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Abstract

Posttraumatic stress disorder (PTSD) is a major psychiatric disorder that is prevalent in combat 

veterans. Previous neuroimaging studies have found elevated amygdala activity in PTSD in 

response to threatening stimuli, but previous work has lacked the temporal specificity to study fast 

bottom-up fear responses involving the amygdala. Forty-four combat veterans, 28 with PTSD and 

16 without, completed psychological testing and then a face-processing task during 

magnetoencephalography (MEG). The resulting MEG data were pre-processed, transformed into 

the time-frequency domain, and then imaged using a beamforming approach. We found that 

veterans with PTSD exhibited significantly stronger oscillatory activity from 50–450 ms in the left 

amygdala compared to veterans without PTSD while processing threatening faces. This group 

difference was not present while viewing neutral faces. The current study shows that amygdala 

hyperactivity in response to threatening cues begins quickly in PTSD, which makes theoretical 

sense as an adaptive bottom-up fear response.
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1. Introduction

Neuroimaging findings in posttraumatic stress disorder (PTSD; APA, 2013) indicate 

elevated amygdala activity, often in conjunction with inadequate prefrontal cortex 

modulation of such limbic hyperactivity (Etkin & Wager, 2007; Hayes et al., 2012; Koch et 

al., 2016; Patel et al., 2012). However, this literature typically utilizes neuroimaging tools 

(e.g. fMRI, PET) that are unable to measure fronto-limbic activations with high temporal 

specificity, preventing strong conclusions about the underlying time course. Recent research 

has focused generally on fast fear pathways (Diano et al., 2017; Méndez-Bértolo et al., 

2016), but research about fast amygdala reactivity in PTSD is needed.

Automatic processing of threat-related cues is linked to threat reactivity responses in PTSD 

(Lanius et al., 2017). Interestingly, emotionally-neutral stimuli seem to require selective 

attention for processing, while emotionally-laden stimuli may be less dependent on 

attentional resources (Vuilleumier, 2005) and more rooted in amygdala responsivity (Diano 

et al., 2017). Magnetoencephalography (MEG) has excellent temporal specificity, and 

previous MEG studies using healthy participants have found early amygdala activation in 

response to emotional faces (Garrido et al., 2012; Garvert et al., 2014; Luo et al., 2007, 

2010), consistent with face processing studies that used intracranial recordings (Hesse et al., 

2016; Mendez-Bertolo et al., 2016; Pourtois et al., 2010; Sato et al., 2011). Substantial 

evidence supports the capability of MEG to detect neural activity in deep brain structures 

(Badura-Brack et al., 2017; Cornwell et al., 2012a, 2012b, 2014; Dalal et al., 2008; 

McDermott et al., 2016; Proskovec et al., 2016; Pu et al., 2017; Salvadore et al., 2009, 2010; 

Wilson et al., 2009, 2010, 2011, 2017). One such MEG study used a seed-based functional 

connectivity approach found that veterans with PTSD had increased functional connectivity 

relative to veterans without PTSD between the amygdala and ventromedial prefrontal cortex 

when viewing threatening faces (Dunkley et al., 2016); however, this study did not examine 

the time course or amplitude or amygdala responses, and thus such data remains unavailable 

in patients with PTSD.

We used a face-processing paradigm involving angry and neutral faces, as faces are known 

to elicit strong emotional reactivity (de Gelder et al., 2006; Johnson, 2005). Threatening 

expressions are a key primitive threat signal, which likely provoke an evolutionary alarm 

response (Tamietto & de Gelder, 2010). This innate alarm system has been of interest in 

PTSD (Lanius et al., 2017), with the amygdala being central to an automatic response to 

threat (e.g. fight or flight) and symptoms of PTSD (LeDoux & Pine, 2016). Given that PTSD 

is associated with neurocognitive deficits including speed of information processing and 

attention/working memory (see Scott et al., 2015), we expected the PTSD group to have 

slower reaction times than veterans without PTSD. Based on previous research, we 

hypothesized that amygdala activity would be present and occur shortly after stimulus onset 
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in threat trials in both groups, and specifically that amygdala activity would be significantly 

stronger in combat veterans with PTSD as compared to those without PTSD.

