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Abstract Quantification of complexity in neurophysio-

logical signals has been studied using different methods,

especially those from information or dynamical system

theory. These studies have revealed a dependence on dif-

ferent states of consciousness, and in particular that

wakefulness is characterized by a greater complexity of

brain signals, perhaps due to the necessity for the brain to

handle varied sensorimotor information. Thus, these

frameworks are very useful in attempts to quantify cogni-

tive states. We set out to analyze different types of signals

obtained from scalp electroencephalography (EEG),

intracranial EEG and magnetoencephalography recording

in subjects during different states of consciousness: resting

wakefulness, different sleep stages and epileptic seizures.

The signals were analyzed using a statistical (permutation

entropy) and a deterministic (permutation Lempel–Ziv

complexity) analytical method. The results are presented in

complexity versus entropy graphs, showing that the values

of entropy and complexity of the signals tend to be greatest

when the subjects are in fully alert states, falling in states

with loss of awareness or consciousness. These findings

were robust for all three types of recordings. We propose

that the investigation of the structure of cognition using the

frameworks of complexity will reveal mechanistic aspects

of brain dynamics associated not only with altered states of

consciousness but also with normal and pathological

conditions.

Keywords Consciousness � Permutation entropy �
Lempel–Ziv complexity � Seizures � Sleep � EEG � iEEG �
MEG

Introduction

A multitude of studies have focused on the investigation of

patterns of correlated activity among brain cell ensembles

based on magnitudes of a variety of synchrony indices or

similar measures. A prominent common aspect that is

emerging from those studies is that of the importance of

variability in the brain’s coordination dynamics. In general,

neurophysiological signals associated with normal cogni-

tion demonstrate fluctuating patterns of activity that rep-

resent interactions among cell networks distributed in the

brain (Guevara Erra et al. 2016). Similar result can be

found in Werner (2009) and Pakhomov and Sudin (2013).

This variability allows for a wide range of configurations of

connections among those networks exchanging informa-

tion, supporting the flexibility needed to process sensory

inputs. Therefore, it has been argued that a certain degree

of complexity in brain signals will be associated with

healthy cognition, whereas low complexity may be a sign

of pathologies (Garrett et al. 2013; Velazquez et al. 2003;

Mateos et al. 2014; Dimitriadis et al. 2015). We sought to

obtain evidence for the correlation between complexity in

brain signals and conscious states, using brain

& D. M. Mateos

mateosdiego@gmail.com

1 Neuroscience and Mental Health Programme, Division of

Neurology, Hospital for Sick Children, Institute of Medical

Science and Department of Paediatrics, University of

Toronto, Toronto, Canada

2 Laboratoire Psychologie de la Perception, CNRS and

Universit Paris Descartes, Sorbonne Paris Cit, Paris, France

3 Krembil Neuroscience Centre, Toronto Western Hospital,

University of Toronto, Toronto, Canada

4 Ronin Institute, Montclair, NJ, USA

123

Cogn Neurodyn (2018) 12:73–84

https://doi.org/10.1007/s11571-017-9459-8

http://crossmark.crossref.org/dialog/?doi=10.1007/s11571-017-9459-8&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11571-017-9459-8&amp;domain=pdf
https://doi.org/10.1007/s11571-017-9459-8


electrophysiological recordings in conscious and uncon-

scious states.

There exist a number of statistical measures to analyze

electrophysiological recordings (Hlaváčková-Schindler

et al. 2007). In our work we use two well known measures,

one statistical—Shannon entropy, a measure of unpre-

dictability of information content in a message (Shannon

1948), and the other deterministic—Lempel–Ziv complex-

ity, based on the minimum information required to recreate

the original signal (Lempel and Ziv 1976). For both mea-

sures, we use the quantifiers introduced by Bandt and

Pompe (2002), called permutation vectors, which are based

on the relationships of neighbor values belonging to a time

series.

The Shannon entropy measure applied to the permuta-

tion vectors is known as permutation entropy (HPE) (Bandt

and Pompe 2002). In a similar manner, the Lempel–Ziv

complexity measure applied to the permutation vectors is

called permutation Lempel–Ziv complexity (PLZC) (Zozor

et al. 2014). We used these two methods to obtain infor-

mation about the signal’s dynamics from two different

perspectives, probabilistic (HPE) and deterministic

(PLZC). The HPE and the LZC have been employed in

previous studies analyzing electrophysiological recordings

in epilepsy, coma or sleep stages (Olofsen et al. 2008;

Ferlazzo et al. 2014; Nicolaou and Georgiou 2011; Casali

et al. 2013; Zhang et al. 2001; Shalbaf et al. 2015).

Moreover, there is an interesting relation, under certain

restrictions, between Shannon entropy and Lempel–Ziv

complexity that can naturally extend to HPE and PLZC

(Cover and Thomas 2006; Zozor et al. 2014).

