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Abstract

Published systematic reviews concluded that there is moderate to strong evidence to infer a 

potential role of lead and cadmium, widespread metal exposures, as cardiovascular risk factors. 

For other non-essential metals, the evidence has not been appraised systematically. Our objective 

was to systematically review epidemiologic studies on the association between cardiovascular 

disease in adults and the environmental metals antimony, barium, chromium, nickel, tungsten, 

uranium, and vanadium. We identified a total of 4 articles on antimony, 1 on barium, 5 on 

chromium, 1 on nickel, 4 on tungsten, 1 on uranium and 0 on vanadium. We concluded that the 

current evidence is not sufficient to inform on the cardiovascular role of these metals because the 

small number of studies. Few experimental studies have also evaluated the role of these metals in 

cardiovascular outcomes. Additional epidemiologic and experimental studies, including 

prospective cohort studies, are needed to understand the role of metals, including exposure to 

metal mixtures, in cardiovascular disease development.
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Introduction

Substantial epidemiologic and experimental evidence supports the role of lead and cadmium, 

widespread environmental metals, in the development of cardiovascular disease of 

atherosclerotic origin. The epidemiologic evidence for those two metals has been 

summarized in recent systematic reviews [1, 2]. In animal studies, lead and cadmium 

induced aortic atherosclerosis [3, 4]. The potential cardiovascular effect of these divalent 

cations, moreover, has been reinforced with the finding that repeated edetate disodium 

chelation can prevent cardiovascular disease outcomes compared to placebo [2, 5••], 

although other essential divalent cations may also be involved. Multiple metals can induce 

oxidative stress, a main proposed mechanism for their potential atherogenic effects [6, 7]. 

Specifically, metals can produce reactive radicals, deplete glutathione and other proteins 

with sulfhydryl groups and bind enzymes involved in redox balance [1, 6]. Several metals 

can also disrupt endocrine and endothelial vascular functions [8–11]. Recent epidemiologic 

and experimental evidence points to the possibility that environmental metals can interfere 

with enzymes involved in the one-carbon and citric acid metabolism and in histone 

modification pathways, resulting in anomalous DNA-methylation status throughout the 

genome and changes in gene expression [12–15]. The potential atherogenicity of metals, 

thus, is likely not restricted to lead and cadmium.

While in humans, the accumulated evidence strongly suggests a potential role of metals such 

as cadmium and lead in cardiovascular risk [1, 2], for other non-essential metals, the 

evidence has not been systematically appraised. Most occupational studies, unfortunately, 

have been limited in their ability to inform the role of metals in cardiovascular disease due to 
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the use of indirect measures of exposure instead of individual exposure assessment 

measures, such as biomarkers, potential residual confounding by not adjusting for 

cardiovascular risk factors and the healthy worker survivor effect bias, and potential co-

exposures.

Our objective was to conduct a systematic review and synthesis of results from 

epidemiologic studies evaluating the association of biomarkers of exposure to environmental 

non-essential metals beyond lead and cadmium with cardiovascular disease of 

atherosclerotic origin. We did not include inorganic arsenic, a metalloid, nor mercury, a 

metal with a complex body of evidence on its relationship with cardiovascular disease, due 

to major confounding by seafood exposure [16–18]. For chromium, although there is some 

evidence that chromium (III) could be an essential element, this is not proven and chromium 

(VI) on the other hand is an established toxic metal. Metals reviewed in this systematic 

review included antimony, barium, chromium, nickel, tungsten, uranium, and vanadium. In 

addition to the systematic review, for each metal we also provide a background on exposure 

sources, biomarker interpretation, and main health effects. We organized the presentation of 

the results by environmental metal. We also provide a summary table with the characteristics 

and the interpretation of most commonly used metal biomarker (Table 1).

Methods for the Systematic Review

Search strategy, study selection and data abstraction

We searched PubMed for relevant studies published through April 1, 2016 using the search 

strategy described in Supplemental File 1. The search strategy retrieved a total of 3,445 

citations (including duplicates). We included all articles assessing environmental metal 

exposure using biomarkers. The search had no language restrictions. Two investigators (A.E. 

