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Usage of drip drops as stimuli in an auditory P300 BCI paradigm
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Abstract Recently, many auditory BCIs are using beeps as

auditory stimuli, while beeps sound unnatural and

unpleasant for some people. It is proved that natural sounds

make people feel comfortable, decrease fatigue, and

improve the performance of auditory BCI systems. Drip

drop is a kind of natural sounds that makes humans feel

relaxed and comfortable. In this work, three kinds of drip

drops were used as stimuli in an auditory-based BCI sys-

tem to improve the user-friendness of the system. This

study explored whether drip drops could be used as stimuli

in the auditory BCI system. The auditory BCI paradigm

with drip-drop stimuli, which was called the drip-drop

paradigm (DP), was compared with the auditory paradigm

with beep stimuli, also known as the beep paradigm (BP),

in items of event-related potential amplitudes, online

accuracies and scores on the likability and difficulty to

demonstrate the advantages of DP. DP obtained signifi-

cantly higher online accuracy and information transfer rate

than the BP (p\ 0.05, Wilcoxon signed test; p\ 0.05,

Wilcoxon signed test). Besides, DP obtained higher scores

on the likability with no significant difference on the dif-

ficulty (p\ 0.05, Wilcoxon signed test). The results

showed that the drip drops were reliable acoustic materials

as stimuli in an auditory BCI system.

Keywords P300 � Auditory BCI � Drip drops � Online
accuracy � User-friendness

Introduction

The first P300 Speller system was presented by Farwell and

Donchin nearly 30 years ago (Farwell and Donchin 1988).

Although visual-based P300 brain–computer interfaces

(BCIs) can obtain high classification accuracy and infor-

mation-transfer rate (ITR) (Jin et al. 2014, 2015; Martinez

et al. 2007; Pan et al. 2013; Xu et al. 2016; Zhang et al.

2016; Zhu et al. 2010), visual-based P300 BCIs cannot be

used by people with visual disabilities or disorder of con-

sciousness (DOC) while the effects of auditory-based P300

BCIs on these people were validated (Başar et al. 2012;

Lulé et al. 2013; Puanhvuan et al. 2017; Yin et al. 2013).

The P300 potential is a large positive-going potential,

occurring at * 300–500 ms after stimulus onset (Farwell

2012; Farwell et al. 2013; Park et al. 2016), and is firstly

discovered by Sutton et al. (1965). The oddball paradigm is

a classical paradigm used to evoke the P300 potential

(Donchin et al. 2000; Monica et al. 1995). The efficacies of

a four-choice auditory P300 BCI between amyotrophic

lateral sclerosis (ALS) patients and health subjects were

compared in Sellers and Donchin’s work firstly and it

showed that the auditory P300 BCI could evoke recog-

nizable ERPs on the ALS patients as well as the healthy

people. This study showed the potential application of

auditory P300 BCI on the ALS groups (Sellers and

Donchin 2006). In the proposed auditory oddball
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paradigms of BCI systems, different acoustic signals are

utilized as stimuli.

Beeps with different frequencies are widely used in

auditory event-related potential (ERP) researches (Günte-

kin and Başar 2010). Hill et al. (2005) proposed an audi-

tory paradigm that contained both left and right

synchronous auditory streams. These auditory streams

consisted of beeps at different frequencies: 800 Hz (non-

target) and 880 Hz (target) for the left; and 1500 Hz (non-

target) and 1650 Hz (target) for the right. This paradigm

presented an encouraging result for its high classification

accuracy. Halder et al. (2010) further studied the beeps in

auditory-based BCIs and focused on three effects of beep

stimuli: pitch, loudness, and direction effects. Pitch and

direction can improve the performance of auditory-based

BCIs better than the loudness. Schreuder et al. (2010)

developed an eight-class auditory paradigm with eight

pitches from eight directions and analyzed the perfor-

mances of different inter-stimulus interval (ISI) conditions

(1000, 300, and 175 ms). The highest average ITR was

175 ms ISI, which achieved 17.39 bits/min. The speed of

auditory BCIs could be comparable to the visual-based

BCIs based on covert attention (Schreuder et al. 2011).

