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Abstract

Influenza vaccination is recommended as the best way to protect against influenza infection and 

illness. Due to seasonal changes in influenza virus types and subtypes a new vaccine must be 

produced, and vaccine effectiveness (VE) must be estimated, annually. Since 2010, influenza 

vaccination has been recommended universally in the U.S., making randomized clinical trials 

unethical. Recent studies have employed a monitored household cohort study design to determine 

separate VE estimates against influenza transmission from the household and community. We 

developed a probability model and accompanying maximum likelihood procedure to estimate 

vaccine-related protection against transmission of influenza from the household and the 

community.

Using agent-based stochastic simulations, we validated that we can obtain maximum likelihood 

estimates of transmission parameters and VE close to their true values. Sensitivity analyses to 

examine the effect of deviations from our assumptions were conducted. We used our method to 

estimate transmission parameters and VE from data from a monitored household study in 

Michigan during the 2012–13 influenza season and were able to detect a significant protective 

effect of influenza vaccination against community-acquired transmission.
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1. Introduction

Influenza vaccination is recommended every season due to changes in influenza virus types, 

subtypes, and phenotypes from one season to the next. The variation in the influenza virus 

requires the production of a new vaccine each season, thus vaccine effectiveness (VE) must 
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be estimated each year [1]. The concept of vaccine effectiveness is based on comparing the 

probability of illness of a vaccinated person to that of an unvaccinated person, i.e., it 

measures the benefit of vaccination for a single individual. VE is defined as one minus the 

risk ratio (RR), where risk is defined as the probability of becoming infected and ill 

throughout the influenza season. In this work we use the term ’vaccine effectiveness’ rather 

than ’vaccine efficacy’ because the former is estimated using observational studies, while the 

latter is estimated from a randomized trial.

Placebo controlled randomized clinical trials can no longer be used to assess influenza VE in 

the U.S. due to the recommendation that all individuals older than 6 months be vaccinated 

[2]. As a result, observational studies have been increasingly used to assess the benefit of 

influenza vaccination. Most commonly, observational studies on unrelated individuals have 

been used to estimate VE against influenza illness requiring outpatient medical care [3, 4, 5, 

6]. The household unit has been shown to play an important role in the transmission of 

influenza [7, 8]. Additionally, household data has been shown to provide more robust 

estimates of VE than data consisting of unrelated individuals [9], thus recent VE studies 

have employed a monitored household (MH) cohort design [6, 10, 11].

In a MH study, entire households are enrolled and closely monitored over the course of the 

study period. Whenever a participant has an acute respiratory illness (ARI), s/he has to 

report to study personnel who arrange for a swab to be taken and tested for influenza 

infection. Despite being expensive and logistically complex, MH studies are attractive to 

assess influenza VE because they allow for the observation of time of influenza disease and 

vaccination as well as allow for the estimation of VE against community-acquired and 

household-acquired influenza [6, 10]. An additional advantage of a MH study is that it 

allows for the examination of symptomatic influenza of any severity regardless of whether 

participants sought medical care [3, 6, 10]. Other commonly used study designs (ordinary 

cohort, in which independent individuals are followed rather than households, case-control, 

and test-negative [12, 13]) are only able to capture individuals infected with influenza who 

seek medical care. These studies are prone to bias as many people infected with influenza 

may not seek medical care, and those who seek medical care might not represent the entire 

population.

Statistical methods have been developed to estimate influenza VE from household data, first 

from final data in which influenza infection was assessed after the season by serological 

testing [14, 15, 16] and more recently from time-to-event data [6, 9, 10, 17, 18]. Longini and 

Koopman [14] developed a probability model and maximum likelihood procedure for the 

separate estimation of influenza transmission parameters in the household and community 

from final count data. Haber et al. [15] extended this model to assess the impact of risk 

factors on influenza transmission. It has been shown that the use of time-to-event data 

produces VE estimates with smaller bias compared to estimates produced using final data 

[9]. Halloran et al. [17] developed a framework to estimate VE from time-to-event 

household data using the secondary attack rate (SAR), but did not account for community 

transmission. Davis and Haber [9] incorporated temporal information into VE estimates 

using survival models as a method to estimate influenza transmission probabilities from 

community and household contacts. Neither of these approaches allow for the estimation of 
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source-specific VE, which is the focus of this work. Ohmit et al. [10] estimate source-

specific VE using the Cox proportional hazards model, but make assumptions about the 

source of infection based on viral type/subtype and the timing of infection, as infection 

source cannot be directly observed.