N. and A.R.H.) independently reviewed each of all the abstracts and selected 57 references 

applying the following study exclusion criteria (Figure 1): a) No original research (i.e. 

reviews, editorials, non-research letters); b) No human study; c) No atherosclerosis 

outcomes; d) No environmental metal exposure levels measured in biological tissues (e.g. 

environmental measures such as water or air, or distance from a source, including radiation 

for uranium), e) Case report or case series. For antimony, we identified two additional 

studies by manual search [19••, 20]. In this systematic review the focus was on the role of 

environmental metals exposure in atherosclerotic cardiovascular disease in adults. Age, sex 

and smoking are major determinants of metal levels in the human body and major risk 

factors for cardiovascular disease. We thus excluded, as a second layer of exclusion, 41 

studies not adjusting for age, sex or smoking [21–56]. Any discrepancies were resolved by 

consensus and if necessary a third reviewer was involved. A native speaker reviewed the full 

text of any non-English article that could not be included or excluded based on the initial 

abstract review. We included in the final review 10 papers, some of them measuring multiple 

environmental metals evaluated in unique study populations [20, 57–59] (Figure 1). Our 

review identified no publications investigating the association between vanadium and 

atherosclerotic disease. After retrieval of articles from the search, the reference lists of 

selected articles were checked for other potentially relevant articles, identifying no 

additional studies.
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To assess study quality, we adapted the criteria used by Longnecker et al. [60] for 

observational studies (Supplemental File 2). We followed the criteria proposed by the 2004 

US Surgeon General Report on the health consequences of smoking [61], which include the 

evaluation of consistency, temporality, strength, dose-response relationship, and biological 

plausibility including confounding. As a result, the evidence for each environmental metal 

and atherosclerosis endpoint was classified in four groups as modified from the Surgeon 

General Report: sufficient evidence, suggestive but not sufficient evidence, insufficient 

evidence to infer a relationship, and suggestive of no relationship.

Statistical analysis

We collected the following data for each study: first author, year of publication, study 

design, size and population characteristics, exposure assessment and categories for 

comparison, endpoint ascertainment and endpoint definition, measures of association for a 

change in metal levels and 95% confidence interval or p-values and adjustment factors. For 

some studies that reported only the association for metal categories, we reported the 

estimated relative risk (RR) comparing the highest to the lowest categories. For chromium 

only, a pooled RR estimate for CVD was calculated across five studies using an inverse-

variance weighted random effects model in the meta package in Stata version 13.1 [62]. The 

estimated pooled RR for chromium studies is provided for descriptive purposes only and 

should be interpreted with caution, as there is substantial heterogeneity in the biomarker 

type, comparison unit, and CVD outcome definition across studies. Thus, the pooled RRs 

and confidence intervals must be taken with caution. Pooled RR estimates for CVD were 

also calculated for each study that assessed multiple CVD outcomes. While, most studies 

reported cross-sectional odds ratios (ORs), we interpret the pooled estimates as RR 

estimates. However, several studies reported high prevalence of the outcome such that the 

OR may over or underestimate the RR [63].

Two study populations had information on both prevalent and incident CVD endpoints [19••, 

64]. For these studies, we used incident outcomes only when pooling. We evaluated 

heterogeneity between studies using the I2 statistic, which describes the total variability 

across all studies due to heterogeneity [65]. Additionally, we tested for influential studies by 

omitting each study sequentially and assessed publication bias using funnel plots.