Recently, different auditory stimuli have been found to

exert various effects on auditory BCI users. A proper

auditory stimulus would help to increase the performance

of the BCI system and decrease the fatigue of users after

long-term use. Several studies reported that natural sounds

would be a good choice for auditory-based BCIs (The-

unissen and Elie 2014). The special properties of natural

sounds make them easy to be perceived, and the auditory

systems of humans can also adapt well to these properties

(Theunissen and Elie 2014). Natural sounds include a rel-

atively wide variety of sounds, and different natural sounds

are selected to develop auditory paradigms. Klobassa et al.

(2009) presented a high-throughput auditory BCI system

with five different sounds (bell, bass, ring, chord, and

buzz). The findings indicated that this auditory paradigm

which utilized natural sounds is feasible and reliable with

stable classification accuracy for users with vision limita-

tions. The vocalization of numbers was also investigated in

the research on auditory-based BCIs. Furdea et al. (2009)

used Arabic numerals (labeled 1–10) on each row and

column of a 5 9 5 speller, and the participants can select

their targets by listening to the vocalization of the labeled

number of the desired row or column. High classification

accuracies demonstrated the availability of this speller on

the majority of the participants (9/13). Kübler et al. (2009)

tested this paradigm on four locked-in patients, but the

results were disappointing. Two letter streams and two

natural speech streams read by humans were used as

stimuli in Lopez’s study (Lopez-Gordo et al. 2012). Nat-

ural speeches obtained high classification. Besides the

human voice, sounds of duck, singing bird, frog, seagull,

and dove are used in auditory BCI systems (Baykara et al.

2016; Halder et al. 2016; Simon et al. 2015). Höhne (2012)

verified that natural sound stimuli perform better than beep

stimuli by comparing the beeps with spoken and sung

syllables; both of which obtained high classification accu-

racies and sufficient positive feedback from the partici-

pants. Appropriate natural sounds were shown as not only

effective stimuli to evoke distinguishable ERPs but can

also improve auditory BCIs with respect to ergonomics and

performance.

In the field of acoustics, it had been proved that water

sounds were the optimal sounds among natural sounds to

mask the noises in the environment and make people

relaxed (Jeon et al. 2010). However, there were no studies

that focused on the performance of water sound stimuli

used in auditory-based BCI system. An auditory BCI

evoked by drip drops is proposed and named as the drip-

drop paradigm (DP) in this study as the drip drops were one

kind of water sounds. This work aimed to verify whether

the proposed auditory paradigm can make users feel

comfortable and ease their tiredness, as well as not dete-

riorate the classification accuracy performance of the

auditory BCI. A traditional beep paradigm (BP) was

compared with DP to verify the performance of the latter.

We hypothesized that DP was superior to BP in terms of

classification accuracy, decreasing fatigue, and long-term

performance.

Methods

Participants

Eleven healthy subjects (mean age: 23.4 years old, SD

1.29, range 21–26 years old) participated in this study. Five

of the participants had no previous BCI experience. Each

participant had no neurological diseases and presented

normal audition. Each participant was given information

about the experiments without exposing intension. All the

participants signed written consent forms before the

experiments, and they received 100 RMB each.

Auditory stimuli

The DP presented three different drip-drop clips which

were intercepted from a music work named Fragile Hope

(WANDER/WONDER, Balam Acab). The three drip-drop

clips were selected carefully to ensure that each clip could

be distinguished from the others, and no clip sounded more

salient than the others. The three drip-drop clips presented

clear and different orientations (left/middle/right). The

‘‘first drip-drop’’ stimulus was played in the right
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headphone, the ‘‘second drip-drop’’ stimulus was played

through both headphones to sound as if it came from the

middle, and the ‘‘third drip-drop’’ stimulus was played in

the left headphone. Three beeps with different frequencies

were used for BP. The frequencies of beeps were 800,

1000, and 1200 Hz. The ‘‘1200 Hz’’ stimulus was played

in the right headphone, the ‘‘1000 Hz’’ stimulus was played

through both headphones to sound as if it came from the

middle, and the ‘‘800 Hz’’ stimulus was played in the left

headphone. Details of all the stimuli were shown in Fig. 1.

The stimulus on time for each pattern was 200 ms, and

the stimulus onset asynchrony (SOA) time was 550 ms.

The same stimulus in each pattern was not played suc-

cessively to avoid the ‘‘double-stimulus’’ effect and

increase the target to target interval (TTI).

