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Abstract This paper investigates the finite-time synchro-
nization and fixed-time synchronization problems of iner-
tial memristive neural networks with time-varying delays.
By utilizing the Filippov discontinuous theory and Lya-
punov stability theory, several sufficient conditions are
derived to ensure finite-time synchronization of inertial
memristive neural networks. Then, for the purpose of
making the setting time independent of initial condition,
we consider the fixed-time synchronization. A novel cri-
terion guaranteeing the fixed-time synchronization of
inertial memristive neural networks is derived. Finally,
three examples are provided to demonstrate the effective-
ness of our main results.
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Introduction

The memristor was originally predicted by Chua (1971),
which is considered to be the fourth basic circuit element
besides resistor, capacitor and inductor. However, the first
practical memristor device was realized by HP laboratory
until 2008 (Strukov et al. 2008). Similar to the operating
principle of synapsis in human brain, the memristor has the
function of memorizing the direction of flow of electric
charge in the past. Therefore, it performs as a forgetting
and remembering process in human brains. In recent years,
memristor has become a hot topic due to its potential
applications in next generation computers and powerful
brain-like computers. By substituting resistor in traditional
neural network with memristor, the memristive neural
network is then constructed, which can make the artificial
neural networks of human brain better. Recently, there
have been many interesting research on the dynamics of
memristive neural networks (Li and Cao 2016; Yang et al.
2017; Qi et al. 2014; Rakkiyappan et al. 2015; Chen et al.
2015). In Qi et al. (2014), the stability of delayed mem-
ristive neural networks with time-varying impulses is
studied. The stability of memristor-based fractional-order
neural networks with different memductance functions is
investigated using Lyapunov method and Banach contrac-
tion principle in Rakkiyappan et al. (2015).

The second-order term in neural network is called
inertial term, which cause more complex dynamic behavior
compared with first-order neural networks. Physically, the
second-order term represents inductance in circuit systems.
There is strong biological background for the introduction
of an inductance term in neural system (Ke and Miao 2013;
Liu et al. 2009; Zhang and Quan 2015; Dong et al. 2012;
He et al. 2012; Li et al. 2004; Liu et al. 2009; Wheeler and
Schieve 1997; Hu et al. 2015; Zhang et al. 2015; Cao and
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Wan 2014). In semicircular canals of some animals, the
membrane of a hair cell can be implemented by equivalent
circuits that contain an inductance (Liu et al. 2009; Zhang
and Quan 2015; Dong et al. 2012). The squid axon of sepia
can also be elaborated by designing an inductance (He
et al. 2012; Li et al. 2004; Liu et al. 2009; Wheeler and
Schieve 1997). Hu et al. (2015) investigates the synchro-
nization for an array of linearly and diffusively coupled
inertial delayed neural networks (DNNs) by pinning con-
trol. The stability and synchronization of inertial neural
network with time-delays is studied using matrix measure
strategy in Cao and Wan (2014). Up to now, most of the
results of inertial network have not taken the impact of
memristors into consideration.

By combining inertial neural network and memristive
neural network, inertial memristive neural network is then
constructed. Until now, there are still very few results
about this type of neural network (Rakkiyappan et al.
2016), which motivates our study. Due to the physical
meaning and biological background of inertial and mem-
ristor, the combination of them can model more complex
dynamical behavior in nature and extend the theorem of
neural networks.

Synchronization is an important phenomenon in nature,
and has been widely applied in various fields such as
chemical reactors, biological systems, information pro-
cessing, secure communication, etc. (Cao and Lu 2006; Ke
and Miao 2013; Yang et al. 2015; Rakkiyappan et al. 2016;
Balasubramaniam et al. 2011; Wang et al. 2014; Wen et al.
2013; Wu and Zeng 2015; Yang et al. 2014; Wan et al.
2016; Abdurahman et al. 2015; Liu et al. 2016). In Yang
et al. (2015), exponential synchronization of neural net-
works with discontinuous activations with mixed delays
has been discussed by combining state feedback control
and impulsive control techniques. Rakkiyappan et al.
(2016) has discussed the global exponential stability of
inertial memristive neural networks and global exponential
pinning synchronization of coupled inertial memristive
neural networks. Exponential synchronization of memris-
tive Cohen-Grossberg neural networks with mixed delays
is researched in Yang et al. (2014). It is noticed that, most
results about synchronization are limited to an infinite-time
asymptotical process (Cao and Lu 2006; Ke and Miao
2013; Yang et al. 2015; Rakkiyappan et al. 2016; Bala-
subramaniam et al. 2011; Wang et al. 2014; Wen et al.
2013; Wu and Zeng 2015; Yang et al. 2014), that is, only
when the time tends to infinity, the error between drive-
response systems approaches zero. But in practical fields
such as physical and engineering systems, due to the
machine’s and human’s life spans are limited, we often
require systems to achieve synchronization in finite time
(Wan et al. 2016; Abdurahman et al. 2015; Liu et al. 2016;
Polyakov 2012; Liu et al. 2014; Shen and Cao 2011; Bao
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and Cao 2016; Bhat and Bernstein 2000). Shen and Cao
(2011) has investigated finite-time synchronization of an
array of coupled neural networks via discontinuous con-
trollers. In Bao and Cao (2016), the author has studied the
finite-time generalized synchronization of nonidentical
delayed chaotic systems. Up to now, the research for the
finite-time synchronization of inertial memristive neural
networks has not been found yet.

Different from the finite-time synchronization, where
the final convergence time is closely related to the initial
synchronization errors, the settling time of the fixed-time
synchronization can be directly calculated regardless of the
initial synchronization errors, which can lead to better
applications in real practices (Wan et al. 2016; Polyakov
2012). To the best of the authors knowledge, the fixed-time
synchronization of inertial memristive neural networks has
not been studied in previous paper yet, this motivates our
current research interest.