Current perspectives and result

Antimony

Antimony is naturally occurring in the Earth’s crust and can also be released from 

anthropogenic sources, particularly coal and refuse combustion, and nonferrous metal 

mining, smelting, and refining [66]. The general population is exposed to antimony from 

food and water [67], ambient air [66], and through antimonial medicines [68]. Antimony is 

mainly excreted through urine and feces, with a half-life that varies by species, ranging from 

24 hours for Sb(V) to 94 hours for Sb(III) [69]. In epidemiologic studies, antimony 

concentrations in urine reflect recent exposure [69].
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Antimony at high exposure levels has been related to respiratory illness [70], gastrointestinal 

effects [71], dermatitis [72], and cardiovascular effects such as altered electrocardiography 

readings and elevated blood pressure [68, 73]. Relatively little is known, however, about 

antimony toxicity and atherosclerosis. In an occupational study of Hispanic men employed 

at an antimony smelter in Texas, antimony exposure was not associated to cardiovascular 

mortality [74]. In the general population, antimony exposure has been associated with 

elevated blood pressure [75] and diabetes [76]. Fatal arrhythmias, QT prolongation after 

correcting for heart rate, and other electrocardiogram abnormalities are known, but 

uncommon, side effects of long-term antimonial medicine use [68, 77, 78]. In vitro evidence 

suggests that antimony exposure is associated with oxidative stress [69] and intracellular 

calcium dysregulation [79] in cardiac myocytes. In vivo evidence shows that antimony 

exposure is associated with elongated cardiac action potentials (53) and altered ECG 

readings and cardiomyopathy [80]. Antimony can also modify arsenic toxicity by altering 

arsenic metabolism, and co-exposure is likely as both metals occur together in the 

environment [69].

In the systematic review, we identified four publications investigating the association 

between antimony and atherosclerotic disease that met the inclusion criteria (Table 2) [19••, 

20, 57, 58]. These studies were all conducted in the general US population using the 

National Health and Nutrition Examination Survey [19••, 20, 57, 58]. Antimony exposure 

was measured in urine only. Cardiovascular disease endpoints were based on examination 

(peripheral arterial disease) [58], linkage to the National Death Index (heart disease 

mortality) [19••] and self-report (prevalence of combined cardiovascular disease [57] and 

specific endpoints such as coronary heart failure, coronary heart disease, heart attack, and 

stroke [20]). Two studies reported dose-response associations of urinary antimony with 

prevalent endpoints using flexible splines [19••, 58]. Three studies took into account urine 

dilution by adjusting the regression models by urine creatinine. One study both adjusted 

models for creatinine and divided urinary antimony levels by creatinine, with sensitivity 

analyses showing an attenuation of effect estimates for heart disease mortality when only 

adjusting the regression model for creatinine [19••]. Effect estimates for prevalent self-

reported atherosclerotic disease remained unchanged.

In general, studies mostly showed a trend toward an increased risk of atherosclerotic disease 

with increased antimony exposure, although only the associations with the prevalence of 

combined CVD [57], peripheral arterial disease [58], and self-reported congestive heart 

failure and heart attack [19••] were statistically significant. Confounding by other 

cardiovascular risk factors, including smoking, was generally addressed. Two studies 

reported adjustments for other heavy metals such as lead and cadmium [19••, 20].

Chromium

Chromium is found in nature primarily as chromite ore. Chromium +3 (Cr(III)) and +6 

(Cr(VI)) oxidation states are the most common in chromium compounds [81]. Cr(III) is the 

dominating species in the environment, but in some areas, the ground water can have an 

elevated content of Cr(VI) [82]. Chromium and its salts are used in metallurgical, refractory 

and chemical industries. The essentiality of Cr(III) and the use of it as supplement for 
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glycemic control in type 2 diabetes is controversial [83]. Several clinical trials have 

evaluated the effect of chromium supplementation on glycemic control, with inconsistent 

findings [84–87]. Some studies have reported a potential role of Cr(III) in the maintenance 

of normal glucose tolerance through increasing the activity of insulin-stimulated tyrosine 

kinase [88]. Alternatively, exposure to Cr(VI) compounds have shown associations with 

increased risk of dermatitis, ulcerative upper airway disease, kidney disease and respiratory 

cancer [89–92].

Stainless steel welders are exposed to Cr(VI) through air [93, 94] in co-exposure with oxides 

of nickel and other metals (Mn, Fe, Al) [94]. Because Cr(VI) is rapidly reduced to Cr(III) in 

the lung and intestinal tract lining or upon cell entrance, Cr in biological material is most 

likely always trivalent, except shortly after exposure to Cr(VI) and in erythrocytes [95, 96]. 

