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Abstract
To complement experimental efforts toward understanding human social interactions at both neural and behavioral levels,

two computational approaches are presented: (1) a fully parameterizable mathematical model of a social partner, the

Human Dynamic Clamp which, by virtue of experimentally controlled interactions between Virtual Partners and real

people, allows for emergent behaviors to be studied; and (2) a multiscale neurocomputational model of social coordination

that enables exploration of social self-organization at all levels—from neuronal patterns to people interacting with each

other. These complementary frameworks and the cross product of their analysis aim at understanding the fundamental

principles governing social behavior.
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Introduction

In proposing a framework for Computational Social Neu-

roscience, we are guided by the broader enterprise of

Computational Neuroscience, an essential line of research

to understanding brain and behavior. The complementary

approach, empirical science, affords only a partial view of

the system’s spatiotemporal organization, observed

dynamics being restricted to certain domains of phase

space. The comprehensive organization of the system’s

dynamics is concealed, as is the continuity between qual-

itatively distinct states (e.g. normal and pathological

regimes; distinct behavioral or cognitive states). Dynamical

modeling of the brain provides a simplified but more

extensive view: it stretches the boundaries of empirical

data, exposes continuity between qualitatively different

regimes, shows the paths leading from one regime to

another, and attempts to reveal the entire parameter

space—with the ultimate goal of discovering fundamental

laws governing brain and behavior (Freeman 2001; Kelso

1995).

As a branch of neuroscience concerned with the coor-

dination of behavior between individuals, social neuro-

science is well positioned to benefit from computational

approaches. In the following, we outline some unique

opportunities that have arisen recently. After presenting the

theoretical foundations, we review a hybrid framework in

which human subjects, by virtue of mutual coupling,

interact with mathematically-modeled partners in real-time

(Kelso et al. 2014). This framework, called the Virtual

Partner (Kelso et al. 2009) or Human Dynamic Clamp

(HDC) (Dumas et al. 2014), leads to the study of brain and

behavior in the human subject, controllable parameters in

the virtual partner, and coordination dynamics of both

(Fig. 1, center). Next, we discuss computational efforts

(Fig. 1, right), in which two or more people are modeled, in

order to shed light on the behavioral and neural
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underpinnings of social interactions. In a system perspec-

tive, social coordination can be described by trajectories of

state variables drawn from several levels: neural (dynamics

of neural ensembles measured by, e.g. EEG, MEG, fMRI),

behavioral (dynamics of individual behavior) and social

(dynamics of collective variables) (Kelso et al. 2013). In

such multiscale modeling efforts, surrogate subjects are

represented as mathematical models of self-sustained

oscillations describing activity in neural areas and body

parts that interact through (e.g. visual) perception of part-

ners’ behavior. Finally, we discuss how to articulate

meaningfully the efforts of experiments and models to gain

a more comprehensive understanding of basic social

interactions.

Theoretical framework and mathematical
models

Coordination is a central tenet of Computational Social

Neuroscience. While a large number of models of brain

and behavior are formalized as individual dynamics (e.g.,

x) whose trajectories are determined by coupling to other

variables ( _x ¼ f x; yð Þ, with y a variable affecting x), a

series of models are explicitly built on quantities that

describe, not only the trajectories of parts, but also the

trajectories of variables describing their coordination

( _/ ¼ f /ð Þ) with / is a variable describing coordination

between, say, x and y, thereby the name, Coordination

Dynamics. The Haken–Kelso–Bunz (HKB) model (Haken

et al. 1985) is a system of (nonlinearly) coupled nonlinear

oscillators that reproduces essential properties of biological

coordination (e.g. different forms of phase synchrony,

instability, phase transitions, etc.) whose empirical study

led to the further discovery of a host of complex phe-

nomena such as critical slowing down, fluctuation

enhancement, hysteresis, etc. (see Riley et al. 2011 for

recent review). In HKB, symmetry plays a big role in

restricting dynamical possibilities. A subsequently devel-

oped model of coordination, the extended version of HKB

(Kelso et al. 1990) broke symmetry, thereby acknowledg-

ing that oscillators can have different intrinsic dynamics.