We present a probability model and accompanying maximum likelihood procedure to first 

estimate source-specific transmission parameters and then to estimate vaccine-related 

protection against transmission of influenza from the household and from the community 

from time-to-event household data. Our approach does not require the source of infection to 

be known and incorporates temporal information into VE estimates. Additionally, our model 

allows vaccination to occur during the study and does not assume household VE is equal to 

community VE, thus providing a framework to estimate VE against influenza infection 

separately from each source. However, for interpretability, VE needs to be estimated 

assuming all vaccinated individuals are vaccinated over the entire study period. To assess 

VE, we use symptomatic influenza, defined as laboratory-confirmed infection with the 

influenza virus that develops into an acute respiratory illness (ARI), as our outcome of 

interest. We perform a simulation study to evaluate our model and then apply our model to 

data from the Household Influenza Vaccine Effectiveness (HIVE) study. The HIVE study 

has been established in Ann Arbor, MI as an ongoing, longitudinal MH cohort to better 

characterize the impact of households on influenza transmission [10, 18, 19].

2. Methods

We consider a population composed of households of varying sizes as in a MH study. There 

are potentially two different sources of influenza exposure: (1) exposure to other infected 

household members and (2) exposure to infected individuals in the larger community. We 

define the study period as a single influenza season.

We make several important model assumptions: (1) Each member of the study population 

belongs to a household. (2) Persons are only classified by their household membership (i.e., 

there are no other stratifying variables or covariates). (3) Each person makes daily contacts 

with each member of their household and with randomly selected community contacts. (4) 
There is random mixing within the household and among community members. (5) A 

person can only be infected once during the study. Thus, once a person is infected with 

influenza s/he is removed from the at risk population for the remainder of the study. (6) 
Asymptomatic influenza cases - persons infected with influenza, but do not develop an ARI 

-have a very small probability of transmitting influenza to others (and therefore, are not 

accounted for in our model). (7) The per-contact transmission probabilities within a 

household and among the community for vaccinees and non-vaccinees remain constant 

throughout the study. (8) The vaccine provides reduction in transmission probability (leaky 

vaccine model [20, 21]) and only affects susceptibility to influenza. (9) The length of the 

latent and infectious periods are constant and known.

2.1. Probability Model

In real data, it is difficult to ascertain the source of infection for each individual. Recent 

studies have attributed the source of infection to a household member if the influenza type/
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subtype are the same and the secondary case was identified within a short time period from 

the index case [6, 10, 11, 18]. However, it is not possible to actually observe source of 

infection (except in challenge studies) thus, it is important to develop a probability model 

that can be used when source of infection is unknown.

Below we present a probability model for estimating VE for household-acquired and 

community-acquired influenza. To accomplish this, we first estimate influenza transmission 

parameters within the household and in the community using a maximum likelihood 

procedure. Then, using these transmission parameter estimates, we estimate source-specific 

influenza VE. Table 1 defines the parameters used in the model.

Consider a susceptible person i on day d. Let Yid denote the infection status for that person, 

where

Let υid denote her/his vaccination status (υid = 0, 1 for unvaccinated and vaccinated, 

respectively). We define βυid as the daily transmission probability to that person from a 

single household contact; similarly, we define γυid as the daily transmission probability of 

infection from the community to that person when everyone else is infectious. Since υid can 

only take on the values 0, 1 for any person on any day, we have four transmission 

parameters: β0, β1, γ0, γ1.

We assume that the latent period, the time between an individual getting infected and 

becoming infectious, begins on the day after the infectious contact was made. An infected 

person becomes infectious L + 1 days after making an infectious contact and remains 

infectious for I days, where L and I are the length of the latent and infectious periods, 

respectively. For example, if an infectious contact is made on day 1 then, the latent period 

lasts two days (days 2 and 3) and the infectious period lasts four days (days 4–7). After the 

duration of the infectious period, the person recovers and remains immune for the rest of the 

study. It is usually assumed that the day of becoming infectious is the day of onset of 

symptoms, i.e., the length of the incubation period equals the length of the latent period. 

During our estimation process, we observe the first day of the infectious period and 

determine the day of the infectious contact by subtracting L + 1. We let p(d) denote the 

prevalence of influenza infection on day d, defined as the proportion of the population who 

is infectious [22], and let mid be the number of infectious persons in the household of person 

i on day d. When determining the probability that a person is infected from community 

contacts on day d, we multiply gammaυid by the proportion of infectious individuals in the 

population that that day, p(d).

Let πi jd = ℙ (Yid = j |Yi(d−1) = 0) denote the conditional probability that person i has 

infection status j on day d, given that s/he was susceptible on the previous day, j = 0, 1, 2. 

Let ψi jd = ℙ (Yid = j) denote the unconditional probability that person i has infection status 
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j on day d, j = 0, 1, 2. All of the probabilities involving individual persons are conditioned on 

the vaccination history of individual i, Vi = (Vi1, … , Vi D ), i = 1, … , N.