The general population is mainly exposed to trivalent chromium Cr(III) through food and 

dietary supplements [95]. Other known sources of chromium are water, ambient air and 

tobacco smoke [97]. Interestingly, tobacco smoke contains Cr(VI), thus co-exposure with 

other metals such as cadmium, lead, and nickel is possible [98].

Chromium is mainly excreted through urine with a half-life of 15–41 hours [99] while the 

half-life of whole Cr in blood is 13.9 days. Chromium both in urine and blood reflects 

relatively short term exposure. Biomonitoring of Cr(VI) exposure is complicated by the high 

dietary intake of Cr(III) in the general population. The relative contribution of Cr(III) versus 

Cr(VI) to biomarkers of exposure is biospecimen-specific, with urine and serum Cr levels 

reflecting mostly Cr(III) exposure and whole blood Cr levels reflecting Cr(VI) exposure 

(Table 1). Urinary Cr(VI) levels may be low after exposure to Cr(VI), as Cr(VI) is reduced 

to Cr(III) in vivo. Because Cr(VI), but not Cr(III), is taken up by erythrocytes, whole blood 

best reflects Cr(VI) exposure, and Cr(VI) has a half-life in blood of 25–35 days (Table 1) 

[96]. Since toenails have a slow growth rate, it has been estimated that toenail measurements 

represent exposures over last 3–12 months [100]. Overall, total biomarker levels are likely 

mostly reflecting Cr(III) in all the evaluated studies, especially studies using urine as 

biological matrix. Future epidemiologic studies, especially those based on whole blood, 

require chromium speciation to assess potentially adverse cardiovascular effects of Cr(VI).

Given the rapid reduction of Cr(VI) to Cr(III) and the inability of Cr(III) to enter cells, it is 

unlikely that the endothelium will be exposed to Cr(VI). Thus, there is no in vivo evidence 

linking exposure to chromium with atherosclerosis or endothelial function. Nonetheless, in 

experimental studies Cr(VI) induced DNA damage due to reactive oxygen species caused by 

the reduction to Cr(III) [101–103]. Alternatively, experimental studies in rabbits describe an 

improvement of serum lipids using Cr(III) compounds [104, 105].

In the systematic review, we identified five publications investigating the association 

between chromium and atherosclerotic disease that met the inclusion criteria (Table 3). 

These studies were conducted in the US [64], Kingdom of Saudi Arabia [106], Sweden [59], 

Finland [107] and Europe [108]. Three studies restricted to men only [64, 106, 108], and a 

fourth study population included 92% men [107]. Chromium exposure was measured in 

whole blood [59], serum [106], urine [106, 107] and toenail [64, 108]. Cardiovascular 

disease endpoints were based on review of clinical and mortality records (coronary heart 
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disease incidence [106, 108] and mortality [107], and combined CVD endpoint including 

myocardial infarction, coronary artery bypass graft, percutaneous transluminal coronary 

angioplasty or stroke [64]) and examination (presence of plaque in carotids [59]). Chromium 

speciation was not conducted in any of these studies. Three studies [59, 64, 108] reported 

dose-response associations of urinary chromium with prevalent endpoints using quartile [64] 

and quintile [59, 108] categories. While the two studies [106, 107] using urine biomarkers 

divided urine chromium by urine creatinine, none of them conducted sensitivity analyses by 

showing effect estimates when no adjustment or only adjusting the regression model for 

creatinine.

All the studies included in the systematic review reported a trend toward inverse associations 

of chromium exposure and atherosclerotic disease (Table 3), although it was statistically 

significant only in two studies [107, 108]. For descriptive purposes only, we performed a 

meta-analysis and estimated the combined relative risks from the 5 retrieved studies, 

obtaining a pooled relative risk that was marginally significant [0.89 (0.75, 1.05)] (Figure 2). 