Experimental design

EEG data were recorded with active electrodes (Ag–AgCl)

in a 64-channel ‘‘g.EEGcap’’ EEG cap (Guger Technolo-

gies, Graz, Austria), of which 15 channels (F3, Fz, F4, T7,

C3, Cz, C4, T8, CP3, CPz, CP4, P3, Pz, P4, and Oz) were

used. The electrodes were placed in accordance with the

international 10–20 system. FPz was set as the ground, and

the right earlobe was set as the reference. The EEG was

measured with a 16-channel ‘‘g.USBamp’’ amplifier

(Guger Technologies, Graz, Austria), band-pass filtered

between 0.1 and 100 Hz, notch-filtered at 50 Hz, and

digitized at a rate of 512 Hz. Impedances of all electrodes

were kept below 10 KX.
Before the experiments, participants were trained for the

auditory tasks. Before each target task, a female voice

would tell the subjects what the target sound was. After-

ward, the subjects only needed to count the number of

times they heard the targets. In the offline experiment, three

different sound stimuli composed one trial and sixteen

trials composed one run. Each session comprised five target

tasks (five runs). Three sessions were established in the

offline experiment for each pattern. The subjects were

allowed to rest for 2–3 min after each session. The order of

the paradigms in the experiments was counterbalanced for

each participant. The offline training of each paradigm was

separated into three sessions and the recorded data was

used train the classifier model.

In the online experiments, subjects were required to

finish 36 target copy selections in each session. The num-

ber of trials used in each run was selected by an adaptive

strategy (Jin et al. 2011). Each online trial block takes

about 10 min. Compared with the previous work Huang

et al. (2016), the amount of target selection tasks was

increased from 24 to 36, which will help to show the

performance of this auditory-based BCI when more tasks

were done by users.

The EEG data were filtered with a third-order Butter-

worth band-pass filter between 0.1 and 30 Hz. The EEG

was down sampled by selecting every eighth sample from

Fig. 1 Oscillograms and spectrograms of DP and BP are presented.

In the subplot a, the oscillograms and spectrograms of drip drops in

DP are presented. The direction of each stimulus is marked on top of

the figures. Subplot b presents the oscillograms and spectrograms of

beeps in BP. The frequencies of beeps from left to right are 800, 1000,

and 1200 Hz, respectively
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the EEG. The first 1000 ms of EEG data after each stim-

ulus presentation was used for feature extraction.

Bayesian linear discriminant analysis (BLDA) was used

as the classification algorithm for its properties that prevent

overfitting in high-dimension data and its better classifi-

cation accuracies than those of Fisher’s linear discriminant

analysis (FLDA). The details of BLDA can be found in

Hoffmann et al. (2008).

Online accuracy and speed

The online accuracy of each participant was calculated as

Acconline¼
T

F + T
ð1Þ

F is the number of false selections, and T is the number of

true selections in the whole online experiment. The value

of F ? T is equal to 36 (the number of total online targets).

Online accuracy is an important index which reflects the

true performance of the BCI system.

The r-square value was computed to evaluate the clas-

sification discriminant degree. The r-square value was

r2(x), and the r(x) was calculated as

r xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi

N1N2

p

N1 þ N2

mean xijli ¼ 1f g � mean xijli ¼ 2f g
std xijli ¼ 1; 2f g ð2Þ

where N1 and N2 are the number of variables in the target

and non-target groups, respectively. xi is the ith variable,

and li is the class label of the ith variable. Variable is the

feature vector extracted from the EEG epoch in the targets

and non-targets.

ITR is one of the important indexes to demonstrate the

property of BCI paradigms. ITR is calculated as the fol-

lowing formula:

B ¼ b* log2N þ Plog2Pþ 1� Pð Þlog2
1� Pð Þ
N � 1ð Þ

� �� �

ð3Þ

b ¼ 60

t*AVT

B is the value of ITR. N indicates the number of possible

targets and P is the possibility that the desired target is

selected. AVT is the number of trials to output a target and

t (1.65 s) is the time of each trial (SOA is 550 ms and each

trial contains 3 stimuli).