The conditional probabilities πi jd can be written as follows:

where, given person i was susceptible on day d − 1, πi0d is the probability of person i 
escaping infection on day d, πi1d is the probability of person i becoming infected on day d, 

and πi2d is the probability that person i was infected on a previous day. Under assumption 

(5) πi2d = 0.

The unconditional probability of person i having infection status j (j = 0, 1) on day d is 

defined as

By assumption (5), ℙ(Yid = j |Yi(d−1) > 0) = 0, thus

For example, the probability that person i, who was effectively vaccinated on day 2 gets 

infected on day 3 is

where the value of υid changes from 0 to 1 on day 2.

2.2. Maximum Likelihood Procedure

Each person’s contribution to the likelihood function depends on whether or not s/he became 

infected during the study and on the day of infection, if infected. If person i got infected on 

day d then his/her contribution to the likelihood function is: Li = ψi1d. If person i did not 

become infected by the last day of the study D, Li = ψi0D, the probability of escaping 

infection throughout the study. The overall likelihood is , 

where N is the number of study participants. We assume that persons are (conditionally) 

independent because our probabilities condition on the daily number of infected persons in 
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the household and the daily prevalences of infection in the community. Finally, maximum 

likelihood estimates (MLEs) of the transmission parameters, β0̂, β̂1, γ̂
0, γ̂

1, are obtained by 

maximizing L(β0, β1, γ0, γ1|data). Likelihood optimization was performed using a limited-

memory modification of the BFGS quasi-Newton method [23] with a lower bound of 0 and 

an upper bound of 1 using the R function optim [24]. Standard errors (SEs) of transmission 

parameter estimates were obtained from the Hessian matrix from the maximization 

procedure, empirically from simulations by taking the standard deviation of all simulation 

estimates, and by parametric bootstrap. Using the transmission parameter MLEs, we can 

estimate the distribution of Yid for every (i, d) by plugging the parameter estimates into the 

equations for πi jd and ψi jd.

We estimate VE using a two-step process. First, we estimate the transmission probabilities 

from the likelihood function in which a person’s actual day of vaccination, before or during 

the study, is used. Second, using the estimated transmission probabilities from Step 1, we 

estimate VE by comparing the probability of becoming infected during the entire study 

between persons who became effectively vaccinated prior to the study and persons who 

remained unvaccinated throughout the study. In this way, the estimates of VE do not depend 

on the times of vaccination. For each person i, we added to the population two dummy 

persons: person Ai who was effectively vaccinated before the onset of the study, and person 

Bi who remained unvaccinated throughout the study. These dummy persons make the same 

contacts with real persons (but not with other dummy persons) that correspond with the 

contacts of person i. They can become infected but they are unable to infect others. 

Therefore, the dummy persons do not affect the infection probabilities of the real persons 

(i.e., they do not modify the vaccine’s indirect effects). The vaccination status of all real 

persons remained unchanged for the purpose of estimating VE. We define λi H and λiC as 

the probability that person i is infected from a household (H) or community (C) contact 

during the study, respectively. The MLEs of λi H and λiC are obtained by substituting the 

MLEs of our transmission parameters for the true parameters (see Supplemental Information 

for details). Due to the very small probability of coinfection we do not include the 

probability of being coinfected in estimates of VE.

We denote the seasonal VEs against household transmission, community transmission, and 

overall transmission by V E H, V EC, and V E O, respectively. The estimates of VE are

SEs for VE estimates were obtained empirically and by parametric bootstrap.
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2.3. Simulations

To assess the performance of our method and the accuracy of our maximum likelihood 

estimates, we developed a stochastic agent-based simulation program to simulate an 

influenza outbreak in a population with households. One simulation corresponded to one 

outbreak. Each simulation featured a susceptible population of 1000 individuals with 10 

initially infected individuals. Each individual was assigned to a household. Households 

varied in size from one to twelve members. The proportion of households of each size were 

based on DeKalb County, GA census data [25]. The influenza season lasted three months. It 

was assumed that each person made 10 daily community contacts (under the assumption of 

random-mixing) and made daily contact with each person in their household. Two 

vaccination scenarios were assessed: (1) all vaccinations occurred prior to the study period 

and (2) vaccinations occurred prior to the study (25%), during the first month (15%), and 

during the second month (10%). In each vaccination scenario, 50% of the population was 

vaccinated. A person was considered effectively vaccinated 14 days after the receipt of the 

influenza vaccine. The following parameter values were used as the daily transmission 

probability from an infectious person to a susceptible person with vaccination status υ (υ=0, 

unvaccinated, υ=1, vaccinated): α0 = 0.04 (γ0 = α0 · 10 = 0.40), α1 = 0.01 (γ1 = α1 · 10 = 

0.1), β0 = 0.15, and β1 = 0.075.