Sequentially excluding each study did not change the pooled effect estimates (data not 

shown). Although analyses of bias are limited by the small number of studies, funnel plots 

and Egger’s test indicated the potential for publication bias in studies evaluating Cr exposure 

(p= 0.104; p<0.1 often considered significant in meta-analyses [62]). We observed some 

heterogeneity between studies (I2 =48.0%). One [64] and two [64, 108] studies reported 

adjustments for mercury and selenium, respectively. No study adjusted for lead and 

cadmium.

Tungsten

Tungsten is naturally occurring in rock and soil, and enters the environment from industrial 

output or naturally occurring contamination [109]. While the main source of tungsten 

exposure is occupational via inhalation of hard metal dust, the general population may be 

exposed through drinking water, food, or industrial releases into the environment [110, 111]. 

The elimination time of tungsten in most tissues, except bone, is 5 days (70% of the dose) 

and 100 days (30% of the dose). Consequently, urinary tungsten reflects recent exposure 

[109, 112]. Occupational inhalation of hard metal dust containing tungsten and cobalt causes 

asthma and fibrosis called hard metal disease [113, 114]. Although toxicological evidence 

regarding cardiovascular disease is sparse, in vivo studies suggest tungsten causes 

histological lesions in the heart [115] and can inactivate molybdenum-enzymes by replacing 

molybdenum binding sites [116]. Tungsten likely causes oxidative stress [7, 11, 112, 117] 

and can modify cobalt toxicity [118]. There is little epidemiological evidence of tungsten 

exposure and cardiovascular disease in the general population, although tungsten exposure 

has been associated with elevated blood pressure [119], excretion of reactive oxygen species 

[117], and DNA methylation and hydroxymethylation [120].

In the systematic review, we identified four publications investigating the association 

between tungsten and cardiovascular disease (Table 4). All studies were cross-sectional and 

conducted in the general US population in NHANES. Tungsten exposure was measured in 

urine only. Among the four retrieved studies, one cardiovascular endpoint was based on 

examination (peripheral arterial disease) [58], while other endpoints were based on self-
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report of composite cardiovascular disease [57, 121•], coronary heart failure, coronary heart 

disease, heart attack and stroke [57, 121•]. The association of elevated tungsten levels and 

composite cardiovascular disease [57, 121•], peripheral arterial disease [58], and stroke 

[121•] were statistically significant. The associations of tungsten with heart failure, coronary 

heart disease, heart attack, and stroke in one study [20] were in the positive direction but 

non-significant. One study reported a dose-response associations using flexible splines [58]. 

All three studies took into account urine dilution by adjusting the regression models by urine 

creatinine. Two studies adjusted for molybdenum and cobalt [20, 121•]. Only one study also 

adjusted for cadmium and lead [20]

Other metals

Other non-essential metals are also of potential cardiovascular concern. Barium sulfide is 

produced from mineral barite and it is used mainly in oil and gas drilling industry and in the 

manufacture of alloys, glass, cement, ceramics, electronics, radiopaque contrast, sugar 

refining and as pigment. The general population is exposed to barium from gasoline [122], 

soil, air, water [123] and food, especially nuts [124]. Chronic effects of barium on the 

cardiovascular system are unclear. An occupational study on barium workers, who were 

exposed to other chemicals, found higher incidence of elevated blood pressure in the barium 

exposed group [125]. Studies in populations exposed through drinking water, however, 

found no significant differences in blood pressure, heart disease, stroke, kidney disease or 

lung disease [126, 127]. Different studies have measured barium concentration in hair, urine 

and blood samples. Barium is mainly excreted through feces (91%), sweat (6%) and urine 

(3%) [128]. The pattern of total excretion fits a three-component exponential function with 

biological half-times of 3.6, 34.2, and 1033 days, respectively [129].