The main contribution of this paper is that it provides
effective controllers to realize finite-time and fixed-time
synchronization for inertial memristive neural networks.

The remainder of this paper is organized as follows. In
section “Preliminaries”, some notations and preliminaries
are given. The model formulation and main results are
presented in sections “Modeling” and “Main results”. In
section “Numerical examples”, three numerical examples
are given to demonstrate the effectiveness of the main
results. Finally, conclusions are drawn in section
“Conclusion”.

Notations. Throughout this paper, R" denotes the n-di-
mensional Euclidean space. The superscript T denotes
vector transposition. R™" is the set of all n x n real
matrices. I, is the identity matrix of order n. sign (-) is the
sign function. C!")([—1, 0], R") denotes the family of con-
tinuous functions from [—t, 0] to R".

Preliminaries

In this section, some elementary notations and lemmas are
introduced which play an important role in the proof of the
main results in section “Modeling”.

Definition 1 (Filippov and Arscott 2013) Suppose
E CR", then x—F(x) is called a set-valued map from
E—R", if for each point x € E, there exists a nonempty set
F(x) CR". A set-valued map F with nonempty values is
said to be upper semicontinuous at xy € E, if for any open
set N containing F(x), there exists a neighbourhood M of
Xo such that F(M) C N. The map F(x) is said to have a
closed image if for each x € E, F(x) is closed.
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Definition 2 (Filippov and Arscott 2013) For the system
dx/dt = f(t,x), x € R", with discontinuous right-hand
sides, a set-valued map is defined as

—o colf(B(x,9)\N)],

where ¢olE] is the closure of the convex hull of set E,
B(x,0) ={y:|ly —x|[[ <0}, and pu(N) is the Lebesgue
measure of set N. A solution in Filippov’s sense of the
Cauchy problem for this system with initial condition
x(0) =xo is an absolutely continuous function x(7),
t € [0,T], which satisfies the differential inclusion

F(tx)—ﬂ()>oﬂ

dx
— e F(t
dt 6 ( 7x)3

Lemma 1 (Shen and Cao 2011) Assume that a continu-
ous, positive-definite function V(t) satisfies the following
differential inequality:

V()< —cVP(1), 1> 1,

t€[0,7].

where ¢ > 0,0<f<1. Then, V() satisfies the following
inequality:

VIR () <VIP(1y) — c(1 = B) (1 — 1), to <t <1,

V! F(t)
c(1-p)°

Lemma 2 (Polyakov 2012) Assume that a continuous
radically unbounded function V(t) : R* — RT U {0} satis-
fies the following differential inequality

and V(t) = 0 for all t > t* with t* given by t* =ty +

(1) V()=0—1=0,
(2) V(t) < —aVP(t) — bVi(t) for some

a,b>0,p>1,0<g<]1, where \7 is the set-valued
Lie derivative of V.

Then, V(t) = 0,t>T(xy), with the settling time bounded
by T(x%0) < Tonax = g1y + 1oy

Lemma 3 (Xu and Wang 1983) If xi,x;...
0<g<l1,p>1, then

n n 9q n n P
Zx?z (Zx,) , ng’znlf" (Zx,) .
i=1 i=1 i=1 i=1

Lemma 4 (Xu and Wang 1983) For any real vectors
X,y € R, the following inequality holds

anOa

2Ty <xlx+yly.

Modeling

Consider the dynamic equation of the ith node of the
inertial memristive neural network consisting of n nodes:

dzx,»(t) — dx,-(t)
e dt

n

+ Zbij(xi(t))ﬁ(xj(t— )+, i=1,...n
(1)

where x;(¢) is the state vector of the ith neuron. d; > 0,
¢; > 0 are positive constants. The second derivative of x;(¢)
is called an inertial term of system (1). The nonlinear
function f; denotes activation function for the neural net-
work. I; is the external input of the system. 7(¢) is the time-
varying delay that satisfies 0 < 1(¢) <7, () <0< 1, where
7, 0 are constants. a;(x;(¢)) and b;(x;(r)) are the memris-
tive connection weights. According to the character of the
memristor, the state parameters in (1) are supposed to
satisfy the following condition:

_Cll

+Zau xi (1)) (x(1))

aU,|Xx(t)| =T,
a;(xi(t)) = {az/’ |x;(6)] > T;, (2)
. U,\x,(t)|§Ti»
byj(xi(1)) = { by, |xi(1)| > T, ¥

for i,j=1,2,...n, where dij,d,j,b,],b are known con-
stants with respect to memristors. The initial value asso-
ciated with system (1) is

dx;(w)

Xi((H) = QD,‘((U), W = ‘Pi(w),

where ®;(w), ¥i(w) € CV([~1,0],R"), i=1,2,...,n
To derive the main results, the following assumptions
are introduced.

—1<w<0,

Assumption 1 For all x,y € Rx # y, the neural activa-
tion function f;(-) satisfies

Ifix) = fi)| <bLlx—yl,i=1,...,n,
where [; are known constants.