MLEs and SEs of the transmission parameters were calculated for each simulation. The 

MLEs of the transmission parameters were used to estimate household VE, community VE, 

and overall VE. True VE was calculated using the true transmission parameter values under 

each vaccination scenario. For each simulation scheme, the bias of the VE estimates was 

assessed. Bias was defined as the true VE subtracted from the estimated VE. Two hundred 

outbreak simulations were performed and fifty bootstrap simulations were performed for 

each outbreak simulation. Source specific VE, SE, and 95% confidence intervals were 

estimated for each simulation. The same assumptions we made for our model (see section 2) 

were used for the simulation program. The latent period was set to 2 days and the infectious 

period was set to 4 days [26].

2.4. Sensitivity Analyses

Sensitivity analyses were performed to assess the bias of VE estimates using the maximum 

likelihood procedure when several model assumptions were relaxed. Each sensitivity 

analysis was conducted independently. In the first sensitivity analysis, we relaxed 

assumption (10) (the latent and infectious periods fixed and known) and allowed the latent 

and infectious periods to follow a distribution. We assessed bias under two different 

scenarios: (1) the mean latent and infectious periods were correctly specified and (2) the 

mean latent and infectious periods were incorrectly specified. For scenario (1) the latent 

period was 1, 2, or 3 days with probabilities 0.25, 0.5, and 0.25, respectively. The infectious 

period was 3, 4, 5, or 6 days with probabilities 0.3, 0.5, 0.1, and 0.1, respectively. The mean 

latent and infectious periods were 2 and 4 days, respectively. For scenario (2) the latent 

period was 1, 2, or 3 days with probabilities 0.1, 0.1, and 0.8, respectively with a mean of 

2.7 days. The infectious period was 3, 4, 5, or 6 days with probabilities 0.05, 0.1, 0.65, and 

0.2, respectively with a mean of 5 days. The specified mean latent and infectious periods, 

used for the derivation of the MLEs, were 2 and 4 days, respectively. In the second 
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sensitivity analysis, we assessed the bias of VE estimates when the prevalence in the cohort 

was allowed to differ from the prevalence in the overall population. An overall population of 

households, comprised of 2000 individuals, was simulated, from which households were 

selected to make up the study cohort of 1000 individuals. Households in the cohort were 

assumed to be a random sample of the households in the overall population. MLEs, SEs, and 

95% confidence intervals were calculated for each simulation.

2.5. A Real-Life Example

Our maximum likelihood approach was applied to a dataset from the HIVE study in 

Michigan during the 2012–13 influenza season designed to estimate household and 

community VE. The study population consisted of 321 households with a total sample size 

of 1426 members followed from October 2012 to May 2013. Households ranged in size 

from 4 to 10 members. Only households with at least 4 persons including at least 2 children 

were included in the study. At the onset of influenza-like symptoms, participants were 

instructed to contact study personnel, so a respiratory specimen could be collected. 

Specimens were tested for the presence of influenza virus by RT-PCR [6, 10, 18, 19]. 

Influenza infection was identified by RT-PCR in 111 individuals with influenza-like illness. 

Five individuals were infected with influenza twice [10], but only the first influenza 

infection was considered for our analysis. Index cases were assumed to be infected from the 

community and a household-acquired case was defined by transmission link to an index case 

within the household if both cases were caused by the same influenza type/subtype/lineage 

and if illness onset in the secondary case occurred 1–7 days after illness onset in the index 

case. Vaccination status was determined as previously described using a combination of 

medical records and state registry data. Adults and children aged 9–17 years old were 

considered effectively vaccinated 14 days after the receipt of the vaccine. Children under the 

age of 9 years old were considered effectively vaccinated 14 days after receipt of the second 

dose of the vaccine [10].

Influenza transmission parameters for vaccinated and unvaccinated individuals and VE 

against household-acquired and community-acquired transmission of influenza were 

estimated using our maximum likelihood approach. To avoid undefined values during 

maximum likelihood estimation due to a prevalence of zero within the cohort, values of zero 

were changed to 1/1426 (the total size of the cohort). Fifty parametric bootstrap simulations 

were performed to obtain SE estimates and 95% confidence intervals for transmission 

parameter and VE estimates. Simulations were performed using information from the study 

data, such as, transmission parameter estimates, proportion of households of each size and 

proportion of individuals vaccinated. Model adequacy was assessed by comparing the mean 

number of cases per household size from 200 simulated outbreaks to the observed 

frequencies of cases per household size in the data. All simulations and analyses were 

performed in R 3.2.2 [24].
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3. Results

3.1. Simulations

Mean transmission parameter and SE estimates from 200 simulations are shown in Table 2. 