Feedback

After completing the last run of each session, each subject

was asked two questions about each condition. Each

question can be answered on a 1–5 rating scale indicating

strong disagreement, moderate disagreement, neutrality,

moderate agreement, or strong agreement. All questions

were asked in Chinese. The two questions were

1. Do you prefer this pattern?

2. Is this pattern difficult?

ERP analyses

To survey the performance of DP and BP, the grand

averaged amplitudes and latencies of ERPs was presented.

The grand averaged amplitudes of targets/non-targets for

each electrode were obtained by averaging the 1 s time

window EEG of all target stimuli/non-target stimuli and the

start point of the time windows is set according to the start

time point of each stimulus. The peaks of ERPs were the

peak points from 75 to 180 ms for the N1, from 150 to

250 ms for the P2, from 250 to 400 ms for the P300 and

from 380 to 600 ms for the N400-like component. The time

point of each peak was defined as the peak latency.

Statistic analyses

In this study, the online accuracy, average amplitudes of

ERPs and scores collected from feedback were the inter-

ested items to analysis. A paired t test was used to show the

statistical differences of the amplitudes of ERPs across all

participants between two paradigms. Since the classifica-

tion accuracy and user feedback scores were not meet the

normal distribution, a Wilcoxon signed rank test was used

to do the statistical analysis.

Results

ERPs

The grand averaged amplitudes of the target and non-target

of two paradigms are shown in Fig. 2. Clear N1-P2 com-

ponents could be observed in two paradigms. The ampli-

tudes of N1 of the BP was significantly higher than that of

DP at C3 (p\ 0.01, t = - 4.12, paired t test). The P2

amplitude of DP was significantly higher than the BP at T8

(p\ 0.05, t = 2.24, paired t test). It was found that sig-

nificant differences existed on the P300 amplitude between

DP and BP at Fz (p\ 0.05, t = - 3.12, paired t test).

Following the P300 potential, a negative component began

at 400 ms. DP had a higher average peak value of the

cFig. 2 Grand average ERP waveforms across 11 participants of DP

and BP. Thick solid red lines indicate the average target ERP

responses of DP, and thick solid blue lines depict the average target

responses of BP. Thin red dashed lines indicate the average non-target

ERP responses of DP, and thin blue dashed lines represent the average

non-target ERP responses of BP. (Color figure online)
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negative component than that of BP at Cz (p\ 0.01,

t = - 4.27, paired t test).

To evaluate the classification contributions of the com-

ponents, r-square values were calculated (Fig. 3), which

showed that P300 and N400-like contributed more for

classification accuracy compared to other ERPs.

Offline accuracy

The offline accuracies of 11 participants for each pattern

are shown in Fig. 4. All participants achieved higher

accuracies of both patterns than the chance level (33.3%),

showing that the DP, which presented natural stimuli,

could evoke distinguishable ERPs for classifier. No sig-

nificant difference was found on the single-trial offline

accuracy between DP and BP (p[ 0.05, Wilcoxon signed

test).

Online accuracy and ITR

The online accuracies and ITRs of each participant in the

two patterns are listed in Table 1. The average online

accuracies of DP and BP across 11 participants were 73.48

and 65.91%, respectively. The online accuracies and ITRs

Fig. 3 Topographic maps of r-square values across 11 participants of DP and BP

Fig. 4 Average accuracyof eachparticipant and grand average accuracy

across all participants for DP and BP. The solid red lines refer to the

accuracy of DP, and the solid blue lines refer to the accuracy of BP. The

pictures fromS1 toS11 represent the accuracies ofparticipants fromS1 to

S11 and the last picture shows the grand average accuracy across all

participants of DP and BP. (Color figure online)
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of DP were significantly higher than that of BP (p\ 0.05,

Wilcoxon signed test; p\ 0.05, Wilcoxon signed test).

Three participants obtained accuracy levels surpassing

80% in the DP, but only one participant’s accuracy was

beyond 80% in the BP. The average ITRs of DP and BP

were 2.75 bit/min and 1.88 bit/min (Table 1).

Feedback

The feedback about the likability and difficulty of each

paradigm is shown in Table 2. The scores in Table 2

indicated that most participants liked the DP better than the

BP, and they thought the DP was less difficult than the BP.