With this extension, it became possible to handle coordi-

nation of dissimilar elements taken from a wide range of

levels and scales, and at the same time, to achieve a greater

realism, since in Nature, symmetry is constantly broken.

Thus, heterogeneity—a difficulty faced in many computa-

tional efforts, especially in systems with large number of

elements—was returned to scientific reach (Kelso and

Tognoli 2007; Tognoli and Kelso 2014). The extended

HKB model’s broken symmetry led to new insight into

metastability which has been proposed as a fundamental

principle of brain and behavior (Kelso 1995; Freeman

2001; Kelso and Tognoli 2007; Bressler and Kelso 2001;

Fig. 1 Complementarities

between experimental and

computational social

neuroscience. Left panel shows

some empirical studies of brain

and behavior during

coordination tasks; right panel

illustrates modeling studies of

brain and behavior

(computational social models)

and center panel shows the

hybrid computational–

experimental paradigm of the

Human Dynamic Clamp, where

real people are set to interact in

real time with computational

models of social partners

136 Cognitive Neurodynamics (2018) 12:135–140

123



Freeman and Holmes 2005; Friston 1997; Kelso 2012;

Fingelkurts and Fingelkurts 2004; Rabinovich et al. 2008;

Tognoli and Kelso 2009, 2014; Werner 2007). A further

step in the development of HKB was to create the mathe-

matical conditions for discrete behaviors to arise from the

continuous dynamics of the system’s self-sustained oscil-

lators, the so-called ‘Excitator’ model (Jirsa and Kelso

2005). Although it seems intuitive that continuous behavior

is the result of a juxtaposition of discrete actions, nature

may go the other way around, using basic building blocks

with self-sustained dynamics such as central pattern gen-

erators to produce discrete behaviors (Grillner 2011; Yuste

et al. 2005). Further, adaptive coordination was developed

by making previously fixed parameters of the coordination

equations (e.g. intrinsic frequency) dynamic and time-de-

pendent, giving rise to an augmented behavioral repertoire

in the model (Kelso et al. 2009). Finally, directed coordi-

nation was developed to bias the collective behavior

toward the ‘‘intention’’ of one of the oscillators, leading it

to become a ‘‘teacher’’ to the other (Kelso et al. 2009), to

the effect that HDC’s human partners could learn new

patterns of collective behavior (Kostrubiec et al. 2015).

Over the course of three decades, the overall framework of

Coordination Dynamics has been built upon an ongoing

program of research that blends theory, experimental

observations, data analysis and modeling. The fact that its

predictions have been confirmed at behavioral, neural and

social levels (e.g. Kelso et al. 2009, 2013; Dumas et al.

2014; Tognoli et al. 2007, 2010; Tognoli 2008; Oullier

et al. 2008 for social evidence) renders Coordination

Dynamics a viable foundation for computational social

neuroscience.

The Human Dynamic Clamp (HDC)

Those models of Coordination Dynamics from section

‘‘Theoretical framework and mathematical models’’ can be

studied as is, but they can also be deployed in experiments.

In the hybrid experimental-modeling paradigm of the

Human Dynamic Clamp, a human and its mathematical

mirror, a Virtual Partner, are reciprocally coupled via the

empirically-verified HKB equations of coordination

dynamics (Kelso et al. 2009; Dumas et al. 2014). Virtual

Partners perceive the movement of human partners through

sensors, and humans interact with Virtual Partners by

viewing the output of the computational model in real-time

as an animated image on a computer screen. Both the

intrinsic dynamics of the Virtual Partner and its coupling to

the human can be manipulated in real-time. Human and

Virtual Partners are provided with coordination tasks to

jointly accomplish and behavioral coordination is studied

as in human–human experiments. Importantly, while

affording comparison with real social contexts, HDC

allows experimental manipulations that are not easily

accessible when studying the interaction between humans.