When all vaccinations occurred prior to the study, our maximum likelihood procedure 

produced the following estimates: β̂0 = 0.153 (95% CI: 0.129, 0.177), β̂1 = 0.078 (95% CI: 

0.064, 0.092), γ̂
0 = 0.429 (95% CI: 0.380, 0.478), γ̂

1 = 0.118 (95% CI: 0.092, 0.142). When 

vaccinations occurred prior to and during the study, β̂0 = 0.156 (95% CI: 0.132, 0.180), β̂1 = 

0.078 (95% CI: 0.060, 0.096), γ̂
0 = 0.425 (95% CI: 0.382, 0.468), γ̂

1 = 0.118 (95% CI: 

0.093, 0.143). Transmission estimates were similar between the two vaccination scenarios. 

All transmission parameter estimates were close to the true values (β0 = 0.15, β1 = 0.075, γ0 

= 0.4, γ1 = 0.10). The greatest bias observed was in the estimate of γ0 when vaccinations 

occurred prior to and during the study (Bias=0.031 corresponding to a relative bias of 

7.75%); however, the estimates of γ1 suffered from relative biases of 16% and 17% in 

vaccination scenarios (1) and (2), respectively (Table 2). SE estimates were calculated 

empirically, using the Hessian matrix from the maximum likelihood procedure, and from 

fifty parametric bootstraps. All three SE estimation methods produced similarly small SE 

estimates (Table 2).

Mean VE and SE estimates from 200 simulations are shown in Table 3. When all 

vaccinations occurred prior to the study, our maximum likelihood procedure produced the 

following estimates:  (95% CI: 0.358, 0.598),  (95% CI: 0.659, 

0.789), and  (95% CI: 0.546, 0.668). When vaccinations occurred prior to and 

during the study,  (95% CI: 0.314, 0.592),  (95% CI: 0.652, 

0.786), and  (95% CI: 0.535, 0.669). The greatest bias was observed in the 

estimate of VE against community-acquired influenza when all vaccinations occurred prior 

to the study, Bias=-0.024 (corresponding to a relative bias of 3.2%). SEs of the VE estimates 

were calculated empirically and via parametric bootstrap. Empirical SEs were very similar 

to bootstrap SEs. VE against household-acquired influenza consistently had the highest SE, 

while VE estimates against community-acquired and overall influenza were very similar. 

When vaccinations occurred during the study, the empirical SEs were slightly larger for all 

VE estimates than when all vaccinations occurred prior to the study. For all estimates of VE, 

we observed coverage probabilities of or greater than 95% with the exception of community 

VE when all vaccinations occurred prior to the study (Table 3).

3.2. Sensitivity Analyses

Table 4 shows the results of the sensitivity analyses performed when the assumption that the 

latent and infectious periods are fixed and known was relaxed. When the mean length of the 

latent and infectious periods were correctly specified and all vaccinations occurred prior to 

the study,  (95% CI: 0.348, 0.599),  (95% CI: 0.635, 0.770), 

and  (95% CI: 0.546, 0.657). When vaccinations occurred prior to and during 

the study,  (95% CI: 0.327, 0.612),  (95% CI: 0.630, 0.768), 

and  (95% CI: 0.531, 0.669). When the mean length of the latent and 
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infectious periods were misspecified and all vaccinations occurred prior to the study, 

 (95% CI: 0.303, 0.577),  (95% CI: 0.617, 0.740), and 

 (95% CI: 0.541, 0.636). When vaccinations occurred prior to and during the 

study,  (95% CI: 0.311, 0.573),  (95% CI: 0.588, 0.726), and 

 (95% CI: 0.524, 0.626) (Table 4).

When the latent and infectious periods were allowed to follow a distribution, VE estimates 

were underestimated. When the mean latent and infectious periods were correctly specified 

the largest bias was observed in estimates of VE against community transmission with a 

relative bias of 6%. Larger bias was observed in all VE estimates when the mean length of 

the latent and infectious periods were misspecified with the largest bias (corresponding to a 

relative bias >11%) observed in estimates of VE against community transmission when 

vaccination occurred prior to and during the study. Estimates of SE were similar when the 

mean latent and infectious periods were correctly specified and misspecified. Estimates of V 
E M L H had the largest SE and the SE of V E M LC and V E M L O were similar (Table 4).

Table 5 shows the results of the sensitivity analysis when the cohort was selected from a 

simulated overall population. This simulation scenario allowed the prevalence of influenza 

infection in the cohort to differ from the prevalence in the overall population. When all 

vaccinations occurred prior to the study,  (95% CI: 0.344, 0.615), 

 (95% CI: 0.662, 0.791), and  (95% CI: 0.551, 0.677). When 

vaccinations occurred prior to and during the study,  (95% CI: 0.334, 0.604), 

 (95% CI: 0.648, 0.796), and  (95% CI: 0.544, 0.671) (Table 

5). The biases of VE estimates when the cohort was selected from a larger overall population 

were very similar to the original simulations in which only the cohort was simulated (Tables 

5 and 3, respectively).

