b-5p. Co-staining for TUNEL and the CM 

marker troponin I (TnI) demonstrated that knockdown of miR-125b-5p resulted in higher 

numbers of TUNEL-positive CMs 7 days after MI compared with controls (Figure 3C). 

Collectively, these results suggest that loss-of-function of miR-125b-5p resulted in diverse 

pathological abnormalities post-MI, leading to cardiac structural/functional remodeling.

3.2. MiR-125b-5p regulates pro-apoptotic bak1 and klf13

In order to identify candidate miR-125b-5p target genes that regulate cardiac pathology, we 

used several prediction algorithms including miRDB [35], PicTar [36] and Targetscan [37]. 

In silico ingenuity pathway analysis [44] showed that one of the key associated network 

functions of the predicted targets of miR-125b-5p is anti-proliferation, cell cycle arrest or 

apoptosis. Accordingly, we focused on apoptosis-related genes (bak1, klf13 and p53) as 

potential targets of miR-125b-5p.

To identify the functional targets of miR-125b-5p in CMs, we first performed loss- and gain-

of-function studies by transfecting anti-miRs and miR mimics to NRVCs, respectively. We 

were able to achieve downregulation of miR-125b-5p (to over 95% of anti-miR controls) or 

overexpression of miR-125b-5p (~48-fold of miR mimic controls) (Figure 4A–B). Two of 

the predicted targets (bak1 and klf13), but not p53, were upregulated with miR-125b-5p 

inhibition and downregulated with miR-125b-5p overexpression (Figure 4C). The mRNA 

results were confirmed by immunoblotting analysis that demonstrated concordant alterations 
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in protein levels of bak1 or klf13 after transfection of either miR mimics or anti-miRs for 

miR-125b-5p, respectively (Figure 4D–E).

These CM results were confirmed in vivo by QRT-PCR analyses demonstrating increased 

levels of bak1 and klf13 in anti-miR-125b-5p-injected mouse hearts at both baseline and at 7 

days post-MI compared to control (Figure 4F). Importantly, we observed the downregulation 

of miR-125b-5p in the hearts of WT mice subjected to MI (Figure 4G), which is consistent 

with several studies in patients with end-stage dilated or ischemic cardiomyopathy [7, 8] as 

well as AMI [9]. Finally, further mRNA analysis showed that cardiac expression of bak1 and 

klf13 was upregulated following MI as compared with sham control (Figure 4F). These data 

are consistent with previous studies showing (i) upregulation of cardiac bak1 in mice 

following I/R injury and in CMs subjected to simulated I/R [10], as well as in patients with 

ischemic heart disease [20], and (ii) the upregulation of klf13 in patients with congenital 

heart defects [21].

3.3. Carvedilol regulates the miR-125b-5p/bak1 or klf13 pair in cardiomyocytes

We previously showed that Carv upregulates miR-125b-5p in HEK293 cells stably 

expressing wild-type β1AR, and in mouse hearts, via stimulating β1AR, G protein-coupled 

receptor kinase (GRK) 5/6 and β-arrestin1 [6]. We evaluated the expression of this miR in 

Carv-treated HL-1 and H9c2 cells as well as NRVCs. Carv modestly upregulated the basal 

expression of miR-125b-5p and more strongly upregulated its expression following sI/R 

conditions in HL-1 cells (Figure 5A–B). In H9c2 cells (Figure 5C–D) and NRVCs (Figure 

5E–F), Carv only upregulated the expression of miR-125b-5p following sI/R. These data 

indicate that Carv consistently upregulates miR-125b-5p in injured CMs, and that sI/R 

predisposes CMs to be more responsive to Carv compared to basal conditions as supported 

by a previous report that sI/R decreased miR-125b-5p in CMs [10].