The group mean scores of likability were 3.73 ± 0.79 for

the DP and 3.00 ± 0.89 for the BP. It showed that

participants like the DP much more than the BP (p\ 0.05,

Wilcoxon signed test). The group mean scores on the dif-

ficulty were 3.27 ± 0.65 for the DP and 3.55 ± 0.69 for

the BP. For the DP, two participants (S1 and S9) gave

higher scores on both likability and difficulty, and two

participants (S4 and S5) gave lower scores on likability and

higher scores on difficulty, compared with those for the BP.

Discussion

An auditory paradigm that used drip drops as stimuli was

proposed in this study. Drip drops are natural sounds

exhibiting special structure compared with artificial

sounds. Therefore, this study investigated whether an

auditory paradigm with drip drops performed better than

the paradigm with beeps.

Sound comparison

The structures of the beeps were different from drip drops,

as shown by the spectrograms in Fig. 1. The drip drops

presented wider frequency range and more complex

structure than the beeps. Some neurophysiological inves-

tigations showed that the structures of natural sounds affect

neural coding, such as higher information rates measured in

the auditory system of the brain, indicating that human

auditory systems are sensitive to natural sounds (Altmann

et al. 2007; Cummings et al. 2006; Theunissen and Elie

2014; Wang and Chang 2008).

ERPs

In this study, clear N1-P2 and P300 components were

evoked in DP and BP. BP evoked higher amplitude of N1

than DP, but DP obtained higher P2 than BP. As mentioned

Table 1 Online accuracy of

each participant and each

paradigm, as well as group

average accuracy of each

paradigm

Participant Online accuracy (%) ITR (bit/min)

DP BP DP BP

S1 75.00 55.56 2.86 0.82

S2 63.89 63.89 1.53 1.53

S3 80.56 72.22 3.71 2.48

S4 69.44 61.11 2.13 1.26

S5 80.56 83.33 3.70 4.19

S6 88.89 77.78 5.29 3.26

S7 66.67 61.11 1.81 1.26

S8 69.44 69.44 2.13 2.13

S9 69.44 61.11 2.13 1.26

S10 69.44 66.67 2.13 1.82

FS11 75 52.78 2.86 0.63

Avg 73.48 ± 7.39 65.91 ± 9.22 2.75 ± 1.10 1.88 ± 1.08

Table 2 Scores of each paradigm of each participant in items of

likability and difficulty

Participant Likability Difficulty

DP BP DP BP

S1 4 3 4 3

S2 4 3 3 4

S3 3 3 3 4

S4 2 4 4 3

S5 3 5 4 3

S6 4 3 2 3

S7 4 2 3 4

S8 5 3 3 5

S9 4 2 4 3

S10 4 3 3 4

S11 4 2 3 3

Avg 3.73 ± 0.79 3.00 ± 0.89 3.27 ± 0.65 3.55 ± 0.69

The score ranged from 1 to 5. Higher scores mean deeper degree on

likability or difficulty
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before, the drip drops had more complex structure than the

beep, and related research demonstrated that the sounds

with complex spectral could enhance the amplitude of P2

but not N1 (Del Cul et al. 2007). The sounds with wide

spectrum were easily to be perceived than the sounds with

single frequency (Tervaniemi et al. 2000) and this might

make BCI users recognize the sounds in the DP more easily

compared to the sounds in the BP. The contributions for

classification of P300 components of DP and BP were

showed in the Fig. 3. Obviously, the P300 component of

DP contributed more for classification than that of BP

(p\ 0.05, t = 2.33, paired t test, at C4). Although neither

DP nor BP met the conditions to evoke a standard N400

component, this N400-like effect also could be found in

other researches (Nijboer et al. 2008; Hill and Schölkopf

2012; Zhou et al. 2016). There was a hypothesis that the

occurrence of this N400-like effect might be related to the

amount of stimuli (Nijboer et al. 2008; Hill and Schölkopf

2012; Zhou et al. 2016).

Compared DP and BP, a clear difference was a negative

component around 700 ms which was not shown in the DP

(see Fig. 2). Martens et al. (2009) found that the short TTI

or target-to-non-target-interval (TNI) would affect the

morphologies of ERPs in a visual BCI system. In this

study, this negative component around 700 ms in the target

waveform from the BP might be an early N1 component

which was evoked by the next non-target stimuli. N1 is an

exogenous component and it also could be elicited by the

non-target stimuli (Amenedo and Dıaz 1998). The ampli-

tude N1of non-targets in the BP was significantly higher

than that of DP (p\ 0.01, t = - 4.74, paired t test). It

indicated that the subject was affected by the non-target

stimuli more in the BP compared to the DP.