3.3. A Real-Life Example

Estimates of transmission parameters from the HIVE study are shown in Table 6. The daily 

transmission probability from an infectious household contact to an unvaccinated susceptible 

is 0.013 (95% CI: 0.008, 0.019) and to a vaccinated susceptible is 0.013 (95% CI: 0.005, 

0.021). The transmission rate from all daily infectious community contacts to an 

unvaccinated susceptible is 0.202 (95% CI: 0.159, 0.245) and to a vaccinated susceptible is 

0.134 (95% CI: 0.081, 0.187) (Table 6). A transmission rate of 0.202 (0.134) means that, on 

average, 20.2% (13.4%) of unvaccinated (vaccinated) persons who make contacts with 

infectious persons on a given day will become infected. The lower estimated transmission 

rate in the community to vaccinated individuals compared to unvaccinated individuals 

suggests that there is at least a small protective effect of vaccination against community-

acquired influenza infection. SE estimates were obtained using the Hessian matrix from the 

maximum likelihood procedure and using parametric bootstrap. The bootstrap SE estimates 

were similar to the Hessian matrix SE estimates (Table 6). Our simulated frequencies of 

cases per household size (Table ??) were a good match to the observed frequencies 
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(Table ??) suggesting that our model captures the dependency between household size and 

attack rate.

Estimates of household VE, community VE, and overall VE are presented in Table 7. VE 

point estimates indicated significant protection against community-acquired influenza 

infection (0.336, 95% CI: 0.066, 0.606), and non-significant protection against household-

acquired (0.052, 95% CI: −0.754 0.858) and overall (0.250, 95% CI: −0.019, 0.519) 

influenza infection (Table 7).

We compared our VE estimates to results found by Ohmit et al. [10] using unadjusted and 

adjusted hazard rate ratios (Table 8). The adjusted models adjusted for age in months and 

documentation of high-risk health status [10]. Our point estimate of VE against household-

acquired influenza was substantially lower (by more than 0.25) than the estimates found by 

Ohmit et al. [10]. Our point estimate of VE against community-acquired influenza infection 

was slightly higher than the estimates in the original paper, and we were able to detect a 

significant protective effect of vaccination against overall influenza infection across all study 

participants. The original paper did not detect a significant protective effect of the vaccine 

from any source using either the unadjusted or adjusted model (Table 8). We estimated 

overall VE lower than both the unadjusted and adjusted estimates. Our method produced 

95% confidence intervals that were slightly wider for household VE, but narrower than those 

reported in the original study for community and overall VE.

4. Discussion

We have presented a probability model and accompanying maximum likelihood procedure 

to estimate VE against household-acquired and community-acquired influenza infection 

from MH studies. Our method first estimates source-specific transmission parameters that 

characterize the daily probability of infection. We use these transmission parameters to 

estimate the probability of influenza infection throughout the study and estimate VE against 

transmission of influenza from the household and from the community. Previous methods 

that estimate source-specific VE use final count data that do not take into account the time of 

infection [21, 14, 15]. Our approach improves upon these methods by incorporating time to 

event data, which allows for variation in influenza prevalence and timing of vaccination to 

be incorporated into estimates of VE. We used a stochastic agent-based simulation program 

to evaluate the bias and precision of our estimates.

Under our model assumptions, our method estimated the transmission parameters and VE 

close to the truth for two different vaccination scenarios (Tables 2 and 3). Transmission 

parameter estimates were very similar regardless of vaccination scenario. SEs were 

calculated empirically, using the Hessian matrix, and using a parametric bootstrap 

procedure. In all scenarios, bootstrap SEs were close to empirical SEs indicating that the 

bootstrap procedure performs well and is appropriate for the estimation of SE when 

analyzing real data (when estimation of SE empirically is not possible). Coverage 

probabilities of greater than or equal to 95% for all estimates of VE suggest that our method 

performs well. For estimates of VE against community-acquired influenza when all 

vaccinations occurred prior to the study, the coverage probability was slightly lower (92%) 
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suggesting that our method produces confidence intervals that are too narrow for this 

estimate.

We developed a similar likelihood method under the assumptions that the source of infection 

(household or community) is known. We found that the estimates and their standard 

deviations were similar to those we obtained without this assumption. Hence, we conclude 

that knowing the source of infections does not substantially improve the VE estimates.

Results from our sensitivity analyses suggest that our maximum likelihood approach 

provided estimates of source specific VE with small bias and SE when the length of the 

latent and infectious periods are not constant and the mean is correctly specified. When the 

mean length of the latent and infectious periods were misspecified, our results suggest that 

caution should be used when using the maximum likelihood procedure to estimate 

community-acquired influenza when vaccination occurs during the study, as the estimates 

may be moderately biased if the mean length of the latent and infectious periods are 

misspecified. However, the misspecification of the mean length of the latent and infectious 

periods had little impact on SE of VE estimates.