Assumption 2 There exists constants M; s.t.|fi(z)] <
MYz E€R,i=1..n

Based on the theories of set-valued maps and differential
inclusions, the model (1) with initial values can be
described by the following differential inclusion:

in X; n -
ddtz(t) + d,ddgt) S —cixi(t) + ZCO[Qij,aijm(xj(t))

+ ZCO Qij bilfi(x;(t — (1)) + I,
(4)
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where  a; = min{a;,d;},a; = max{d;,a;} b; = min
{byj, by}, by = max{by, by},
ay, |xi(t)| <T,
Co[amalj] = [alj7alj]’ |xi(t)| =T
Cfu» |xi(t)| > T, 5)
byj, |xi(0)| <T;,
colby, by = [bwbu] (1) = Ti,
byj, |xi(1)| > T,
or equivalently, for i, j=1,2,...n, there exists

ai(xi(t)) € colay, ayl, bij(xi(1)) € colby;, b;] such that

dzx,»(t)
dr?

dx;(t
+ix<): lxl

dt

+ Zalj xl .]j(xj( ))
. (6)
+ 3 byl (t — (1)) + 1

=1
Next, by introducing the following variable transformation:
dxi(t)
ilt) = xil1),qit) =
pit) = xi0), qilr) = —
system (6) can be transformed into the first-order form

pi(t) = —pi(t) + qi(1),
q;(t) = (=1 +d; — ci)pi(t) + (1

+Zau(P Dfi(pi (1)) (7)

+xi(t)7

—d;)qi(1)

+Zb,,(p N(pi(t — (1)) + I,

with the initial condition given by

{P;(S) = ¢i(s), ®
qi(s) = di(s) + ;(s),
where —1<s<0,i=1,...,n

By letting p(t) = (p1 (1), p2(1), .., pu(1))", 4() = (a1 (1),
¢2(1), ..., qu(1))", system (7) can be written as the fol-

lowing compact form:

p(t)=—p(t) +q(1),

§(1) = (=1, +D — CO)p(1) + (I, = D)q (1) +A(p(1) f (p(1))
+B(p(0)f (p(t—(1))) +1
9)
where D = diag{d,,d,,...,d,}, C=diag{ci,c2---cu},
A(p(1)) = (@(p(1))1ns B(P(1)) = (Big((1))) 1

Now we choose (9) as the master system, the corre-
sponding slave system is formulated as

@ Springer

(1) = =y(0) +2(t) +wi (1),
&(t) = (=Iy+D = C)y(1) + (I, = D)2(1) +A(y())f (¥(1))

+BO) (vt —1(1) +1+ua(1),

(10)

SAOI
)oia(t) €

R" are control inputs to be designed later. A(y(r)) =

(@5 (1))ses BO)) = (B (y(1)))
Denote the synchronization error e;(t) = y(f)
—p(t),ex(t) = z(t) — (), we get the error system

é1(t)=—ei(t) +ex(r) +ui(t),

é(t) = (=l +D—Ce (1) + (I
+A(O) (1) +
~A(p))f (p(1) -

(0] 2(0) = [ (1),

where  y() =

[yl() .-

are the state variables of the response system, u; (¢

—D)ex(t)
B(y(0))f (y(t—(1)))

B(p(t))f (p(1 = (1)) +ua(t).
(11)
Design the following state feedback controller
ui (t) = K1SIGN (e1 (1)) |e1 (t)| + K2SIGN (e1 (1)) er (1 — (1))
— ¢SIGN (e, (1)) ]er (1) ",
up (1) = I'SIGN (ey(t))|ea(t)| + Msign(ex(1))
— cSIGN(ex(1))|ex (1)

(12)
where Ki = diag{kyy - ki,}, Ko = diag{ks1 - - - kon}, I =
diag{y,---7,}, le(0)] = (len(0)] -+ lew()])", SIGN(ey
(1)) = diag{sign(ey1(¢))--- sign(e,(t))}, SIGN(ex(1)) =
diag{sign(ey (1)) - - - sign(ex (1))}, sign(ei(t)) = (sign(er
), .- . sign(el,,(t)))T, sign(ey (1)) = (sign(ex (1)), - - .,
sign(exn(1)))", ler(t = ©(0)] = (len(t = ()], - -, lern (1—
()", ler O = (en@),....  lew®"), lea(r)” =
(lear ()P, ..., lean()|P)T, ¢ > 0and 0<p<1 are the tun-

able parameters, ky;, kp;,y;,M are the parameters that
remain to be designed.

Definition 3 (Shen and Cao 2011) If there exists a con-
stant #* > 0 which depends on the initial vector value that
satisfies

(1) lim,_. |le(r)|| =0,
2) Je(®)] =0,t>r".

Then the drive-response system (9) and (10) is said to
achieve finite-time synchronization with settling time #*.

For the convenience of the following discussion, we
introduce some notations as follows, a;; = max{|ay|, |d;|},
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bt = max{|b;|, |b;|}, M = (M,,....M,)", L= diag(l,, n n n
/ L) e S < =D len@®+ Y lea®| + Y | = 1+d; — cillew()]
). i=1 i=1 i=1

Main results
Finite-time synchronization

Theorem 1 Under Assumption 1 and 2 , the drive-re-
sponse systems (9) and (10) will achieve finite-time syn-
chronization under controller (12) if the following
conditions hold

ki <1—|—1+d —c,|—Zlaﬂ,
j=1

< —1-[1—df
n
+
kZiS - zl:libjia
j=

—%[1T(Z

M <

—A)M +17(B — B)M|,
fori=1,..., n, and the setting time is given by T = ‘({;;—ﬁ(g)).

Proof Choose a Lyapunov functional as

Vi =Sl + 3 lentr)
i=1 i=1

Taking the set-valued Lie derivative of V() with respect to
t along the trajectory of the error system (11) yields

n
V() = 3 sign(en(t)éns
i=1

= sign(e; (1)

+ E Slgl’l e2l 321

1) ér(t) + Slgn(ez( 1) éx(t)
= sign(e1(1))" [—e1 (1) + ea(t) + w1 (1))
+ sign(es(1))"[(I, — D)ea (1)
+ (=1, + D = Cey (1) + A(y(1))f ((1))
—Ap(O)f (p(1)) + BO®)F (v(t — (1))

= B(p(0)f (p(t — (1)) + ua(1)]

= —sign(ei (t )) el(f) + sign(er (1))  ea(1)
"—-1,+D— Cle, (1)

+ sign(ex (1) A0 (5(1))