For instance, it is not straightforward to guarantee a con-

sistent set of parameters sustained by one partner to

observe its systematic effect on the other, so that parameter

space screening is hardly ever achieved in classical

experiments of social interaction. In turn, incomplete views

on parameter space are not fully helpful to guide modeling,

and hide experimentally infrequent but important exami-

nations of the bifurcations between regimes. It is not easy

either to effect a controlled change in some parameters

(e.g., suddenly decrease coupling strength in a quantifiably

precise manner, change intention, etc.), whereas it is very

simple to flip a parameter from the model during model

interactions with humans. HDC has already led to the

discovery of novel coordination behaviors and behavioral

transitions not seen before in standard paradigms, pre-

sumably because it allows broader expanses of parameter

space to be explored and manipulated (Kelso et al. 2009).

Starting from equations for Virtual Partners’ rhythmic

motion of a single body part at a single frequency, and

varying the model equations according to the successive

models mentioned in section ‘‘Theoretical framework and

mathematical models’’, it was possible to put the Human

Dynamic Clamp on a path to ever more complex social

behaviors (Dumas et al. 2014). In the principled design of

HDC, each new task context does not constitute an inde-

pendent implementation of a single target behavior. Rather,

HDC builds human behavior from its more primitive

foundations with the explicit idea of developing multi-

functionality as an emergent property. By constructing

each new mathematical model as a generalization of a

previous version, a more complete behavioral repertoire is

possible foretelling, perhaps, a future when the Human

Dynamic Clamp will be able to deal with any arbitrary

human behavior.

Multilevel and multiscale modeling of social
coordination

Integrating multiple levels of description into a single

dynamical account is a longstanding feature of Coordina-

tion Dynamics (Kelso 1995; Kelso et al. 2013; Kelso and

Tognoli 2007; Tognoli et al. 2010). Fully neurocomputa-

tional models of social behavior require at least three

levels: the neural (brain dynamics), the behavioral (dy-

namics of body parts, e.g. hands or finger movement) and

the social (dynamics of the behavioral coordination by

people engaged in joint tasks). That is, there are systems of

equations for two or more interacting people that describe

what their brains are doing, what their body parts are doing,
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and how those body parts are coordinated (Fig. 2, right).

Early work connected two levels, the behavioral and the

social (Kelso et al. 2009; Dumas et al. 2014), while leaving

the neural scale implicit (though the neural level is pro-

foundly entwined in the mathematical description of social

coordination behavior, it did not receive its own distinct

equations). The neural level was explicitly integrated in

Dumas et al. (2012) in a model that related the dynamics of

social behavior with neural dynamics in a realistic archi-

tecture of brain areas (including interbrain structural sym-

metries). Realism was achieved by fingerprinting actual

human brains: neural areas were obtained by anatomical

brain atlas and connections from diffusion tensor imaging.

Brain areas were mapped as neural masses to self-sustained

oscillators coupled non-linearly with their phases. The

coupling was neural within brain and informational

between brains. Results assessed how the anatomical con-

nectivity of the human brain enhances similarities of the

neural dynamics and facilitates the creation of sensorimo-

tor coupling between individuals (Dumas et al. 2012).

Each of the three aforementioned levels might organize

themselves at multiple spatiotemporal scales, for instance,

spatially, the nervous system is known to organize at

micro-, meso-, and macro-scales. A forthcoming step is to

expand the spatial scales of the Dumas et al. (2012) model

nervous system, with the addition of microscopic and

mesoscopic levels as e.g., in Jirsa and Kelso (2000) and

Deco et al. (2010). The social ‘‘Model-of-Models’’ will

then be set to interact, simulating tasks by manipulating

relevant inter-subject couplings between (oculo-) motor,

perceptual and emotional brain areas. The model leads to

two investigative lines: (1) how a ‘‘clamped’’ coordination

behavior pattern explains multiscale neural dynamics [local

oscillations or neuromarkers, network activity within and

between brains, to be compared to empirical evidence

(Tognoli et al. 2007; Dumas et al. 2010)]; and (2) how

empirically-motivated neural activity patterns (neuro-

markers of social behavior, clamped) originate various

forms of social interactions. As before, the partners’ degree

of similarity can be fully controlled, e.g. with pairs of

people composed of ‘virtual twins’ or with pairs whose

connectomes have greater differentiation. Such a research

program will allow to explore countless developmental,

clinical and functional questions such as infant–adult,

patient–therapist, expert–novice interactions.