Allowing the prevalence of influenza infection to differ in a randomly sampled cohort 

compared to the overall population had little impact on the bias of source-specific VE 

estimates (Table 5) indicating that the maximum likelihood approach is robust to differences 

in the prevalence of influenza between the study cohort and overall population. To 

investigate the bias of VE estimates when the sample population is a small fraction the 

overall population, we performed an additional sensitivity analysis in which we simulated an 

overall population of 10,100 people with a sample population of 1,000 people (results not 

shown). We saw no change in the amount of bias when the cohort was a smaller fraction of 

the overall population. Under the assumption that the cohort is a random sample of the 

overall population, we would expect the results to be similar regardless of the size of the 

overall population relative to the cohort.

It is well known that not all individuals infected with influenza develop an ARI [26]. 

However, little is known about the proportion of asymptomatic individuals in a given 

influenza season. One study estimated that approximately 67% of individuals infected with 

influenza develop symptoms [26], while other studies have estimated that as few as 23% 

[27] or as many as 84% [28] of influenza infected individuals develop symptoms. Despite 

the lack of symptoms, asymptomatic individuals are still infectious; however, less so than 

symptomatic individuals [26]. Little is known about the relative infectiousness of 

asymptomatic individuals compared to symptomatic individuals. While asymptomatic 

individuals are considered less infectious because they are not shedding as much virus as 

symptomatic individuals [29], asymptomatic may make more contacts while infectious than 

their symptomatic counterparts because they do not realize they are infected. Due to the 

many unknowns surrounding asymptomatic influenza infections, we did not include 

asymptomatic individuals in our sensitivity analyses. It will be important in future work to 

assess the impact of asymptomatic individuals in the population on VE estimates.

Ainslie et al. Page 12

Stat Med. Author manuscript; available in PMC 2019 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We applied our method to data from the HIVE study during the 2012–13 influenza season 

[10] (Table 7). Our VE point estimates for household and overall influenza infection were 

lower than the point estimates found in the original study (Table 8) using unadjusted and 

adjusted hazard rate ratios. This difference in point estimates is likely due to the fact that our 

method does not require source of infection to be known, and in the case of the adjusted 

estimates, does not control for potential confounders, such as health status and age. Our 

estimate of community VE was similar to the original estimates, but we were able to detect a 

significant protective effect of vaccination against community-acquired influenza infection 

across all study participants (Table 7). Ohmit et al. found no significant protective effect of 

vaccination for overall, household-acquired, and community-acquired influenza infection 

across all study participants using the hazard rate ratio (Table 8) [10].

Our probability model makes many simplifying assumptions about influenza disease 

progression. In future work, we plan to relax some of our model assumptions to more 

realistically model the influenza disease process. First, we would like to allow for strata 

within the population, particularly age groups. Previous research indicates that transmission 

of influenza is different from child to child, child to adult, adult to child, and adult to adult 

[30]. Additionally, age has been identified as an important risk factor associated with 

influenza transmission in which children and the elderly are more susceptible to infection 

than young adults. Very young children and older adults are also more susceptible to 

complications from infection. The addition of strata requires additional assumptions about 

the contact patterns of individuals in the same stratum and between strata. Previous studies 

have found that contacts made by children and adolescents are more assortative than other 

age groups. The same study found that individuals aged 55 years and older had the least 

assortative contact patterns [31]. We plan to extend our method to incorporate these 

additional contact patterns. We also plan to use stratification to reduce confounding bias.

Second, we plan to extend our probability model for the all-or-none protection vaccination 

model in which a proportion of vaccinated individuals are completely protected from 

infection and the remaining vaccinated individuals are not protected at all [20, 21].

Finally, we plan to analyze data from different influenza seasons and different settings to 

better determine the effectiveness of influenza vaccination against household transmission 

compared to community transmission. One study during the 2010–2011 influenza season 

found that VE against household and community transmission were different [11]. However, 

more recent studies have not observed this difference in VE against household- and 

community-acquired influenza infection [6, 10]. Further research is required to elucidate the 

impact of contact dynamics within populations of households on influenza VE; however, our 

model and maximum likelihood procedure provide a framework to begin distinguishing 

influenza VE from different sources of infection.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1

Model Parameters

Parameter Definition

i Index over people, where i = 1, … , N

j Index of infection status on a given day: (0=escaped infection (susceptible), 1=made an infectious contact on this day, 2=made an 
infection contact before this day).