The results we obtain are shown in a complexity-entropy

graphs. This kind of representation enables better visual-

ization of the results giving a better understanding of the

results especially for people who are not so familiar with

these kind of analysis. A recent study on chaotic maps and

random sequences, it showed that the complexity-entropy

graph allows for the distinction of different dynamics that

was impossible to discern using each analysis separately

(Mateos et al. 2017). In our present work we analyze brain

signals recorded using scalp electroencephalography

(EEG), intracranial electroencephalography (iEEG) and

magnetoencephalography (MEG), in fully alert states and

in two conditions where consciousness is impaired: sei-

zures and sleep. The hypothesis derived from the previous

considerations on variability of brain activity is that the

brain tends towards larger complexity and entropy in

wakefulness as compared to the altered states of

consciousness.

Method

Electrophysiological recordings

Recordings were analyzed from 27 subjects. Three patients

with different epilepsy syndromes were studied with MEG;

one patient with temporal lobe epilepsy was studied with

iEEG; 3 patients with frontal or temporal lobe epilepsy

were studied with simultaneous iEEG and scalp EEG; and

2 nonepileptic subjects were studied with scalp EEG.

For the study of seizures versus alert states, the 3 sub-

jects with MEG recordings and the temporal lobe epilepsy

patient investigated with iEEG were used. Details of these

patients epilepsies, seizure types and recording specifics

have been presented in previous studies (MEG patients in

Garcia Dominguez et al. 2005; iEEG patient in Perez

Velazquez et al. 2011). For the study of sleep versus alert

states, recording from other 5 subject were used, with scalp

EEG needed for accurate determination of sleep stages.

The 3 patients with combined EEG–iEEG have been

described previously (patients 1, 3, 4 in Wennberg 2010);

the 2 subjects studied with scalp EEG alone were investi-

gated because of a suspected history of epilepsy, but both

were ultimately diagnosed with syncope, with no evidence

of epilepsy found during prolonged EEG monitoring.

MEG recordings were obtained using a whole head CTF

MEG system (Port Coquitlam, BC, Canada) with sensors

covering the entire cerebral cortex, whereas iEEG subdural

and depth electrodes were positioned in various locations

in the frontal and temporal lobes depending on the clinical

scenario, including the amygdala and hippocampal struc-

tures of both temporal lobes. EEG, iEEG and EEG–iEEG

recordings were obtained using an XLTEK EEG system

(Oakville, ON, Canada). Acquisition rates varied from 200

to 625 Hz and these differences were taken into consider-

ation for the data analyses. The duration of the recordings

varied as well: for the seizure study, MEG sample epochs

were each of 2 min duration, with total recording times of

30–40 min per patient; the iEEG patient sample epoch

selected for analysis from a continuous 24-h recording was

of 55 min duration. The sleep study data segments were

each 2–4 min in duration, selected from continuous 24-h

recordings.

For the seizure analysis, we use 9 intracranial EEG

(patient 10–18) from the European Epilepsy Database (Ihle

et al. 2012). The database contains well-documented meta

data, highly annotated raw data as well as several features.

Acquisition rates varied from 254 to 1024 Hz and these

differences were taken into consideration for the data

analyses. For more information about the recordings and

the setting see Ihle et al. (2012).
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Finally we add 9 patient (scalp EEG) to the sleep

analysis, belonged to physionet data bank The Sleep-EDF

Database [Expanded] (Goldberger 2000; Kemp et al.

2000). This polysomnograms (PSGs) collection with

accompanying hypnograms (expert annotations of sleep

stages) comes from two studies (detail in Kemp et al. 2000,

Mourtazaev et al. 1995). The recording are whole-night

polysmnographic sleep recordings containing EEG (from

Fpz-Cz electrode locations). The subjects included here,

were 25–34 years old at the time of the recordings. The

EEG signals were each sampled at 100 Hz. The sleep

stages were classified based on a hypnogram in: Awake

close eyes, REM, Sws 1, Sws 2, Sws 3, Sws 4.

Table 1 is shows all the subjects and recordings char-

acteristics used in this work.

Data analysis

Owing to the aforementioned relationship between HPE

and PLZC results are depicted in the form of complexity-

entropy graphs, so as to best extract information from the

signals, either deterministic or statistical. In this section,

we give a brief explanation of both methods and the rela-

tionship between them.

Permutation entropy (HPE)

HPE is a measure develop by Bandt and Pompe (2002), for

time series based on comparing neighboring values. The

continuous time series is mapped onto a sequence of

symbols which describe the relationship between present

values and a fixed number of equidistant values at a given

past time.