— (O (p(0) + BOW) (v(1 — (1))
— Bp(0)f (plt — (1)))]

+ sign(en (1)) w1 (1) + sign(ea (1)) (1)

n i 11 = dilleas(t)] + sign(ea(1)) TAGO)Y (1)

i=1
A(p(0)f (p(1) + BO:@))f (1 — (1))
= B(p(0)f (p(t — o(1)))] + sign(e1 (1)) ui (1)
+ sign(e (1)) ua (7). (13)

According to Assumptions 1 and 2, it follows that

sign(e2(0) A (1)f ((1) — Alp(1)f (p(1))]
= sign(es(1)"A())[F (0 (1)) — F(p(1))]
+sign(ex(1)"A(1)) — Alp(1)If (p(1))
<1TATLley (1) + 1"(A - A)M

33

i=1 \j=1

(14)

>e1, ) +17(A — A)M.

Similarly, we have

sign(ex(s)) B (= 7(0))) = B (¢ ~ (1))
si(Zz >|el,r—r (0)]+1"(B— B)W.

(15)
Thus,
sign(eq (1)) u (1) + sign(e (1)) ua(2)
= sign(e1(1))" [KiSIGN (e1(1))]e1 (1)]
+ K>SIGN ey (1)) |e1 (t — (1))

— ¢SIGN e (1))|e1 (1)|"] + sign(ea (1))
x [[SIGN (e (t))|ex(r)| + Msign(ex(r))
— cSIGN (e (1)) lea(1)|"]

<Y ailen(n)] + Zkzt|€1i(f —()[ = len(n)
py =1 py
+ Y ilea()] +Mn— ¢ lex(n)]
i=1 i=1

(16)
Substituting (14), (15) and (16) into (13), it follows that
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—l+|—1+di—ci|+Zl,-a;—|—k1i
j=1

lewi(1)]

i=1

n

+ > [+ (1 =dif +7illex(r)]

i=1

+ Z Zlib; + kai | leri(t — 1(1))]
i=1 Lj=1
+[17(A — A)M + 1" (B — B)M + Mn)

n n
=) leu@l’ = ¢ lex(n)l”.
i=1 i=1

When the parameters satisfy the following condition

k15§1—|—1+d,<—c,'|—Zl,<a-+

Ji?
j=1

< —1=[l=df

ki < — Z libj;,
=

1 _ _ — —
M< ——[1"(A—AM +1"(B - B)M|,

n
we have V(1)< — S0 len(n)]” — e S0y fex(n)’ < —
(X0 e ()] + S0 lea(n)))P = —cV ()P According to

Lemma 1, V() =0,t>T, where T:Y(];ﬁ(',?; That is,

le(D)ll = 220 len (D) + 225 leai(r)| = 0,4 > T. By Defi-
nition 3, drive-response system (9) and (10) will realize

o N o 1-p
finite-time synchronization in a finite time 7 = ‘c/(]_%);. O

Remark 1 By designing the state feedback controller
which contain both the current and past state information,
the finite-time synchronization of drive-response system
can be achieved. It can be seen that the sign function plays
an important role in this controller designing. Note that the
settling time can be turned by selecting different values of
c and . Compared with Hu et al. (2015) and Cao and Wan
(2014), the impact of memristor is taken into account in the
dynamics of inertial neural network. Due to the memory
characteristic of memristor , it has better performance in
imitating the biological synapses. The network model
considered here has characteristics of complex brain net-
works such as node degree, distribution, so it may provide
a helpful tool in research for cognitive neural dynamics.

According to the character of the memristor, each of
matrices A(p(r)), B(p(t)) has 2" possible values. Then,

@ Springer

choose the largest eigenvalue of the 2" cases and give the
following notations

Jamax (AAT) = max{Amax (A(Y(t) )AT(y(t)))},
Jmax(BBT)

When the feedback controller are chosen as follows

B
ol el (u)Qe (u)du _al)
2(/::(0 1 (u)Qen( )d> T )’

up (1) = I'yep (1) + Iasign(ex(t)) — %ez(,)ﬂﬂl7

(18)
where o110 = (@170l ), 370 = (e
(1)...e5 ' (1))", ¢ > 0,1 <Bp<1. Then, we have the fol-

lowing theorem.

Theorem 2 Under Assumption 1 and 2, the drive-response
systems (9) and (10) will achieve finite-time synchroniza-
tion when the following conditions hold

1 ?
ki< =5 (F+——),
= 2<'+1—0)

1
7y < —5[1+(—1+d,-—c,-)2+2(1—d,~)

+ Znax(AAT) + Jopar(BBT)),

n
V2 S — ZM/‘(EU — a; + b — by),
=

vI-h0)

fori=1,... n,and the setting time is given by T = T=p)"

Proof Choose a Lyapunov functional as

V() = en(t) e (1) + ex(t) ea(s) + /

t—1(1)

t

elT(u)Qel (u)du,

where Q = diag{q---q.},q; are the constants to be
determined later.