Our NRVC data also indicated that Carv decreased the expression of bak1 and klf13 
following sI/R (Figure 5G–H), concordant with upregulation of miR-125b-5p. Together with 

the previous studies showing an inverse correlation between miR-125b-5p and bak1 or klf13 

in cardiac and CM injury [7–10, 20, 21], our results strongly indicate that bak1 and klf13 are 

functional CM targets of miR-125b-5p. This idea is further supported by previous reports 

implicating bak1 in cardiac and CM apoptosis [45, 46], and klf13 as a negative regulator of 

antiapoptotic BCL-X(L) in hematopoietic stem cells, splenocytes, thymocytes, and cancer 

cells [18, 47, 48].

3.4. MiR-125b-5p functions as a protective miR by repressing pro-apoptotic bak1 and klf13 
in CMs

Because our data suggest that pro-apoptotic bak1 and klf13 are regulated by Carv in part via 

miR-125b-5p, we further hypothesized that miR-125b-5p may function as a pro-survival 

miR. To determine the importance of miR-125b-5p for CM survival under anoxic conditions, 

we used in vitro models of I/R to show that miR-125b-5p protects CMs from cell death. 

Loss-offunction of miR-125b-5p in NRVCs increased CM apoptosis (Figure 6A–C). We 

next tested whether miR-125b-5p activates survival signaling in adult CMs. We observed 
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that miR-125b-5p overexpression increases p-AKT levels under both basal and simulated 

I/R conditions (Figure 6D), suggesting that miR-125b-5p acts as a pro-survival miR in CMs.

We next determined if the two targets of miR-125b-5p regulate CM apoptosis. Loss-of-

function approaches demonstrated that knockdown of bak1 or klf13 decreased NRVC 

apoptosis in response to sI/R (Figure 7A–E). Finally, to establish a functional linkage 

between miR-125b-5p, bak1/klf13 expression, and CM apoptosis, we applied a siRNA/

antimiR-based rescue strategy to validate the functional relevance of these targets. 

Consistent with our earlier observations (Figure 6A–C), antimiR-125b-5p alone increased 

CM apoptosis, while the siRNA against either bak1 or klf13 efficiently prevented the pro-

apoptotic effects of antimiR-125b-5p (Figure 7). Taken together, our CM data support the in 
vivo evidence that miR-125b-5p exerts protective effects in part through functional 

repression of pro-apoptotic bak1 and klf13.

4. Discussion

Here, we identify miR-125b-5p as an ischemic stress-responsive protector against CM 

apoptosis both in vivo and in vitro. Knockdown of miR-125b-5p renders mice more sensitive 

to ischemic injury, as evidenced by increased cardiac apoptosis and fibrosis as well as 

impairment of ventricular function following AMI. Mechanistically, we determined that 

miR-125b-5p targets pro-apoptotic bak1 and klf13 to elicit its protective effects. CMs 

deficient in miR-125b-5p exhibit increased sensitivity to sI/R-induced apoptosis, while CMs 

overexpressing miR-125b-5p have increased pro-survival signaling.

We previously showed that miR-125b-5p is a Carv-responsive miR and is post-

transcriptionally activated by β-arrestin1-mediated β1AR cardioprotective signaling 

pathways (Figure 8A–C). Together with the results presented here (Figure 8D), we postulate 

that β-arrestin1-biased β1AR regulatory mechanism of miR processing in CMs (the only cell 

type in which β1ARs are expressed in the heart) may result in beneficial adaptive 

remodeling following cardiac injury. This hypothesis is further supported by the observation 

that four Carv/β1AR/β-arrestin1-responsive miRs (miR-125b-5p, miR-150, miR-199a-3p 

and miR-214) that we identified [6] are cardioprotective in vivo after ischemic injury [10, 

24, 49, 50]. Interestingly, two other studies linking Carv to upregulation of cardioprotective 

miRs have been also reported in rats [51, 52]. Basal expression of the cardioprotective 

miR-133 [53, 54] in myocardial tissue was significantly upregulated by Carv pretreatment, 

and upregulation of miR-133 mediated the antiapoptotic action of Carv in isolated CMs 