To understand the idea let us consider a real-valued

discrete-time series fXtgt� 0 , and let d� 2 and s� 1 be

Table 1 Subject and recording characteristics

Subject Diagnosis Electrophysiological recording Setting

1 Primary generalized epilepsy MEG MEG unit

2 Symptomatic generalized epilepsy MEG MEG unit

3 Frontal lobe epilepsy MEG MEG unit

4 Temporal lobe epilepsy iEEG Epilepsy monitoring unit

5 Temporal lobe epilepsy iEEG–EEG Epilepsy monitoring unit

6 Frontal lobe epilepsy iEEG–EEG Epilepsy monitoring unit

7 Frontal lobe epilepsy iEEG–EEG Epilepsy monitoring unit

8 Syncope EEG Epilepsy monitoring unit

9 Syncope EEG Ambulatory

10 Temporal lobe epilepsy iEEG Epilepsy monitoring unit

11 Temporal frontal lobe epilepsy iEEG Epilepsy monitoring unit

12 Temporal lateral lobe epilepsy iEEG Epilepsy monitoring unit

13 Temporal lobe epilepsy iEEG Epilepsy monitoring unit

14 Temporal basal lobe epilepsy iEEG Epilepsy monitoring unit

15 Temporal mesial lobe epilepsy iEEG Epilepsy monitoring unit

16 Temporal lobe epilepsy iEEG Epilepsy monitoring unit

17 Temporal frontal lobe epilepsy iEEG Epilepsy monitoring unit

18 Temporal occipital lobe epilepsy iEEG Epilepsy monitoring unit

19 Normal EEG Polisomnography monitoring unit

20 Normal EEG Polisomnography monitoring unit

21 Normal EEG Polisomnography monitoring unit

22 Normal EEG Polisomnography monitoring unit

23 Normal EEG Polisomnography monitoring unit

24 Normal EEG Polisomnography monitoring unit

25 Normal EEG Polisomnography monitoring unit

26 Normal EEG Polisomnography monitoring unit

27 Normal EEG Polisomnography monitoring unit
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two integers. They will be called the embedding dimension

and the time delay, respectively. From the original time

series, we introduce a d-dimensional vector Y
ðd;sÞ
t :

Y
ðd;sÞ
t ! ðXt�ðd�1Þs; . . .;Xt�s;XtÞ; t�ðd � 1Þs

There are conditions on d and in order that the vector Y
ðd;sÞ
t

preserves the dynamical properties of the full dynamical

system.1 The components of the phase space trajectory

Yðd;sÞ are sorted in ascending order. Then, we can define a

permutation vector, Pd;s
t , with components given by the

position of the sorted values of the component of Y
ðd;sÞ
t .

Each one of these vectors represents a pattern (or motif).

There are d! possible patterns.

It is possible to calculate the frequencies of occurrence

of any of the d! possible permutation vectors. From these

frequencies, we can estimate the Shannon entropy associ-

ated with the probability distributions of permutation vec-

tor. If we denote the probability of occurrence of the i-th

pattern by PðPd;sÞi ¼ Pi with i� d! then the (normalized)

permutation entropy associated with the time series fXtg is

(measured in bits):

HPE ¼ �
Pd!

i¼1Pilog2Pi

log2d!
ð1Þ

The fundamental assumption behind the definition of HPE

is that the d! possible permutation vectors might not have

the same probability of occurrence, and thus, this proba-

bility might unveil knowledge about the underlying system.

Permutation Lempel–Ziv complexity (PLZC)

Entropy is a statistical characterization of a random vari-

able and/or sequence. An alternative characterization of

time series is the deterministic notion of complexity of

sequences due to Kolomogorof. In this view, complexity is

defined as the size of the minimal (deterministic) program

(or algorithm) allowing to generate the observed sequen-

ce (Cover and Thomas 2006, Chap. 14). Later on, Lempel

and Ziv proposed to define such a complexity for the class

of ‘‘programs’’ based on recursive copy-paste opera-

tors (Lempel and Ziv 1976).

To be more precise, let us consider a finite-size sequence

S1:T ¼ S1. . .ST of size T, of symbols Si that take their

values in an alphabet A of finite size a ¼ jAj. The defi-

nition of the Lempel–Ziv complexity lies in the two fun-

damental concepts of reproduction and production:

• Reproduction it consists of extending a sequence S1:T
by a sequence Q1:N via recursive copy-paste operations,

which leads to S1:TþN ¼ S1:TQ1:N , i.e., where the first

letter Q1 is in S1:T , let us say Q1 ¼ Si, the second one is

the following one in the extended sequence of size

T þ 1, i.e., Q1 ¼ Siþ1 , etc.: Q1:N is a subsequence of

S1:TþN�1. In a sense, all of the ‘‘information’’ of the

extended sequence S1:TþN is in S1:T .