Taking the set-valued Lie derivative of V(f) with respect
to t along the trajectory of the error system (11) and
utilizing Lemma 4 yields
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V(1) =2e (1) [—e1 (1) + ea (1) + w1 (1)]
+2e;(t)" [(=1,+D—C)e\ (1)
+(ln7D)ez<t)+A~(y(t)) (1) —Ap()f (p(1))
+B(y(0))f (y(t—(t))) = B(p(0))f (p(t = 7(1))) + 2 (1)]

+el(t)TQel()—( #(1))er(t—(1))" Qe (1— (1))

2e1 (1) e1 (1) +2¢1 (1) ea(r) +2e2(t) (— I, + D — C)ey (1)
+2ez(t "1, = D)ex(t) + Amar(AAT )er (1) e (1)
+e1(t) L Ley (1) +2M' (A—A) |ea(1)]
+ Jmax(BBD)ea (1) ea (1) + €1 (1 — (1)) 'L  Ley (1 — 1(1))
+2M" (B—B)" |es(1)] +e1 (1) Qer (1)
—(1=%(1))er (t— (1)) Qer (1 — (1))
+2e1(t)T 1(1) +2e2(1) T ua (1)

2e1(1) er (1) +e1 (1) er(t) +ex(t) exr(t) + 1 (1) er (1)
+ez(t)T( L,+D—C)(—=I,+D—C)"e(t)
+265(1)" (I, = D)ea (1) + A (AAT ) e (1) e (1)
+ max (BB Jea (1) ex(1) +e1 (1) Qe (1)
+2M (A—A+B—B) |es(t)|+e1(t) L Ley (1)
+ei(t—1(1)) L Ley (1 — (1))
—(1=0)ey (t—(1))" Qer (1 — (1))
+2¢, (1) uy (1) 4+ 2e2 (1) us (1)
=ei () (LTL+Q)ey (1) +ex(r)”
X I+ (=I,+D—C)(-I,+D—C)"
+2(L, — D) 4 Znax (AAT) L, + A (BBT ) )€ (1)
+2M' (A—A+B—B)"|ex(1)]
—I—el(t—‘c(l))TLTLel(t—r(t))
—(1=0)e;(t—1(1))" Qey (1 — (1)) +2e1 (1) 1y (2)
+2e: (1) ua ().

(19)

Choose g; =5, then ey (¢ — (1)) LTLey (t—1(r)) —(1—
0)ei(t—1(1)) Qe (t—1(t)) =0. Substituting u;(1),uz(7)
into (19), it can be achieved that

2e1 () uy (1) + 2e2(0) un (1) = 2¢, ()"

t 8
” [Kel(’) 40 - <~/tr(t) elT(u)Qel(u)du) 6{(611)7(2([)}

+2ex(r)" [Flez(t) + Iasign(ea(t)) — %ez(t)Zlf—l]

. Zezﬁ ( /tj . oI (u)Qe, (u)du>

+ 2e2(z)TF1e2(t) + 2es(t ) Iasign(ex(t)) — cZeM

= 261 K€|

Therefore,

V(t) = er(t) (LTL+ Q + 2K)e (1) + ex(1)”
[ +2(In_ )+( I +D— C)(—I,I—FD—C)T
+ Jonae(AADL, 4 e (BBT)I,
+2@]es(t) +2M' (A — A+ B — B) |es(¢)]

28(; 2/f
Ze +Ze

+ 2e;(t ) Iasign(ex(t)) — ¢

B
t
—c / el (u)Qey (u)du | .
t—1(t)
When the parameters satisfy the conditions

1 I
< —— (P i
ki< 2(11 +1—0)’

1
i< =gl (1 di =) + 21— d)

+ )”max(AAT) + ;“nzax(BBT)],

72 S — ZM aj — a; + by — by),

we have
L"L+Q+2K <0,
L+ (=1, +D—C)(~I,+D—C)" +2(1,- D)
+ Zmax(AAT )y + 2y (BBT )1, 421" <O,
2M' (A—A+B—B)" |ey(1)| +2e3(r) Tasign(ex(1)) <0,

According to Lemma 3, we have

n t /j
)< —¢ |:Z 6213 + ; ei/.;(t) + ([r(:) el (u)Qe, (u)du) ]

n n ' B
doenn+> ) +/ ()elT(u)Qel(u)dM]
i=1 i=1 t=(t

= —cv(r)l.

< -—c

(22)

By Lemma 1, it follows that V(f) =0,t>T = ‘/;—ﬁ()) Due
to e () el(t)+ex(t) er(t) <V(t), thus, e (1) e (r)+
ex(t) ex(r) =0, >T. According to Definition 3, drive-
response system (9) and (10) will realize finite-time syn-

chronization with the settling time 7 = V( i([?)). O

Remark 2 Compared with Rakkiyappan et al. (2016),
where the global exponential stability of inertial memris-
tive neural networks and global exponential pinning
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synchronization of coupled inertial memristive neural net-
works are discussed, we consider the finite-time synchro-
nization of the same network model here. Different from
previous work which focus on the asymptotic synchroniza-
tion, we care more about the length of convergence time and
design a controller to make it be able to adjusted to an
arbitrary length. It has been proved that finite-time syn-
chronization has better application in the practical fields,
such as signal processing, pattern recognition, associative
memories and optimization problems. Thus, our work is the
extension of Rakkiyappan et al. (2016).

Fixed-time synchronization

According to the previous discussion, the settling time of
finite-time synchronization relies on the initial condition of
drive-response systems. Thus, different initial conditions
may result in different convergence time. However, the
initial condition of many practical systems can hardly be
estimated or even impossible to be measured, which leads
to the inaccessibility of the final settling time and deteri-
orating of the systems performance. To overcome this
difficulty, the concept of fixed-time synchronization is
proposed, where the settling time is independent of the
initial conditions.