[51]. The upregulation of miR-29b, another cardioprotective miR [55], was also shown to 

contribute to the effects of Carv to attenuate post-MI fibrosis [52]. Collectively, these studies 

support the concept that the cardioprotective actions of Carv are associated with increased 

levels of cardioprotective miRs. Notably, miR-125b-5p (miR-125b) is co-transcribed with 

miR-125b*, which gives rise to two mature forms (a guide -5p strand and a star or passenger 

-3p strand, respectively) with different seed (targeting) sequences. Although our previous 

global miR profiling analysis in mouse hearts showed that only miR-125b-5p is post-

transcriptionally upregulated by Carv/β1AR/β-arrestin1-mediated cardioprotective signaling 

pathways [6], a previous study also demonstrated that miR-125b* contributes to 

cardioprotection in rats by ischemic pre- and post-conditioning and that overexpression of 
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the protectomiR confers cytoprotection in NRVCs subjected to sI/R [56]. These studies 

suggest that the miR-125b family members are regulated by different upstream mechanisms 

despite their similar association with cardioprotection. Although it would be interesting to 

investigate the exact role of each miR-125b family member in cardioprotection and the 

underlying mechanisms, these studies are outside of the scope of the current study to report 

a novel protective mechanism after AMI by one of Carv-responsive miRs that we identified 

[6]. Future studies are needed to fully elucidate the possible overlapping/compensatory 

effects of Carv-responsive miRs and the miR-125b family as well as their underlying 

mechanisms of action.

Bak1 has been shown to be regulated by miR-125b-5p in cancer cells [12–17], neural crest 

cells and mouse embryos [19], and CMs and myocardium [10]. Bak1 was recently identified 

as a direct target of miR-125b-5p [12, 19]. In addition to reporting that bak1 is a functional 

CM target of miR-125b-5p, we demonstrate the novel finding that klf13 is regulated by 

miR-125b-5p in CMs, consistent with a report in hematopoietic stem cells [18]. Klf13 has 

been reported to mediate apoptotic signaling in multiple cell types [18, 47, 48]. In the heart, 

bak1 was reported to induce CM apoptosis [45] and myocardial I/R-mediated apoptosis [46]. 

Bak1 expression was also reported to be upregulated in sI/R-induced CMs and I/R-induced 

mouse hearts [10] as well as in patients’ hearts with end stage HF [20]. Gain-of-function 

variants of klf13 were associated with increased risk of congenital heart defects in patients 

[21], and genetic studies in Xenopus showed that klf13 regulates embryonic CM 

proliferation and heart morphogenesis [22, 23]. Our findings further support that inhibition 

of bak1 and klf13 could be therapeutically beneficial for cardiac disease. Given our data that 

these two pro-apoptotic genes are functional targets of miR-125b-5p in CMs as well as the 

previous studies showing an inverse correlation between miR-125b-5p and bak1 or klf13 in 

cardiac and CM injury [7–10, 20, 21], boosting levels of miR-125b-5p could be 

therapeutically beneficial to reduce the expression of bak1 and klf13 in patients suffering 

from MI.

Consistent with our findings, two previous studies in a mouse model of either I/R or cecal 

ligation and puncture (CLP)-induced sepsis reported that overexpression of miR-125b-5p 

protects the heart from I/R injury or CLP-induced sepsis by inhibiting p53-mediated 

apoptotic signaling and TRAF6-mediated NF-kB activation [10, 57]. Interestingly, another 

recent report using loss-of-function approaches showed that miR-125b-5p is maladaptive in 

angiotensin IIinduced cardiac fibrosis by inhibiting p53 and apelin, subsequently activating 

cardiac fibroblasts [11]. These contradictory findings likely reflect miR-125b-5p’s complex 

functions depending on the specific cardiac injury model and cell type, as was reported with 

another Carv/β1AR/β-arrestin1-regulatable miR, miR-214 [49, 58–60]. Moreover, these 

previous reports on miR-125b-5p suggest a possible role for miR-125b-5p in post-MI 

inflammation and cardiac fibroblast activation (i.e. extra-CM effects of miR-125b-5p), 

which may contribute to the abnormal cardiac remodeling seen in our current study.