• Production the extended sequence S1:TþN is now such

that S1:TþN�1 can be reproduced by S1:T , but the last

symbol of the extension can either follow the recursive

copy-paste operation (thus we face to a reproduction) or

can be ‘‘new’’. Note thus that a reproduction is a

production, but the converse is false. Let us denote a

production by S1:T ) S1:NþT .

Any sequence can be viewed as constructed through a

succession of productions, called a history H. For instance,

a history of S1:T can be

HðS1:TÞ : ; ) S1 ) S1:2 ) � � � ) S1:T . The number the

productions used for the generation CHðS1:T Þ is in this case

equals to the size of the sequence. A given sequence does

not have a unique history and in the spirit of the Kol-

mogorov complexity, Lempel and Ziv were interested in

the optimal history, i.e., the minimal number of production

necessary to generate the sequence. The size of the shortest

history is the so-called Lempel–Ziv complexity, denoted as

C½S1:T � ¼ minHðS1:T Þ CHðS1:T Þ (Lempel and Ziv 1976). In a

sense, C½S1:T � describes the ‘‘minimal’’ information needed

to generate the sequence S1:T by recursive copy-paste

operations.

As explained above, the Lempel–Ziv complexity needed

an alphabet of finite size to be used. In continuous time

series such as EEG or MEG it is necessary to discretize the

series before calculating the Lempel–Ziv. Using the same

idea that in permutation entropy can be taken the alphabet

as the set of permutation vectors A ¼ fPðd;sÞg and the

alphabet large a ¼ jd!j. This is called permutation Lempel–

Ziv complexity (PLZC)2 (Zozor et al. 2014).

An interesting aspect is that although we are analyzing a

sequence from a completely deterministic point of view, it

appears that CLZ ½S1:T � sometimes contains the concept of

information in a statistical sense. Indeed, it was shown in

references Cover and Thomas (2006) and Lempel and Ziv

(1976) that for a random stationary and ergodic process,

when correctly normalized, the Lempel–Ziv complexity

CLZ � of the sequence tends to the entropy rate of the pro-

cess; theses results were extended to the PLZC and the

HPE (Zozor et al. 2014); i.e.,

lim
T!þ1

CLZ ½S1:T �
logðTÞ

T
¼ lim

T!þ1

HPE½S1:T �
T

ð2Þ1 For EEG signals values of d ¼ 3; . . .; 7 have been recommended

(Bandt and Pompe 2002); for the time lag, it is adequate to use a value

of s ¼ 1 (Bruzzo et al. 2008), for all signals in this work we used the

parameter d ¼ 3; . . .; 6 and s ¼ 1. 2 From now we call the permtation Lempel–Ziv complexity as CLZ .
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where HPE½S0:T�1� is the joint permutation entropy of the

T symbols, and the right hand side is the permutation

entropy rate (entropy per symbol) of the process. Such a

property gave rise to the use of the PLZC for HPE esti-

mation purposes.

Results

The results obtained with recordings acquired during con-

scious states are compared with those acquired during

unconscious states, which include sleep (all stages) and

epileptic seizures. We note that while we work at the signal

level, we made the reasonable assumption that the MEG

and scalp EEG sensors record primarily cortical activity

underlying those sensors, and thus throughout the text we

used the term brain signals. On the other hand, iEEG

obviously records signals at the source level. For all the

signals the permutation vector parameters used were d ¼
3; . . .; 6 and s ¼ 1.

Entropy-complexity analysis from epileptic

recordings

To visualize the dynamics of entropy and complexity in

time, we use a non-overlapping running window (D ¼ 625)

corresponding to 1s of MEG recording points. For each

window the PLZC and HPE were calculated. Figure 1

shows the complexity (PLZC) and entropy (HPE) values

corresponding to a MEG recording from a patient suffering

primary generalized epilepsy (a, subject1), symptomatic

generalized epilepsy (b, subject 2) and frontal lobe epilepsy

(c, subject 3). For subject 1 and 2 the entropy and com-

plexity values represent the average calculated over all 143

channels. For subject 3 the values in each plot correspond

to a particular channel.

A single MEG channel from the recording of subject 1

shown in the inset of Fig. 1a, where the absence seizure is

visible as a high amplitude change in the signal. The

complexity-entropy graph depicts clearly the dynamics of

the ictal event. During the conscious state the PLZC and

HPE tend to maximum values, but as the patients experi-

enced the absence seizure both values decreased markedly,

returning to the original baseline values after the event.

Similar results can be seen in subject 2 who had 7

generalized tonic seizures during the recording epoch; the

seizures are visible in the inset of Fig. 1b. We can see in

the graph that the baseline interictal activity—the recording

between seizures—reaches always the highest values in

entropy and complexity, declining to values well below

baseline in the ictal (seizure) state. This result is repeated

for each of the seizures.