Consider the drive-response model (9) and (10) men-
tioned above. Choose the following fixed-time controller

w1 (£) = Ky SIGN (e (1)) e1 ()| + KoSIGN (e (1)) ey (t — 7(2))]
— a(2n)""VSIGN (e, (1)) (|e1 (1) + [ea (1)1,

15(1) = I'SIGN (e5(1)) |e2(1)| + Msign(es (1))
= bSIGN (e2(1)) (e ()| + le2(1)[),

then the error system is obtained as follows

ei(t)=—ei(t) +ex(t) +ui (1),
ex(t)=(=I,+D—C)ei(t) + (I, — D)ex(t)
)

)+
AV (1) +BOO) (vt (1))

= A(p())f (p(1) = Bp(0))f (p(1 —1(1))) +ua (),
(24)

“kin}, Ky = diag{kyy - - - kan}, |er (2)]
I' = diag{y, -~ 7,}, SIGN (e (1))
— diag{sign(en (1)) - - sign(en, (1))}, SIGN(es(r)) = diag
{sign(e (1)) - - sign(ex,(2))}, sign(e(t)) = (sign(e(t))

-sign(enn(1)))", sign(es(1)) = (sign(ea (1)) - - - sign(ea,
(O ler(t = (1) = (len (t = w(0))]. . lewn(t = (D)),
MeR.a>0,b>0,p>1,0<g<1 are tunable con-
stants, kj;, ky;,7;, M are the parameters to be determined
later.

where K| = diag{ki, -

= (len ()] lew ()",

@ Springer

Definition 4 If the drive-response systems (9) and (10)
satisfy the condition of finite-time synchronization, fur-
thermore, there exists constant 7, > 0 such that

1" < Thnax, Veo (0) € C'[—1,0].

Then, the drive-response systems (9) and (10) are said to
achieve fixed-time synchronization.

Theorem 3 The drive-response systems (9) and (10) will
achieve fixed-time synchronization if the following condi-
tions hold

ki<l—|—1+d —c,|—Zl aj,

i < -1 _|1 _di|>

ki < —Zl s

| I o
M< ——[1"(A—AM +1"(B - B)M|,
n
That is, |le(t)ll = 220 len ()] + 220 leai(r)| = 0,1 >
_ 1 1
=1t g

Proof Choose a Lyapunov functional as

V(D)= len(t) + Y lealr)
i=1 i=1

Taking the set-valued Lie derivative of V() with respect to
t along the trajectory of the error system (21) yields

) ér(t) +sign(ea(t))" éa(1)
N [=e1 (1) +ea(t) +u (1)]
li+D~ C)ey (1) +
() (p(1))
—B(p()f (p(t = (1)) +ua (1))
)

V(t)=sign(e)(t
=sign(e; (1)) [—

+Sig”(€2(f))T[(

+A)f (y(1) —
+B(y(0))f (y(1—

=—sign(e; (¢ )Tel
T

e
+sign(ex(t
(

(I —=D)ex(t)

( )
(1) +sign(e1 (1)) ea (1)
I,+D—C)e (1)
D)es (1) +sign(ex(1))"
Alp())f (p(1))

)
)
+sign(ex(t))” (I, —
X [A @O (1) —
+BO(0))f (y(t—(1)) = Bp()f (p(t —(1)))]
+sign(er (1)) i (1) + sign(ex (1)) ua (1)

S—Zlen t)\+Z|ezz \+Z|—1+d cillex(?)|

+Z |1 = dilei(1)| +sign(e(1)) A (0)f (¥(1))

i=1

(=
",

—A(p(1))f (p(0) +B(y(0)f ((r — (1))
= B(p(0))f (p(t—(1)))] + sign(e1 (1)) i (1)
+sign(es (1)) un (7). (25)
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According to Assumptions | and 2, we have

szgn(ez()) A @) () — Alp()f (p(2))
+ B(y(1))f (y(r — 7(1))) — B(p(t))f (p(t —
= sign(ez (1)) A(y(0)[f (1) — £ (p(1))]
+ sign(ex (1)) [A(y(1)) — A(p(t))]
F(p(0) + sign(ex(1))" By())[f (y(t — =(1)))
—f(p(t = ©(1)))] + sign(e2(1))" [B(y(1))
— B(p()))f (p(r — (1))
<1TA+L|e (O] +1"(A =AM + 1"BT Lles (t — =(1))|
1"(B - B)M

7(1)))]

)

(26)
By Lemma 3, it follows that

sign(er (1)) (1) + sign(ea (1)) us (1)

<Zk1,|el, |+Zk2,|eht—r
x [;ku(znu;ezi(rw +;%~|€2i(f)
+Mn—b<§eli(f)|q+i§;‘|€2i(t)q>
simmm+§mmwmw
—ag;m@Hg;m@W
+§yi|e2i(r>|+Mnb(iwu(owgem(r))q
=§mmw+§mwmww+§mmw

)| —a(2n)"”

+Mn—aV (1) —bV (),
(27)
Substituting (26) and (27) into \L/(t), we have
NS | =1+ —1+d;i— c,|+Zla +ki; [ len(r)]
i1
+Z[1+|1—di\+%]|e2i(f)|
=1
+Z Zlb +hkyi | leri(t—1(0)|+[1T(A—A)M
+17(B —B)M+Mn] —aV(t)’ —=bV (1)’
(28)

When the parameters satisfy the condition in Theorem 3

ki<l—|—-1+di—cf—

Zﬁﬂ

< —1=[l—di,
kZlS _Zl ji )

Mg_gﬂa—gm+ﬂ@—@m,

we have V(t) < —aV(t)) —bV(¢)!. From Lemma 2,
V(t) converges to zero in a fixed time and the fixed time is
estimated by T = ( Hence, |le(?)|| =

under

0t g
Z le1i(1)] + E le2i(£)] = 0,6 >T. Consequently,
i=1 i=1

controller (23), systems (9) and (10) realize fixed-time syn-
chronization. This completes the proof of the theorem. [

Remark 3 Compared with finite-time synchronization
where the convergence time relies on the initial synchro-
nization error, the settling time of fixed-time synchro-
nization is independent on initial conditions. In some fields,
such as secure communication and pattern recognition, it
has restrictive requirement on the convergence speed and
the initial conditions are usually hard to be obtained. Thus,
the fixed-time synchronization is more favorable and
applicable than finite-time synchronization in such cases.

Numerical examples
In this section, numerical examples are presented to illus-
trate the effectiveness of our results.