υid Vaccination status of person i on day d. Also denoted at υ (0=unvaccinated, 1=vaccinated)

βυ Daily transmission probability from an infectious household member to a susceptible with vaccination status υ = 0, 1

γυ Daily transmission probability from infectious community contacts to a susceptible with vaccination status υ = 0, 1

mid The number of infectious persons in the household of person i on day d

p(d) The prevalence of influenza infection on day d

πi jd Conditional probability that person i has infection status j on day d given that s/he was susceptible on the previous day

ψi jd Unconditional probability that person i has infection status j on day d

γi H Probability that person i was infected from a household contact by the end of the study

γiC Probability that person i was infected from a community contact by the end of the study
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Table 3

Maximum likelihood VE estimates against influenza infection in the household, community, and overall from 

200 simulated influenza outbreaks

Scenario Value V E M L H V E M LC V E M L O

All vaccinations (50%) occurred prior to the 
study

True 0.477 0.746 0.607

Estimate (95% CI) 0.467 (0.354, 0.580) 0.721 (0.662, 0.779) 0.601 (0.544, 0.659)

Bias −0.010 −0.025 −0.006

SE (Empirical) 0.056 0.030 0.030

SE (Bootstrap) 0.064 0.034 0.030

Coverage Probability 0.960 0.920 0.960

Vaccinations occurred prior to the study (25%), 
in month 1 (15%), and in month 2 (10%)

True 0.470 0.745 0.605

Estimate (95% CI) 0.469 (0.339, 0.600) 0.717 (0.645, 0.789) 0.602 (0.540, 0.664)

Bias −0.001 −0.028 −0.003

SE (Empirical) 0.067 0.037 0.032

SE (Bootstrap) 0.069 0.038 0.033

Coverage Probability 0.960 0.950 0.970

Household VE (V E M L H ), community VE (V E M LC ), overall VE (V E M L O ) and SEs. SEs were calculated empirically and by parametric 

bootstrap.
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Table 5

VE estimates from a random sample drawn from a larger population from 200 simulated influenza outbreaks

Scenario Value V E M L H V E M LC V E M L O

All vaccinations (50%) occurred prior to the study

True 0.476 0.746 0.605

Estimate 0.480 (0.344, 0.615) 0.727 (0.662, 0.791) 0.614 (0.551, 0.677)

Bias 0.004 −0.019 0.009

SE (Empirical) 0.069 0.033 0.032

SE (Bootstrap) 0.065 0.032 0.030

Vaccinations occurred prior to the study (25%), in 
month 1 (15%), and in month 2 (10%)

True 0.469 0.745 0.604

Estimate 0.469 (0.334, 0.604) 0.722 (0.648, 0.796) 0.607 (0.544, 0.671)

Bias 0.000 −0.023 0.003

SE (Empirical) 0.069 0.038 0.032

SE (Bootstrap) 0.070 0.037 0.032

Bias of VE from a sample population randomly selected from a larger population. V E M L H, V E M LC, and V E M L O denote VE estimates 

using the maximum likelihood approach against household, community, and overall transmission, respectively. True VE was calculated from the 
overall population. VE estimates were obtained from 200 simulations performed under two different vaccination scenarios. SEs were calculated 
empirically and by parametric bootstrap.
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Table 6

Transmission parameter estimates from the HIVE Study

Value β0 β1 γ0 γ1

Estimate (95% CI) 0.013 (0.008, 0.019) 0.013 (0.005, 0.021) 0.202 (0.159, 0.245) 0.143 (0.081, 0.187)

SE (Hessian) 0.003 0.003 0.032 0.026

SE (Bootstrap) 0.003 0.004 0.022 0.027

Maximum likelihood transmission parameter estimates for the HIVE Study (2012–13). Transmission parameters were defined as follows: β0-

household, unvaccinated; β1-household, vaccinated; γ0-community, unvaccinated; and γ1-community, vaccinated.
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Table 7

Maximum likelihood estimates of VE and confidence intervals from the HIVE Study

Value V E M L H V E M LC V E M L O

Estimate (95% CI) 0.052 (−0.754, 0.858) 0.336 (0.066, 0.606) 0.250 (−0.019, 0.519)

SE 0.411 0.138 0.137

Maximum likelihood VE estimates and 95% confidence intervals for the HIVE Study (2012–13). V E M L H, V E M LC, and V E M L O denote 

VE estimates using the maximum likelihood approach against household, community, and overall transmission, respectively.
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Table 8

VE estimates based on hazard rate ratios and confidence intervals from the HIVE Study reported by Ohmit et 
al. [10]

Model V E H V EC V E O

Unadjusted 0.31 (−0.73, 0.73) 0.27 (−0.13, 0.54) 0.30 (−0.09, 0.55)

Adjusted 0.37 (−0.73, 0.77) 0.30 (−0.09, 0.55) 0.43 (−0.18, 0.72)

VE point estimates and 95% confidence intervals from Ohmit et al. using both the unadjusted and adjusted hazard rate ratio. The adjusted models 
adjusted for age in months and documentation of high-risk health status [10]. V E H, V EC, and V E O denote VE estimates against household, 

community, and overall transmission, respectively.
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