In Fig. 1c we show the analysis for 4 different MEG

channels in subject 3, corresponding to: left frontal (LF23),

left temporal (LT5), left occipital (LO41) and right

occipital (RO43). The first two belong to the region where

the focal onset frontal lobe seizure spread. For all channels

the values of HPE and PLZC are higher in baseline,

however the entropy and complexity decay in the most

affected areas (LF23, LT5), while for the other areas

(LO41, RO43) the complexity does not change, there being

a small decrease in entropy. Similar result were found in

the signals of the other epileptic patients, recorded with

iEEG or EEG–iEEG.

In order to increase the number of recordings anlaysed,

we took iEEG recordings of 9 subjects (subject 10–17)

from the European Epilepsy Database (Ihle et al. 2012).

The recordings were cut in two epochs, one belonging to

the interictal state and the other to Seizure state. For each

state PLZC and HPE were computed for all channels and

then the mean value and the correlation error matrix were

calculated. As we can see in the Fig. 2 for all subjects, the

states are well distinguished: Seizure epoch shown a lower

entropy and complexity than interictal states. These results

are similar as those found in the MEG: recording analysis

aforementioned. Table 2 is shows a summary of the HPE

and PLZC mean value for all channels and patient (subject

1–4 and 10–18).

A possible reason for these decrease in complexity and

entropy during seizures, is that there is higher synchrony

during ictal periods (seizures), which therefore causes the

recorded signals to become more stereotyped, with the

number of permutation vectors used to quantize the signals

smaller and more regular, resulting in lower entropy and

complexity. This will be further commented on in the

‘‘Discussion’’ section.

Entropy-complexity analysis during sleep stages

Te recordings in these cases were of 2–4 min duration

during wakefulness with eyes opened (’AwOe’) or closed,

and in sleep stages slow-wave 2 (Sws 2), slow-wave 3–4

(Sws 3–4) and rapid eye movement (’REM’). Figure 3a

shows entropy and complexity values applied to 4 subdural

strip iEEG channels in subject 5: left frontal medial

(LFM1), right frontal medial (RFM4), left temporal ante-

rior (LTA1), right temporal anterior (RTA4). The various

stages of sleep are remarkably differentiated in the graph.

Note how during wakefulness entropy and complexity are

in the higher region of the graph, whereas for the slow

wave stages, the values stay in the lower region. The

deepest sleep stage, slow wave 3–4 (Sws 3–4), has con-

sistently the lowest entropy and complexity. Interestingly,

entropy during REM sleep is very close, in most cases, to

the normal, alert state. This result may not be as surprising
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as it appears, if we consider the mental activity during

REM episodes that are normally associated with dreams.

The results are in agreement with those reported in Nico-

laou and Georgiou (2011) and Casali et al. (2013).

The results obtained from 4 scalp EEG channels in

subject 9, without epilepsy, are shown in Fig. 3b, where the

same result was obtained: higher complexity and entropy

for the awake state and lower complexity and entropy for

the deep sleep state. In this case, during REM sleep, the

values were situated between those of slow-wave sleep

periods and wakefulness. In the analyses of EEG–iEEG

signal from the other 2 epilepsy patient (subject 6 and 7)

and scalp EEG from the other nonepileptic patient (subject

8) similar results were obtained.

Same analysis was performed on data from 9 patients

taken from the physionet data bank The Sleep-EDF Data-

base [Expanded] (Goldberger 2000; Kemp et al. 2000). In

these cases we have (Fpz-Cz) channel recording. The

recordings were divided into 6 different stages: Awake

eyes close, REM , Sws1, Sws2, Sws3 and Sws4. For all

stages, the mean value and the correlation matrix were

calculated. Figure 4 depicts how the different stages can be

differentiated, having the awake stage the higher values

and decreasing as the subject goes into the deeper sleep

states. Table 3 shows a summary of the HPE and PLZC

mean value over all channels recording belong to the sleep

subject (subject 5–9, and 19–27).

A

C

B

Fig. 1 Represents the permutation Lempel Ziv complexity (PLZC)

versus permutation entropy (HPE) (with parameter d ¼ 4 and s ¼ 1)

time tracking values for MEG signal in epileptic patients during

conscious, baseline (BL) and unconscious, seizure (Sz) states. a
Subject 1, patient with primary generalized epilepsy; the MEG signal

for one channel is plotted in the inset (the high amplitude change

represents the absence seizure). We observe that before the seizure

the entropy and complexity values remain very high, decreasing

during the seizure and returning to the original values after the

seizure. b Subject 2, patient with symptomatic generalized epilepsy,

who had 7 generalized tonic seizures during the recording period,

shown in the inset. When the patient is in the baseline inter-ictal

(between seizure) state, entropy and complexity values are higher,

decreasing during each ictal (seizure) state. c Subject 3, patient with

frontal lobe epilepsy; 4 channels were analyzed separately, left frontal

(LF23), left temporal (LT5), left occipital (LO41), right occipital

(RO43). For the two recording areas most affected by the focal onset

secondarily generalized tonic seizure (LF23 and LT5) entropy and

complexity change in the ictal state, but for the areas which are not

affected (LO41 and RO43), the PLZC and HPE values are the same as

in the baseline state. The same results were obtained for the

parameters d ¼ 3; 4; 5; 6 and s ¼ 1
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The fact that same qualitative result is obtained using

different recording techniques indicates that this type of

analysis is not influenced by the recording methodology.