Example 1 Consider the following inertial memristive
neural network with the master system given by

pi(t) = =p1(1) + @1 (1),

Pa(t) = —pa(t) + qa2(1),
g1(t) = (=1 +di —ci)pi(t) + (1 = di)q: (1)
+an (p1())fi(p1(1) + ana(p1())f2(p2(1))

(
+ b (pr())fi (PlEt (1)) (29)

+ b2 (p1(1))f2(p2(t — (1)) + I,

¢ (1) = (=1 4+do — c2)pa(t) + (1 — d2)qa(1)
+ a21 (p2(0))f1 (1 (1)) + a22(p2(1))f2(p2(1))
+ ba1 (p2(1))f1 (p1 (1 — (1))
+ b2 (p2(1))fa(p2(t — (1)) + L2,

where
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1, <1, 1, <1,
an(pi(t) = { _17|1|Dpll((3)|| S Lalz(Pl(f)) = {27 ||l]7)11((l))|| > 1,
- -5
—1,|p1(0)| <1, 2,lp1(H)] <1,
st ={ D = {0
Lip(0|<1, 1ipa(0)|<1,
Palpa(1)) = {0 ||§22<(t))|| 1, PR = { —1,|1|IZ2(<3>|| >1,
(30)
and the slave system described as
Yi(t) = =y1(t) + 21 (¢) + kisign(enr (1)) en (7))
+ kausign(er1 (1)) enr (1 — (1))
— csign(en (1)) ]en (1),
Yo(1) = =y2(1) + 22(1) + kizsign(er2(1)) e (1))
+ koosign(enn(1))]era(t — (1))
— esign(en(1))[en ()|,
4(t) = (=14+di —cin(t) + (1 —di)z (1)
+ a1 ()i (y1 (1) + a1 (2))f2(y2(1))
+ b ()i (i (t — (1))
+ b2 ()2 (y2(t — (1)) + 1
+ 71sign(ezi (1))]e21 ()| + Msign(ez: (1))
— csign(ex (1))]ex (1),
(1) = (=14 d> — c2)y2(t) + (1 = d2)z2(1)
+ a1 (2(0))fi(y1 (1) + an(y2(1))f2(y2(1))
+ bar (2 (0)fi (1 (£ — (1))
+ b2 (y2(1))2(y2(r — 7(2)) + 2
+ 7asign(ex(1))|ex (1)| + Msign(ex (1))
— esign(ex(1))]ex (1)l
(31)

where fi(x) =f(x) =sinx, ¢y =c;=1,dy =2,d, =1,
7(t) = 0.8 4+ 0.25in3¢t, I = I, = 0. By Assumptions 1 and
2,1y =1, = 1,M = 1, When the control gains are taken as
ki = —1,kin = =3,ky1 = =3,knp = =3, 7y, =-2,7, =
—2,M = —7, the condition of Theorem 1 is satisfied. The
initial conditions are chosen as p;(t) =4, pa(t) =
3,q1(t) =2,q2(t) =3,31(t) = =0.5, y:(t) = —0.7,z:(¢) =
—1,2,(¢) = 0,Vt € [-1,0]. One can see from Figs. 1, 2, 3,
4 and 5 that the states of the slave system indeed converge
to the master system with the settling time ¢* and the
convergence error remains zero afterwards. Thus, the
effectiveness of Theorem 1 is verified.

@ Springer

p,(t).y, (1)

0 0.2 0.4 0.6 0.8 1
t

Fig. 1 State trajectories of p;(¢) and y;(¢)

P, ()Y, (1)

0 0.2 0.4 0.6 0.8 1
t

Fig. 2 State trajectories of p,(¢) and y(¢)

a,1).2,(1)

t

Fig. 3 State trajectories of g;(¢) and z(r)
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o, (1.2, (1)

0.2 0.4 0.6 0.8 1
t

Fig. 4 State trajectories of g, (¢) and z,(¢)

e11(t),e12(t),e21(t).e22(t)

0.6 0.8 1
t

Fig. 5 Synchronization error ey, ez, €21, e between systems (29)

and (31)

Example 2 Consider the following inertial memristive
neural network with the master system given by

4 (1) =

(1) = —p1(t) + q1 (1),
Pa(t) = —pa(t) + qa(1),
q,(t) =

(=1+di —ci)pi(t) + (1 —di)qi (1)

+an(pr()fi(p1(1)) + ana(pi())f2(p2(1))
+bu(pi())fi(pi(t = (1))

+ bia(p1 (1))fa(pa(t — (1)) + 11,
(=1+d> —c2)pa(1) + (1 — d2)q2(2)

+ ax (p2())fi(p1(1)) + axa(p2() 2 (p2(2))
+ bat (p2(1))fi (p1 (2 — (1))
+bn(p2())fa(pa(t — (1)) + I,

where
2,lpi(1)| <1, Lipi ()| <1,
"”(p‘(”)_{—l,|pl<r>|>1,“”<’”(’))_{o,|pl<r>|>1,
—LIp (1) <1, —Lipi ()<,
azl(Pz(f)):{ 2. ()] > 1, azz(Pz(f))Z{ Lo (0] > 1,
71, 1 Sl, 27 1 _17
bu(l’l(f))z{ | |;p(t()t|)| blz(Pl(f))Z{O ; ((:))||i1
) P21 ) s 1M1 )
17|p2(t)|§17 2?|p2(t)|§15
P20 _{ Ia) 1, 2O { L |pa()] > 1,

and the slave system is

¥

C
Sen (@)

B
of [ el (u)Qe; (u)du _enlt)
2(/,4@ e ) e

C 2p-1
S (1)

-5 (/rrm el (u)Qe (u)du)

() =(=1+di—ci)yi(t) +
Fan(yi())f2(2(8) +bii (i ()i i (£ =2z
+bua( ()2 (t—1(1) + 1 +711€21 (1)