2. Materials and methods

2.1. Participants

Twenty-eight male combat veterans with PTSD and 16 male combat veterans without PTSD 

participated in this study. All veterans served in Iraq or Afghanistan between 2003 and 2014, 

and were assessed using the Clinician Administered PTSD Scale (CAPS; Blake et al., 1995). 

The two groups of men were matched on age (PTSD: M=33.50, SD = 9.00; no-PTSD: M = 

33.56, SD= 8.02), education (PTSD: M=14.71, SD = 2.21; no-PTSD: M= 14.27, SD= 1.94), 

race (86%; 88% Caucasian), and handedness (all right-handed). Veterans diagnosed with 

PTSD had significantly higher (p > 0.001) CAPS scores (M = 71.00, SD = 17.20 than those 

without PTSD (M = 23.5, SD = 12.90). Exclusion criteria were medical diagnoses affecting 

central nervous system function, brain neoplasm or lesion, significant head trauma, current 

substance dependence and ferromagnetic implants. Veterans on medications were not 

excluded, and 32% of the PTSD group and 19% of those without PTSD were taking stable 

dosage of an SSRI, Xanax, or mood stabilizer. Written informed consent was obtained 

following the ethical guidelines of the Creighton University Institutional Review Board.

2.2. Experimental paradigm

All participants completed a face-processing task (Britton et al., 2012) while seated inside 

the MEG chamber. Trials began with a fixation cross presented for 500 ms, followed by the 

presentation of a face pair for 500 ms. The stimuli varied between one angry and one neutral 

face (threat) or two neutral faces (neutral; Figure 1). Participants were instructed to respond 

with their right index or middle finger based on the location of a target that appeared in the 

space vacated by one of the faces. The target duration was 400 ms and a blank screen was 

presented between trials for an interval of 1250–1350 ms. Accuracy and response times were 

recorded.

2.3. MEG Data Acquisition, Pre-Processing & Source Reconstruction

Neuromagnetic responses were sampled continuously at 1 kHz using an acquisition 

bandwidth of 0.1–330 Hz and Elekta system with 306 magnetic sensors (Helsinki, Finland). 

All MEG data were subjected to noise reduction using the signal space separation method 

with a temporal extension (tSSS; Taulu and Simola, 2006), coregistered with structural MRI, 

and transformed into standard space after beamforming (see below).

Cardiac artifacts were removed using signal-space projection (SSP; Uusitalo and Ilmoniemi, 

1997). The continuous magnetic time series was divided into epochs of 2700 ms duration 

(−500 to 2200 ms), with 0.0 s defined as stimulus onset (i.e., faces) and the baseline defined 

as the −500 to −100 ms time window. Epochs containing artifacts were rejected based on a 

fixed threshold method, supplemented with visual inspection. Artifact-free epochs were 

transformed into the time-frequency domain using complex demodulation and the resulting 

spectral power estimations per sensor were averaged over trials to generate time-frequency 

plots of mean spectral density, and then normalized using the mean power during the 
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baseline period. This revealed a broadband (4–40 Hz) oscillatory response in many MEG 

sensors that started shortly after stimulus onset (50 ms) and continued through the end of the 

face stimulus presentation period (450 ms).

Data were then imaged (4–40 Hz, 50–450 ms) using an extension of the linearly constrained 

minimum variance vector beamformer (Gross et al., 2001). The resulting 3-dimensional 

maps of functional brain activity were 4.0 × 4.0 × 4.0 mm resolution and were statistically 

evaluated using a mass univariate approach based on the general linear model. All statistical 

maps were displayed as a function of α level, thresholded at p < 0.05, and adjusted for 

multiple comparisons using a spatial extent threshold (80 contiguous voxels). MEG 

preprocessing and imaging used the Brain Electrical Source Analysis (BESA version 6.1) 

software.