Limitations of the study

As recommended by the European Society of Cardiology Working Group on Cellular 

Biology of the Heart [61, 62], the measurement of infarct size and area at risk may be 
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required to directly assess acute cardioprotection elicited by miR-125b-5p because it cannot 

be excluded that the improvement in post-MI cardiac function mediated by miR-125b-5p 

might be due to other mechanisms, which are not related to acute cardioprotection.

Our previous global profiling analysis identified unique mouse miR signatures regulated by 

Carv-induced β-arrestin1-biased agonism of β1AR [6], which may be linked to its 

mechanism for beneficial adaptive remodeling following cardiac injury. In later studies, we 

indeed demonstrated that three of Carv-responsive miRs act as protective miRs [24, 63]. We 

also show in the current study that another Carv-responsive miR, miR-125b-5p confers the 

improvement of cardiac function and structure after AMI. However, as extensively reviewed 

in [61, 64, 65], further understanding and more comprehensive analysis of the 

cardioprotective miR expression profile by using larger scale and unbiased approaches in 

normal, protected, and comorbid conditions might be warranted to more successfully search 

novel therapeutic targets because the pathophysiology of ischemic heart disease and 

cardioprotection is extremely complex.

Conclusions

Our results suggest that miR-125b-5p protects the heart against AMI by blunting CM death 

in response to injury in part through its repression of bak1 and klf13 (Figure 8D). Although 

additional mechanistic studies concentrating on miR-125b-5p in different injury models and 

in other cardiac cell types are needed, our data nevertheless suggest that boosting 

miR-125b-5p levels to attenuate CM death may provide therapeutic benefits given that 

downregulation of miR-125b-5p is associated with ischemic cardiomyopathy [7, 8] and AMI 

[9] in humans.
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DCM dilated cardiomyopathy

Carv carvedilol

GPCR G protein-coupled receptor

GRK G protein-coupled receptor kinase

HF heart failure

I/R ischemia/reperfusion

KO knockout

LV left ventricle

MiRNAs or MiRs microRNAs

MI myocardial infarction

NRVCs neonatal rat ventricular cardiomyocytes

P phosphorylated

sI/R simulated ischemia/reperfusion
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Highlights

• MiR-125b-5p protects the heart against myocardial infarction.

• MiR-125b-5p functions as a gatekeeper of cardiomyocyte survival.

• The action of miR-125b-5p is mediated by the repression of bak1 and klf13.
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Figure 1. MiR-125b-5p protects the mouse heart against AMI
A, QRT-PCR expression analysis of miR-125b-5p in hearts from WT mice 

intramyocardially injected with 0.6mg/kg of LNA™ miR-125b-5p inhibitor 

(antimiR-125bp-5p) or scrambled anti-miR control for 7 days. N=4 per group; data are 

shown as fold induction of miR-125b-5p expression normalized to U6 snRNA and expressed 

as mean ± SEM. ***P<0.001 vs. anti-miR control. B, Survival curve following MI in mice 

injected with antimiR-125b-5p and scrambled anti-miR control. N=16–22, **P<0.01 vs. all 

other groups. C–E, Transthoracic echocardiography was performed at 3 and 7 days post-MI 

by a blinded investigator on age/sex-matched mice. Quantification of left ventricular (LV) 
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ejection fraction (EF: C), fractional shortening (FS: D), and LV internal diameter, systole 

(LVIDs: E) is shown. N=7–20; data represent mean ± SEM. ***P<0.001 vs. Sham; #P<0.05 

or ##P<0.01 vs. all other groups. F, heart weight/body weight (HW/BW) ratio of WT mice 

injected with either anti-miR-125b-5p or anti-miR control (N=4–6). Data represent mean ± 

SEM. **P<0.01 or ***P<0.001 vs. Sham; #P<0.05 vs. all other groups.
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Figure 2. Knockdown of miR-125b-5p induces abnormalities in cardiac structure and expression 
of genes involved in cardiac stress, inflammation, and fibrosis post-AMI
A, Representative H & E staining of transverse heart sections of peri-ischemic border area at 