) c
+71ign(ea (1)) —Eeif (),

Z'z([) = (—1 +d, —C‘z)yz(l) +
+axn(y2(1))f2(v2(1)) +bar (2 ()t 1 (£ — 2 (¢
+b2(y2 ()2 (y2(t— (1)) + L +712e2(1)

=—y1(t)+z1(¢) +kreq (t) —

Y2(t) = —ya(t) +22(t) +kaera(t) —
B

, c
+aasign(en()) —5e35 (1),

where

filx)

= fo(x) = sinx, c; = c; = 1,d;

(I=d)zi(t) +an (@) ())

))

(1=d2)za(t) +az (y2(1)fi (y1(2))

))

(34)

:d2:2’

(1) = 0.8 +0.25in(3t), 6 =0, [} = I, = 0. By Assump-
tions 1 and 2, [; = I, = 1,M = 1,, When the control gains

are taken as k; =k, = —-2,kyy = -3,k =

_37’))11 =

Y12 = —10,7,; = 7,5 = —10, the condition of Theorem 2 is

satisfied. Choose the initial condition as p;(¢) =

2,p2(t) =

—1-37‘]l(t) = 04a 512(’) = _O'Zayl(t) = _0-57)’2(t) = O7a

Z1(t) = 70.5,12(1‘) =0.8,Vre [*1,0]. The

simulation

results are shown as Fig. 6, which verify the effectiveness

of Theorem 2.

Example 3 Consider the following master inertial mem-

ristive neural network

@ Springer



132 Cogn Neurodyn (2018) 12:121-134
° Yi(t) = =y1(t) + 21 (t) + kien (t) + kiysign(en (t))|err (1)]
il + karsign(en (1)) - len (1 — (1))
e Z —a(2n)" " sign(en (1)) [len () + lex (1)),
g ; 2(1) = =y2(1) + 22(1) + kaera (1) + kasign(enn(t))|er2 (7))
& ) Fhasign(en() - enzs — (0)
o -if — a(2n)” sign(en(®)len O + len(Ol']
if_ -2 21(t) = (=1 +di —ci)yi(t) + (1 —di)zi ()
T + a1 ()i (1 (1) + arz(1(2))f2(y2(1))
+ b (1 ()i 01 (1 = 7(1)))
S ee i e w9 as s + b0 ()0t — (1)) + 1y
+ 1sign(ea (1))]ear (1)| + Msign(ex (1))

Fig. 6 Synchronization error ey, ez, €21, e between systems (31)
and (33)

pi(t) = —pi(t) + q1(2),

P2(t) = —pa(t) + q2(1),

¢:(1) = (=1+di —ci)pi(1) + (1 — di)q: ()
+an(pir()fi(p1 (1) + an(pi(1))f2(p2(1))
+ b (pr(0)fi (1 (t — (7))
+ bia(pr()fa(pa(t — (1)) + I,

¢(1) = (=1 +do — c2)pa(1) + (1 — d2)q (1)
+ a21(p2())fi (1 (1)) + a2 (p2(1))f2(p2(1))
+ ba1(p2(1))fi (1 (t — (1))
+ bn(p2 (1)) (p2(t — (1)) + Lo,

(35)
where

by (p2(t)) = {

and the slave system is

@ Springer

— bsigne (1)[len ()|” + lear (1],
() = (=1 +d2 = c2)y2(t) + (1 — d2)2a(1)
+ a1 (v2(0))fi (91 (1)) + a2 (v2 (1) )f2 (y2(1))
+ b1 (2 (1)fi (1 (£ — (1))
+ b ()2 (32(t — 7(2)) + I
+ 7asign(ex(t))|ex (t)| + Msign(ex (1))
ller2(8)|" + lexa(n)|],

(t
— bsignex (1)
(37)

where f(x) = fo(x) = sinx, ¢, =cx = 1,dy =dp =2,p =
2, g=05a=b=1, 1(t) =08 +0.2sin3t, [ =L =0.
According to Assumption 1 and 2,1} =L, = 1,M =(1, l)T.
When the control gains are chosen as kj; = —3,k;p = —1,
k21 = —2,]{22 = —4,’))1 =Y = —2,M = —10, the condi-
tion of Theorem 3 is satisfied. The initial condition is taken

t

Fig. 7 State trajectories of p;(¢) and y;(¢)
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t

Fig. 8 State trajectories of p,(r) and y,(r)

0 0.2 0.4 0.6 0.8 1
t

Fig. 9 State trajectories of ¢;(¢) and z; (¢)

as pl(l) = 5,p2(l) = 5,6]1(t) = 5,6]2<t) = O.2,y1<l> =
—0.5,y2(t) = —0.7,z1(t) = —0.3,z2(z) = —3,Vt € [-1,0].
The simulation results are shown as Figs. 7, 8,9, 10 and 11,
which verify the effectiveness of Theorem 3.

Conclusion

This paper has addressed the finite-time and fixed-time
master-slave synchronization control problem for the
inertial memristive neural networks with time-varying
delays. Utilizing the Fillipov discontinuous theory and a
variable transformation, the problem of second-order
equations can be converted into first-order one. Then, by

a,(t).2,(t)

0 0.2 0.4 0.6 0.8 1
t

Fig. 10 State trajectories of g»(¢) and z(r)

e11(t),e12(t), 1'e21(t),e22(t)

0 0.2 0.4 0.6 0.8 1
t

Fig. 11 Synchronization error e}, ez, €21, €22 between systems (35)
and (37)

designing Lyapunov function and constructing feedback
controller, sufficient conditions are derived respectively for
the two types of synchronization. Finally, numerical sim-
ulations have been presented to verify the effectiveness of
our theoretical results.
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