3. Results

Average accuracy in the task was 94.94% (SD: 4.61%) in the threatening condition and 

95.36% (SD: 5.23%) in the neutral condition, and there were no group differences in either 

condition (ps > 0.23). Reaction time differed significantly on the Mann-Whitney U test 

between the groups for threatening (p = 0.013) and neutral (p = 0.022) conditions. Veterans 

with PTSD responded more slowly (neutral: M = 816.31ms, SD = 135.21; threat: M = 

822.98ms, SD= 140.46) than their non-PTSD peers (neutral: M = 723.03ms, SD = 96.92; 

threat M = 721.62ms, SD = 101.14) in both conditions. Neither group showed a significant 

difference between conditions for accuracy or reaction time.

The MEG group comparisons showed that during threatening stimuli (50–450 ms), veterans 

with PTSD had significantly stronger oscillatory activity in the left amygdala (peak 

coordinate: −22, −1, −23; Tzourio-Mazoyer et al., 2002) compared to veterans without 

PTSD (p < .05, corrected; Figure 2). Follow-up analyses at the voxel level suggested that 

this amygdala response was primarily in the 6–10 Hz band from 100–300 ms. No 

neurophysiological differences were found between veterans with and without PTSD during 

neutral face processing.

4. Discussion

This study utilized the excellent temporal specificity of MEG in the context of threatening 

visual stimuli and PTSD. The key finding was stronger left amygdala oscillations in veterans 

with PTSD relative to those without PTSD during the processing of threatening, but not 

neutral faces. The left amygdala was the only brain region to show group MEG differences 

during threatening faces, and there were no group differences during neutral face processing. 

Thus, our amygdala findings were specific to threatening faces and argue against a 

generalized hyperactive amygdala in PTSD.

Preferential left amygdala activation is common in response to fearful and threatening facial 

stimuli as opposed to neutral faces in PET (Morris et al., 1996, 1998a, 1998b) and fMRI 

(Breiter et al., 1996; Carlson et al., 2009 Irwin et al., 1996; Whalen et al., 1998) studies, and 

our findings were consistent with such findings. Behaviorally, veterans with PTSD 

responded more slowly to both neutral and threatening faces relative to veterans without 
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PTSD, consistent with previous speed of processing and attention studies (See Scott, et al., 

2015). Our facial processing task did not specifically direct attention toward emotional 

stimuli (Diano et al., 2017), and thus may nicely model the cues that provoke PTSD 

symptoms in daily life. Further, only face pairs that included angry expressions triggered an 

early amygdala response, consistent with an immediate response to threat in PTSD (Lanius 

et al., 2017).

To our knowledge, only three previous MEG studies have identified the timing of cortical 

differences in threat-cue processing in patients with PTSD compared to traumatized 

controls, and no MEG study has reported amygdala activation differences. These studies 

found that veterans without PTSD engaged the anterior cingulate more than veterans with 

PTSD from 90–140 ms (Todd et al., 2015), and that veterans without PTSD engaged the 

right ventromedial prefrontal more than those with PTSD from 400–600 ms (Khanna et al., 

2017) after emotional word presentation. These MEG studies used emotional words, which 

are not as primitive of a threat cue as angry faces and may be why amygdala differences 

were not noted. Another study found that patients with PTSD recruited right prefrontal 

regions more than controls at 130–160 ms after affective picture presentation (Adenauer et 

al., 2010), but these were pictures of various items which required more processing than 

simply viewing neutral versus angry faces.

Importantly, our findings are consistent with MEG studies of healthy participants identifying 

early amygdala activation in response to emotional faces (Garrido et al., 2012; Garvert et al., 

2014; Luo et al., 2007, 2010). We have extended these findings, demonstrating that 

amygdala activation in response to angry but not neutral faces is stronger in veterans with 

PTSD than in those without. Thus clarifying an early (~50 ms) and specific amygdala 

activation to threatening stimuli in PTSD which may reflect a bottom-up amygdala drive on 

cortical functioning (Liddell et al., 2004, 2005) consistent with a fear response. Future 

research is necessary, using primitive threatening stimuli such as emotional faces and 

startling sounds, but our study suggests targeting early amygdala hyperactivity in the 

assessment and treatment of PTSD.
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Figure 1. 
Facial presentation task flow.
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Figure 2. 
Veterans with PTSD exhibited stronger oscillations in the left amygdala relative to veterans 

without PTSD. Image has been thresholded at p < 0.05, corrected.
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