3 and 7 days post-MI demonstrates more loss of normal architecture and cellular integrity in 

anti-miR-125b-5p-injected hearts compared to anti-miR controls. B, QRT-PCR analysis of 

gene expression (ANP: cardiac stress and TNF-α: inflammation) in the post-infarcted hearts 

from anti-miR-125b-5p-injected mice compared to anti-miR controls at 3 and 7 days post-

MI. N=3–5 per group; data are shown as fold induction of gene expression normalized to 

Hprt1 and expressed as mean ± SEM. *P<0.05 vs. MI anti-miR control. C–D, 

Representative Masson’s trichrome staining (C) and quantification of fibrosis (D, left) in 

transverse heart sections of peri-ischemic border area at 3 and 7 days post-MI. D, (Right) 

QRT-PCR analysis of fibrotic Col3a1 expression in anti-miR-125b-5p-injected hearts 

relative to anti-miR controls at post-MI day 3 and 7. N=3–5 per group; data are shown as 

fold induction of Col3a1 expression normalized to Hprt1 and expressed as mean ± SEM. 

*P<0.05 vs. MI anti-miR control.
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Figure 3. MiR-125b-5p knockdown increases cardiomyocyte apoptosis post-AMI
A, Representative TUNEL staining (left) and quantification (right) of transverse heart 

sections of peri-ischemic border area at 3 and 7 days post-MI show increased apoptosis in 

anti-miR-125b-5p-injected hearts compared to anti-miR controls. B, QRT-PCR expression 

analysis of apoptotic Bax in anti-miR-125b-5p-injected hearts relative to anti-miR controls 

at 3 and 7 days post-MI. N=3–7 per group; data are shown as fold induction of gene 

expression normalized to Hprt1 and expressed as mean ± SEM. *P<0.05 or **P<0.01 vs. MI 

anti-miR control. C, (Left) Immunohistochemistry for TUNEL (green) and troponin I (red) 

with DAPI counterstain (blue) of transverse sections of hearts injected with anti-

miR-125b-5p and anti-miR controls at day 7 post-MI. (Right) Quantification of apoptotic 

cardiomyocytes (CMs; TUNEL- and troponin I-positive) in the peri-ischemic border area of 

transverse heart sections at day 7 post-MI. Representative results are from 9 random 63× 

fields per sample, N=3–4. Data represent mean ± SEM; *P < 0.05 vs. MI anti-miR controls.
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Figure 4. MiR-125b-5p represses pro-apoptotic bak1 and klf13
A–C, RNAs isolated from NRVCs transfected with 100nM mirvana miR-125b-5p inhibitor 

or 15-mer control (A) and miR-125b-5p mimic or 15-mer control (B) were analyzed by 

miR-125b-5p-specific RT-PCR and QRT-PCR to access the levels of miR-125b-5p. *P < 

0.05 vs. miR mimic control; ***P < 0.001 vs. anti-miR control. Levels of miR-125b-5p’s 

predicted target mRNAs are shown in C. Data were normalized to Hprt1 and expressed 

relative to control (anti-miR control or miR mimic control). Results are representative of 4 

independent experiments with different biological samples. *P < 0.05 or #P < 0.05 vs. 

control. D–E, Gain- or loss-of-function of miR-125b-5p in NRVCs resulted in decreased (D) 
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or increased (E) bak1 or klf13 protein levels, respectively. N=4. *P < 0.05 or **P < 0.01 vs. 

control. F, Bak1 and klf13 mRNA levels were measured in lysates of left ventricular tissues 

from anti-miR-125b-5p-injected mice compared to anti-miR controls at baseline and at 7 

days post-MI. N=4–8. *P < 0.05 or **P < 0.01 vs. sham anti-miR control; #P < 0.05 or ##P < 