Fig. 2 Neurocomputational Model of Social Interactions. Coupling

between individuals is mediated by the behavior (center panel in

mauve): observed motion of participant A entering B’s brain via

perception (visual, auditory, haptic, etc.) and vice versa (i.e. we do not

know of solid experimental evidence showing that brainwaves of one

participant have a direct effect on another’s, sans mediation by

behavioral exchange, but for the notable exception of purposefully

engineered Brain-to-Brain Interfaces). Therefore, any model of the

coupling between individuals has to be mediated by behavior. As a

result, a theoretical model will have (e.g. two) brains, two or more

behavioral effectors (e.g. moving fingers for a most elementary

model, or vocal tracts, endocrine components, facial muscles, etc.)

and in joint tasks with symmetry, a useful collective variable

describing behavioral coordination. This order parameter at the

behavioral level is deemed to function as a control parameter on brain

dynamics. Left panel illustrates experimentally observed dynamics of

brains (top), individual behaviors (middle) and behavioral coordina-

tion variable (bottom). Right panel illustrates some exemplary

neurocomputational models of dyadic brain dynamics with, e.g.

Kuramoto equations embedded in realistic connectomes (Cintra),

scalable for coupling strength Wij (top, after Dumas et al. 2012, see

also, e.g. Jirsa and Kelso 2000; Fuchs et al. 2000 for other possible

models), modeling of individual behavior (middle) and behavioral

coordination variable (bottom), with (e.g. HKB) models of behavioral

coordination. Such neurocomputational models of social behavior can

be used in two ways: to clamp brain areas (e.g. set an oscillation at the

sources of phi complex, a neuromarker of social coordination) and see

effect on coordination behavior; or alternatively, to clamp coordina-

tion behavior (e.g. impose a pattern of behavioral coordination:

metastable, stable locking inphase or antiphase, or some behavioral

transitions) and observe how the brain reorganizes itself under those

controlled circumstances. Furthermore, a similarly designed neuro-

computational model can also be incorporated in the Human Dynamic

Clamp (see Fig. 1 central panel) to test some hypotheses on the

relationship between brain and behavior during live social

interactions
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Interplay with experimental approaches
and concluding remarks

Computational approaches are powerful scientific tools, yet

they are only as valuable as they are capable of two-way

conversation with experimental approaches. In the pre-

ceding, we illustrated how empirical data inform the design

of adequate computational models, built from meaningful

variables to explain key phenomena (Kelso et al. 2014). In

return, models point to yet-undiscovered phenomena for

empirical approaches to confirm or not. The Human

Dynamic Clamp is a major upgrade in throughput for this

two-way real-time conversation providing direct knowl-

edge of parameter ranges under investigation. Another

notable advantage of models lies with their ability to relate

multiple organizational levels and multiple spatiotemporal

scales. For instance, with respect to temporal scales,

models are not only essential but in some cases may be the

only methods we have. Already there are hints that social

behavior has relevant manifestations at slower time scales

(e.g. mood changes that may span months to years, par-

ticularly salient in pathology). Yet, experimental windows

typically exclude continuous study of phenomena that exist

on longer time scales. Coordination Dynamics predicts that

the slower dynamics springs from and couples with faster

time scales, a prediction that can be verified in models.

Similarly, since no human brain imaging method currently

transcends all spatial levels of description (Akil et al.

2011), models have an important role to play in bridging

the gaps between the micro- and the macro-scale of neural

dynamics. These are key challenges for the theoretically-

grounded framework of Computational Social Neuro-

science outlined in this overview.
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