Discussion

Our results indicate a pronounced loss of entropy and

complexity in brain signals during unconscious states or in

states that do not represent full alertness (eyes closed). This

is consistent with what the signals represent: the coordi-

nated collective activity of cell ensembles, which, in alert

states, are responsible for optimal sensory processing. This

optimality requires a certain variability in the interactions

among those cell networks, which will be conceivably

represented in greater complexity. Previous work has

indicated a lesser variability in coordinated activity pat-

terns in altered states of consciousness, finding mainly

derived from the analysis of synchronization in patients in

coma (Nenadovic et al. 2008, 2014), or during seizures

(Garcia Dominguez et al. 2005; Perez Velazquez et al.

2007).

A common feature of several theories of consciousness

is the notion of a broad distribution of cellular interactions

in the brain that results in conscious awareness (reviewed

in Klink et al. 2015). This requirement implies that a cer-

tain, high degree of variability in the formation and dis-

solution of functional cell ensembles should take place

(Flohr 1995), and this variability will be reflected in higher

complexity of the brain signals during alert states. More-

over, several computational studies have revealed as well a

lower complexity associated with epilepsy and abnormal

cognitive states, like schizophrenia (Steinke and Galán

2011).

In fully alert states, brain recordings exhibit higher

frequencies of relatively low amplitude, and are less reg-

ular than during other states where alertness is perturbed,

including closing the eyes (when a prominent periodic

alpha rhythm appears in parieto-occipital areas, for

instance). Brain cell ensembles need to integrate and seg-

regate sensorimotor transformations while they receive rich

Fig. 2 Permutation Lempel Ziv complexity (PLZC) versus permutation

entropy (HPE) applied over 9 iEEG epileptic subject (subject 10–17).

The blue point and red triangle, represent the mean value over all iEEG

channels belong to the inter-ictal state and seizure state. The ellipses are

the correlation error matrix. The two state are well distinguish for all the

cases. The seizure state have lower entropy and complexity values than

inter-Ictal state. The parameter used were d ¼ 4 and s ¼ 1, similar

result were found for d ¼ 5; 6. (Color figure online)
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sensory-motor inputs (Tononi 2004); it is then conceivable

that these characteristics will be reflected in the high

entropy and complexity values we observe. As conscious-

ness is gradually lost, during sleep, the values of entropy

and complexity decrease because brain networks do not

need the richness in states needed to process the sensorium.

The lack of arrival of multiple sensory inputs during

unconscious states decreases the need for neurons to dis-

play many different firing frequencies, since there is not

much integration/segregation being done at those stages

and there is not much sensory load. One consequence of

this change in firing patterns during unconscious states,

particularly in sleep [for a comprehensive review of the

neurophysiological mechanisms leading to slow-wave

sleep and other thalamocortical phenomena see (Destexhe

and Sejnowski 2001)] is that the high frequencies (gamma

range) become less prominent and there is higher syn-

chrony at lower frequencies. As well, the amplitude of the

slow waves is now high since there are more synchronized

cells. Thus, all these events result in the recording

becoming more regular and exhibiting the typical slow

wave frequencies, and therefore our complexity measures

decrease as compared to alert states. These results are

consistent with measures obtained from analysis of sleep

Table 2 HPE and PLZC mean values over all recording channels, for

the baseline and seizures epoch belong to the epileptic subject

Subject Baseline Seizure

HPE PLZC HPE PLZC

1 0.99 0.68 0.94 0.62

2 0.98 0.65 0.8 0.4

3 (A) 0.96 0.62 0.86 0.53

3 (N) 0.95 0.6 0.93 0.6

4 0.89 0.6 0.5 0.3

10 0.84 0.38 0.59 0.24

11 0.91 0.45 0.61 0.24

12 0.74 0.31 0.61 0.23

13 0.6 0.2 0.59 0.22

14 0.7 0.22 0.67 0.26

15 0.82 0.39 0.69 0.30

16 0.81 0.36 0.7 0.28

17 0.65 0.26 0.64 0.26

18 0.9 0.41 0.84 0.38

For the subject 3 are shown the values for the most affected (A) and

the non-affected areas (N). The parameter used in all cases were

d ¼ 4 and s ¼ 1

A B

Fig. 3 a Each window shows the iEEG recording channel and

analyzisis result in (PLZC) versus (HPE) graph (with parameter d ¼ 4

and s ¼ 1), for subject 5 during wakefulness and sleep. Data samples

were of 2–4 min duration during wakefulness with eyes open (‘Aw

Oe’) , and sleep stages slow-wave 2 (Sws 2), slow-wave 3–4 (Sws 3–

4) and rapid eye movement (‘REM’). The electrode localizations are:

left frontal medial (LFM1), right frontal medial (RFM4), left temporal

anterior (LTA1), right temporal anterior (RTA4), the yellow circle

show the position of the channel on the surface of the brain. When the

patient is in deeper sleep states, both PLZC and HPE decrease across

all channels. b The same analysis as in A applied to another

individual (subject 9, scalp EEG recording); as with the previous

iEEG recording in subject 5, the awake state is associated with higher

entropy and complexity and the values decrease for deeper states of

sleep. For the REM sleep stage the values are between the slow-wave

sleep stages and wakefulness. The same pattern of results was

obtained for all subjects analyzed with the parameters d ¼ 3; . . .; 6
and s ¼ 1
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EEG using permutation entropy (Nicolaou and Georgiou

2011) and other nonlinear measures, such as approximate

entropy, correlation dimension, recurrence plots and Hurst

exponent, amongst others (Röschke and Aldenhoff 1992;

Acharya et al. 2005; Burioka et al. 2005).

In the case of the epileptic recordings we have observed

that the complexity and entropy values are larger in the

interictal stage (between seizures) and decline sharply in

the ictal stage (seizures). This may be due to the fact that

seizures are characterized by excessive synchronous neu-

ronal activity, which generates predominance of large

amplitude waveforms, the frequencies depending on the

seizure type; e.g., the frequency is low in absence seizures

(3–4 Hz), but varies substantially in temporal or frontal

lobe seizures. However, the frequencies remain relatively

constant for certain time periods (originating a distribution

of periodic epochs, or laminar phases), that have been used

in the characterization of dynamical regimes in epilepti-

form activity (Perez Velazquez et al. 1999), and therefore

the complexity and entropy tend to decrease. During the

slow wave sleep stages we also found decreased entropy

and complexity as compared with alert states, a reflection

of the aforementioned emergence of highly synchronous

cell activity during slow wave sleep.

On the other hand, we found that complexity during

REM sleep is similar to that of the awake state. This is

conceivable since REM episodes are normally associated

with dreaming, and there is certain cognitive activity going

on in dreams, when there is partial awareness. This

observation suggests that, in addition to processing sensory

information, it is the complexity of the cognitive processes

that results in more or less complexity in the brain signal.

While there is not much external input during REM, the

stored information becomes the internal sensory world.

Previous work has shown decreases in HPE and LZC in

patients under anesthesia effects (Zhang et al. 2001;

Olofsen et al. 2008; Li et al. 2010), thus the decreased

complexity of brain signals in unconscious states may be a

common phenomenon.

Fig. 4 PLZC versus HPE analysis belong to 9 sleep subject in 6

different sleep stage (Awake, REM, Sws1, Sws2, Sws3, Sws4). The

signal was recording in the Fpz-Cz channel over all night. The dots

and the ellipses represent the mean values and the correlation error

matrix over each state. The awake stage have the higher values and

decreasing as that subject goes into the deeper sleep states. The

parameter used were d ¼ 4 and s ¼ 1, same result were found for

d ¼ 3; 5; 6
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Hence in the final analysis what we measure, at the

macro(meso)scopic level (through the recording of col-

lective cellular activity in EEG or MEG), is a reflection of

the fact that the brain handles more information during

wakefulness. It is important to note that handling of

information in the nersvous system is associated with dis-

tinct waveforms and synchrony patterns, hence it is diffi-

cult disentangle neurophysiology and behavioural

dispositions. For instance, upon closing of the eyes, the

lack of visual sensory input result in an alteration of the

neurophysiology, in this case the emergence of alpha wave.

From this perspective it is therefore difficult to assert that

the change in the complexity if the brain waves is due to

the emergence of more synchronous wave or the diminu-

tion of inputs to the brain, for one leads to the other. A

larger code is required to manipulate more information.

The complexity/entropy of the signals used in this work

have been quantified through the Bandt and Pompe method

(Bandt and Pompe 2002), which focuses on the relative

values of neighboring data points in a time series. Every

embedding vector (or motif Pd;s
i ) gives an idea of how the

waveform is, in a small section, of the original signal. As

the original signal carries more variable information, the

waveform tend to be more fluctuating, and the number of

distinct motifs required to map it increases. Because of that

the probability distribution of motifs PðPd;sÞ tends to be

uniform, and this causes entropy to increase. In addition,

due to the waveform fluctuation, the PLZC increases too,

since much more information is required to reconstruct the

signal. In contrast, for monotonal repetitive signals that

have little new information, just a limited number of motifs

is required, e.g. for a sinusoidal signal the PLZC and HPE

tend to be zero.