0.05 vs. other three groups. G, QRT-PCR expression analysis of miR-125b-5p in left 

ventricular tissues at 3 and 5 days post-MI. **P < 0.01 vs. sham.
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Figure 5. Carvedilol induces the expression of miR-125b-5p in simulated ischemia/reperfusion in 
both atrial and ventricular CMs, and inhibits the expression of its targets bak1 or klf13 in 
NRVCs
A–B, The expression of mature miR-125b-5p in HL-1 cells treated with either vehicle 

(DMSO) or 1µM of carvedilol (Carv) for 4 hours and subjected to either normoxia (basal) or 

simulated ischemia/reperfusion (sI/R). C–D, The expression of mature miR-125b-5p in 

H9c2 cells treated with 1µM of Carv for 4 hours and subjected to either normoxia (basal) or 

sI/R. N=5 in each group. *P < 0.05 vs. DMSO. E–F, QRT-PCR analysis of miR-125b-5p in 

NRVCs treated with 1µM Carv for 4 hours and subjected to either normoxia (basal) or sI/R. 

G–H, QRT-PCR analysis of bak1 and klf13 in NRVCs treated with 1µM of Carv for 4 hours 

and subjected to either normoxia (basal) or sI/R. N=6. *P < 0.05 vs. DMSO.

Bayoumi et al. Page 24

J Mol Cell Cardiol. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. MiR-125b-5p protects against cardiomyocyte apoptosis
A–C, TUNEL analysis of NRVCs transfected with anti-miR control or anti-miR-125b-5p in 

normoxic (A and C) and simulated I/R conditions (B and C). The percentage of TUNEL 

positive cells was normalized to DAPI positive cells (quantified in lower panels). All data 

are mean ± SEM; N=4. *P < 0.05 or **P < 0.01 vs. anti-miR control. D, Immunoblotting for 

p-AKT in NRVCs transfected with miR mimic control or miR-125b-5p mimic and subjected 

to simulated IR. N=4. *P < 0.05 vs miR mimic control.
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Figure 7. Bak1 and klf13 are necessary for miR-125b-5p-dependent regulation of cardiomyocyte 
apoptosis
A–E, NRVCs transfected with control scramble siRNA (si-control), bak1 siRNA (si-Bak1), 

klf13 siRNA (si-Klf13), anti-miR-125b-5p/si-Bak1, or anti-miR-125b-5p/si-Klf13 were 

subjected to in vitro simulation of I/R (sI/R). TUNEL assays were then performed under 

both basal and sI/R conditions. The percentage of apoptotic nuclei (green) was calculated by 

normalizing total nuclei (blue). Knockdown of bak1 or klf13 decreases ventricular 

cardiomyocyte apoptosis and protects NRVCs from the pro-apoptotic effects of anti-

miR-125b-5p (A–C). QRT-PCR analyses for bak1 and klf13 (D) and miR-125b-5p (E) were 

performed to verify the knockdown efficiency. Data are shown as mean ± SEM for five 

independently obtained biological samples. *P < 0.05, **P < 0.01, or ***P < 0.001 vs. 

control : either si-control or anti-miR control. #P < 0.05 vs. anti-miR-125b-5p/si-control.
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Figure 8. A β1-adrenergic receptor (β1AR)/β-arrestin1-responsive miR, miR-125b-5p, is a novel 
mediator of improved cardiac function and structure after MI
β-arrestin-mediated β1AR signaling confers cardioprotection [5] (A) and the β-blocker 

carvedilol (Carv) is a β-arrestin-biased ligand for β1AR [4] (B). We previously showed that 

Carv induces the processing of miR-125b-5p in a β1AR-, G protein-coupled receptor kinase 

5/6 (GRK5/6)- or β-arrestin1-dependent manner [6] (C). Here, our results suggest that β-

arrestin1-biased agonism of β1AR-mediated miR-125b-5p processing is a novel 

cardioprotective mechanism after MI, and that miR-125b-5p confers the improvement of 

cardiac function and structure after MI by repressing apoptotic genes bak1 and klf13 in 

cardiomyocytes (D).
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