Nickel is a natural element present in sulphide or oxide ores and it is used in steel and alloy 

industries, batteries and chemical catalysis. Nickel is widely used in coins, jewelry, watches, 

buttons, orthodontic and orthopaedic uses and stents. The general population is exposed to 

nickel from combustion of fossil fuel and pollution through air, soil and water [130], food 

(cacao, nuts [131]), and tobacco smoking [132]. Nickel is an established carcinogen in 

occupational settings (respiratory cancers), especially insoluble nickel sulphide and nickel 

oxide [133–135]. Other chronic health effects associated to nickel include rhinitis, sinusitis, 

nasal septum perforations, asthma, skin allergies and reproductive effects [133]. Although 

biomarkers of nickel exposure are not well validated, nickel has been measured in whole 

blood, serum, plasma, and urine [133]. It is well established that nickel is rapidly excreted 

through urine with a half-life of 20 to 27 hours [136], with salivary and sweat excretion 

being secondary [137]. .

Uranium is used in energy production, glass tinting agents, ceramic glazes, gyroscope 

wheels, chemical catalysts, shields for high-intensity radioactive sources, X-ray tube targets, 

and military munitions [138]. Uranium is ubiquitous in the environment, for that reason, the 

general population is exposed to uranium from soil, air, water and food [139]. Although 

uranium is both a chemical and a radioactive material, it has been determined that its adverse 

health effects are primarily a result of its chemical rather than radiological toxicity [139]. 

Chemical exposure in humans has been related with hepatitis, lung toxicity and renal disease 
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caused by oxidative stress [140, 141] and these effects have not been demonstrated in 

radiological studies [142]. Among uranium miners, the causal relationship between exposure 

to radon progeny and lung cancer is well-established, although the carcinogenicity of 

uranium itself remains unknown [139]. Uranium in body fluids generally exists as a uranyl 

ion UO2 complex. It accumulates in tissues (especially bone) or it is excreted quickly by 

urine, with a two-phase model in kidneys from 1–6 days (99%) to 1500 days (100%)[138].

Experimental evidence indicating a potential role in atherogenesis of these metals is scarce. 

The barium ion is a physiological antagonist of potassium and it is related to acute effects in 

radiopaque barium sulfate intoxications with smooth, skeletomuscular and cardiac 

symptoms like areflexia and heart fibrillation [143]. One study in rat has assessed the effect 

induced by chronic ingestion of uranium, in reducing the activity of cholesterol 7 alpha-

hydroxylase (CYP7A1) [144], which is involved in lipid metabolism. In vivo evidence on 

the potential role of these metals in atherosclerosis is needed.

Our systematic review identified very few articles that met the inclusion criteria on the 

association of these other metals with cardiovascular atherosclerotic disease (Table 5, 

Supplemental File 3). For each of these metals, we only identified one publication 

investigating the association with atherosclerotic cardiovascular disease: barium and 

peripheral arterial disease [58], nickel and carotid atherosclerosis [59], and uranium and the 

prevalence of cardiovascular endpoints including coronary heart disease, stroke and heart 

failure (Table 5). These studies were conducted in the USA [20, 58] and Sweden [59]. 

Exposure was measured in urine only [20, 58] or whole blood only [59]. Cardiovascular 

endpoints were assessed by physical examination in 2 studies (one measuring peripheral 

arterial disease with ankle-brachial index [58] and one measuring carotid atherosclerosis by 

intima-media thickness and plaque presence with ultrasounds [59]) and by self-report in 1 

studies [20]. For barium, there was a trend toward inverse association with peripheral arterial 

disease although it was not significant [58]. For nickel and uranium, the evaluated studies 

mostly showed a trend towards increased cardiovascular risk with increasing levels of 

exposure [20, 59], which was statistically significant for heart failure and heart attack. Two 

studies adjusted for age, sex and smoking, but failed to adjust for traditional cardiovascular 

risk factors.