Through this analysis we have obtained evidence for the

association between the behavioral dispositions of alert

states and the brain signals that have larger number of

patterns than those found in unconscious states. These

patterns, the waveforms that are recorded using a variety of

methods, display enough variability in their time course

such that the complexity and entropy are high, similar to a

white noise. Such growth in the number of different pat-

terns is given by the variability that exists in the signal

frequencies; many different frequencies allow cell ensem-

bles to form a large variety of functional networks—having

a large number of different frequencies would allow a

heterogeneous synchronization among different brain

areas—to improve information encoding/processing. On

the other hand, in altered states of consciousness such as

seizures, coma or slow wave sleep, the predominant fre-

quencies in the brain are fewer. A signal with a constant

frequency in time does not have much information to share,

but if it has many different frequencies varying in time, the

number of patterns (codes) it can handle is greater. In

Table 3 HPE and PLZC mean values over all recording channels, for the different sleep stages

Subject Rec Aw Eo Aw Ec REM Sw 1 Sw 2 Sw 3–4

HPE PLZC HPE PLZC HPE PLZC HPE PLZC HPE PLZC HPE PLZC

5 iEEG 0.52 0.19 0.52 0.19 0.48 0.17 – – 0.45 0.15 0.37 0.15

EEG 0.73 0.31 – – 0.71 0.30 – – 0.69 0.29 0.67 0.20

6 iEEG 0.46 0.16 0.48 0.16 – – – – – – 0.42 0.14

EEG 0.59 0.23 0.59 0.23 – – – – – – 0.60 0.19

7 iEEG 0.62 0.25 0.72 0.31 0.62 0.25 – – 0.60 0.23 0.58 0.2

EEG 0.76 0.33 0.76 0.33 0.77 0.34 – – 0.73 0.31 0.75 0.30

8 EEG – – 0.89 0.41 0.83 0.30 – – 0.82 0.37 0.70 0.30

9 EEG 0.68 0.28 0.8 0.35 0.75 0.33 0.74 0.34 0.68 0.29 0.27 0.12

19 EEG – – 0.97 0.52 0.88 0.46 0.88 0.46 0.81 0.41 0.68 0.33

20 EEG – – 0.99 0.54 0.94 0.5 0.93 0.49 0.89 0.46 0.8 0.4

21 EEG – – 0.91 0.47 0.9 0.47 0.92 0.49 0.81 0.41 0.68 0.32

22 EEG – – 0.91 0.47 0.9 0.48 0.92 0.49 0.82 0.41 0.69 0.33

23 EEG – – 0.97 0.51 0.89 0.47 0.94 0.5 0.81 0.41 0.68 0.32

24 EEG – – 0.94 0.50 0.89 0.47 0.90 0.47 0.82 0.41 0.68 0.31

25 EEG – – 0.98 0.53 0.96 0.51 0.95 0.5 0.88 0.46 0.79 0.39

26 EEG – – 0.96 0.51 0.96 0.51 0.97 0.52 0.89 0.46 0.80 0.4

27 EEG – – 0.95 0.5 0.93 0.5 0.93 0.49 0.88 0.46 0.81 0.40

Data samples were of 2–4 min duration during wakefulness with eyes open (‘Aw Oe’) , and sleep stages slow-wave 2 (Sws 2), slow-wave 3–4

(Sws 3–4) and rapid eye movement (‘REM’). The parameter used in all cases were d ¼ 4 and s ¼ 1
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general, the temporal variability of the frequencies and the

(transient) formation of cell networks allow brains to

integrate and segregate the information. Hence, in order for

the nervous system to manage and transmit large amount of

internal and external information, the activity associated

has to be complex enough to code it.

We note that our present results are complementary to

those recently obtained using measures of coordinated

activity, namely the number of configurations of connec-

tions derived from an index of phase synchronization

(Guevara Erra et al. 2016); we should consider that the

present analysis, done on the raw signals, also represents

correlated activity as each local field potential (in the case

of iEEG) or signal recorded in scalp EEG or MEG repre-

sents the collective activity in large cell ensembles, thus

these signals are themselves a measure of coordinated cell

activity, and therefore it is not surprising we obtain similar

observations.

It can be concluded that in the awake state, when the

information that has to be handled is larger, the complexity

and entropy of the signals recorded from the brain tend to

be higher than in the absence of consciousness, a result that

stems from the distinct waveforms recorded in these mental

states.
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