Accuracy and ITR

The hypothesis implying that the DP obtained higher

accuracy than the BP was verified. Online accuracies of the

DP were higher than the BP. The mean online accuracy of

the DP was 73.48%. Compared with other auditory BCI

systems with natural sounds, the classification accuracy of

DP was above average. The average online accuracy

determined by Klobassa et al. (2009) was 59.38%; the

highest classification accuracy achieved by Höhne (2012)

was below 70%; Lopez-Gordo et al. (2012) obtained an

average classification accuracy of approximately 73%

across all participants; the online classification accuracy of

Simon et al. (2015) was 76.73%; Zhou et al. (2016)

obtained an average online classification accuracy of

approximately 74%. These studies showed that the classi-

fication accuracy of DP was acceptable.

Taking account of the overlap phenomenon, we limited

the length of EEG data to 550 ms to train the classifier and

compared the offline accuracies of two conditions (1000

and 550 ms). It was found that the classification accuracies

of both two patterns decreased a lot when 550 ms EEG

data was used (Fig. 5). Because of this, 1000 ms EEG data

was better than the 550 ms EEG data.

The average ITR of DP was 2.75 bit/min and apparently

the ITR level of DP could not match the highest ITR (17.39

bit/min) of the auditory BCI proposed by Schreuder et al.

(2009). The ITRs of auditory BCIs proposed in recent years

ranged from 5.26 bit/min. For DP was a three-class para-

digm in this study, the low-class would result in a low ITR.

Another factor also needed to be considered was that the

classification algorithms applied in this study was basic

BLDA and it implied that the classification accuracy of DP

still could be improved further (Long et al. 2011).

Feedback about likability and difficulty

Likability and difficulty were common indices used to

evaluate the friendness of the BCI systems in many related

works (Höhne 2012; Simon et al. 2015; Zhou et al. 2016).

Participants preferred the DP for its euphonious stimuli

(p\ 0.05, Wilcoxon signed test). Although two partici-

pants (S1 and S9) reported that the DP was more difficult

than the BP, they rated higher scores on likability. The

mean score on the difficulty of the DP was lower than the

BP. These indexes showed the DP was an reliable auditory

paradigm with favorable user-experience.

Limitations

Two limitations existed in this work. First, the criterion for

designing the workload of online tasks remains unclear and

Fig. 5 The comparison of offline accuracies using 1000 ms data and

500 ms data of DP and BP. The red solid line indicates the 1000 ms

data of DP and the black solid line indicates the 500 ms data of BP.

The dash red line indicates the 550 ms data of DP and the dash black

line indicates the 550 ms data of BP. (Color figure online)
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would be explored in further research. Second, the para-

digm was tested on healthy participants, but its perfor-

mance on patients was not evaluated. The current findings

proved the feasibility of using drip drops as stimuli in an

auditory BCI system, but further studies should be con-

ducted to verify the performance of this strategy on

patients.

Conclusion

In this work, the usage of drip drops as stimuli in an

auditory P300 paradigm was explored by comparing with

the paradigm using beeps as stimuli. The drip-drop para-

digm obtained better accuracy and was more user-friendly

than the beep paradigm. Hence, the auditory BCI system

can be a pleasant communication method for the users.
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Halder S, Käthner I, Kübler A (2016) Training leads to increased

auditory brain–computer interface performance of end-users

with motor impairments. Clin Neurophysiol 127(2):1288–1296

Hill N, Schölkopf B (2012) An online brain–computer interface based

on shifting attention to concurrent streams of auditory stimuli.

J Neural Eng 9(2):026011

Hill NJ, Lal TN, Bierig K, Birbaumer N (2005) Attention modulation

of auditory event-related potentials in a brain-computer inter-

face. In: IEEE international workshop on biomedical circuits and

systems, pp S3/5/INV–S3/17–20

Hoffmann U, Vesin JM, Ebrahimi T, Diserens K (2008) An efficient

P300-based brain–computer interface for disabled subjects.

J Neurosci Methods 167(1):115–125
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