General discussion and needs for future epidemiologic research

Few studies have evaluated the association between other metals beyond lead and cadmium, 

or the metalloid arsenic, with cardiovascular disease development including information on 

age, sex and smoking status. The metals for which we found at least 2 or more studies 

included antimony, tungsten, and chromium. For the association of antimony and tungsten 

exposures with different atherosclerotic endpoints, all the studies were conducted in 

NHANES, a representative sample of the general US population. Although these studies 

found an increased risk of CVD related outcomes with increased antimony and tungsten 

concentrations, more studies in other population are needed to evaluate the consistency of 

the findings. For chromium, epidemiologic studies in distinct populations consistently found 

an inverse association between chromium biomarkers including serum, urine, whole blood 

and toenail, and incident and prevalent atherosclerotic disease. A graphical display analysis, 
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however, indicates there is possibility of risk of publication bias. This finding highlights the 

importance of publishing all studies, including null studies, for chromium, but also for other 

metals. Additional research is thus needed to confirm the relationship between chromium 

and cardiovascular disease, including the shape of the dose-response, and most importantly, 

to distinguish if the association is different by chromium species. For other environmental 

metals, the small number of studies did not allow us to recognize any type of patterns in 

their associations with atherosclerotic disease, although the association for uranium was 

suggestive of increased risk. These epidemiologic associations of a potential increased risk 

of CVD for antimony, tungsten, and uranium are also supported by a few experimental 

studies specifically conducted for those metals. Additional experimental research is needed 

to better understand the potential mechanisms, the dose-response, and the impact of different 

routes of administration. These experimental studies are critical to facilitate the 

interpretation and the conduction of human research. While the small number of studies 

limits the conclusion of this review, the evidence accrued so far supports the importance of 

environmental metals as cardiovascular risk factors, with different directions of the 

association for chromium vs. the other metals.

Table 1 summarizes the characteristics and interpretation of the metal biomarkers relevant 

for this systematic review. Spot urine biomarkers were the most commonly used 

biospecimen among the reviewed studies. Limitations of urine biomarkers, include within-

individual variability in urinary metal excretion and the need to adjust or correct for urine 

dilution [58]. Variation associated with the laboratory technique for metals determination 

(typically inductively coupled plasma-mass spectrometry), including relatively high limits of 

detection that results in a large proportion of the study population with unobserved metal 

concentrations, also introduces measurement error. Only 4 studies [58, 106–108] reported 

the intra and inter-assay coefficient of variations of the laboratory method, which typically 

should fall below the 10% threshold. Only 5 studies [19••, 20, 58, 108, 121•] reported the 

percent of undetectable values, the limit of detection for the specific metals or the methods 

to handle undetectable values. While traditional approaches to handle left-censored data, 

such as replacing concentrations below the limit of detection by the limit of detection 

divided by two or the square root of two, may induce bias when more than 10–20% or the 

study population display undetectable values [145], recently developed imputation 

approaches based on Markov Chain Monte Carlo predictive models have been recently 

applied with the objective to flexibly incorporate measurement error and left truncation, 

improve the estimation of dose-responses and increase sample size when values are missing 

completely at random [146, 147]. Typically, non-differential measurement error related to 

physiological urinary metal and creatinine excretion and artifactual variation could introduce 

conservative bias toward the null. Additionally, given the relatively short half lives of most 

urinary metals, the biomarkers may not reflect long-term exposures (Table 1), although short 

half-life biomarkers can reflect chronic exposure if exposure is constant over time.

A limitation of the retrieved studies was the substantial heterogeneity in the adjustment for 

traditional cardiovascular risk factors among the retrieved studies. We included adjustment 

for sex, age, and smoking status as required inclusion criteria because they are major 

confounders of the association between metal exposure and cardiovascular disease, and 

smoking is a major source of metal exposure (152, 153). Only one [59] study reported 
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results stratified by age subgroups, two studies [59, 121•] reported results stratified by sex, 

and no studies reported results stratified by smoking status. Conducting stratified analysis 

can be difficult in studies with small sample sizes, as was common in the studies included in 

this review (median sample size 1247). Most of the studies adjusted for diabetes, 

hypertension, and dyslipidemia. An important issue is the adjustment for renal function, as 

some of the reported metals such as chromium [148–150], antimony [151], and uranium 

[152] are nephrotoxic and could, thus, be mediators of the association of metals and 

cardiovascular disease. Although there is discussion on the adequacy of urine creatinine to 

correct for urine dilution for metal biomarkers, adjustment for specific gravity cannot be 

interpreted in the presence of albuminuria, which also limits the value of specific gravity to 

account for urine dilution in the presence of kidney damage [153].

Only one prospective study, a nested case-control study conducted for chromium [64], 

allowed the assessment of temporality. The study found a prospective inverse association of 

baseline chromium with coronary heart disease incidence collected through 10 years of 

follow-up. This prospective association was directionally consistent with cross-sectional [59, 

64] and case-control [106, 108] studies. Regarding the dose-response, some studies used 

flexible approaches (i.e. quantile categories or non-parametric splines) mostly showing 

approximately monotonic relationships of chromium [59, 64, 108], antimony [19••, 58] and 

tungsten [58] with cardiovascular disease.

Future prospective studies with sufficient repeated measurements over time, which can 

enable the evaluation of cardiovascular risk by changes in environmental metals, are needed. 

Another interesting area of future research is the role of joint exposures in atherosclerosis. It 

is important to evaluate mixtures of metals as metals co-occur together [154, 155]. While 

several of the retrieved studies adjusted the regression models for other metals, statistical 

methods to comprehensively tackle mixtures of compounds are needed.

In addition to primary prevention interventions to reduce exposure to atherogenic metals in 

general populations, future mechanistic and human experimental research is needed to 

clarify the effect of removing potentially atherogenic metal stores from the body via edetate 

disodium chelation treatment in the prevention of recurrent cardiovascular disease [5••]. For 

chromium, further experimental evidence is needed to clarify the potential mechanism for 

improved glycemic control, and further epidemiological studies using more precise 

biomarkers of Cr(III) and Cr(VI) exposure are needed to clarify the species-specific 

association with cardiovascular disease.

Conclusion

The accumulated evidence supports the role of environmental metals in atherosclerotic 

disease. For all the environmental metals evaluated, including chromium, we concluded that 

the current evidence is “insufficient” to support causality given the small number of studies, 

the heterogeneity in potential residual confounding of the associations by traditional 

cardiovascular risk factors and metal co-exposures, and the few number of prospective 

studies. For chromium, despite consistent inverse associations among published studies, the 

potential mechanisms are unclear, and we cannot discard possible publication bias. 
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Important questions include the need for larger and prospective studies, the relevance of 

issues related with adjustment for urine dilution when using urinary biomarkers and the 

systematic evaluation of the dose-response relationships. Cardiovascular disease will remain 

the main cause of burden of disease world-wide in the next decades [156]. Given the 

potential associations between metal exposure and cardiovascular disease as well as the 

paucity of experimental literature on metal-induced cardiotoxicity, more experimental 

research is needed to determine the potential mechanism of metal-induced atherosclerosis.
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Figure 1. Flow diagram of the study selection process
Summary of inclusion and exclusion criteria used in this systematic review of studies 

investigating the association between environmental metals and atherosclerotic 

cardiovascular disease, 1 April 2016. * 10 references include the following studies with 

multiple environmental metals evaluated in unique study populations: Agarwal et al. (2011)

[57] examined in NHANES 1999–2006 population urine antimony and tungsten. Navas-

Acien et al. (2005)[58] examined in NHANES 1999–2000 urine antimony, barium and 

tungsten. Mendy et al. (2012)[20] examined in the NHANES 2007–2008 populations urine 

antimony, tungsten and uranium. Lind et al. (2012)[59] examined in the Prospective 
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Investigation of the Vasculature in Uppsala Seniors (PIVUS) population whole blood 

chromium and nickel.
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Figure 2. Relative risks (RRs) for cardiovascular disease endpoints for a given change in 
chromium level
Squares and diamonds represent effect estimates and are proportional to the inverse of the 

variance of the log odds ratios, and lines represent 95% CIs. a Niskanen et al. only reported 

mean levels of urinary Cr among cases and controls; we derived RR and 95% CI via the 

linear discrimination method [157]. Abbreviations: NR, not reported; CHD, coronary heart 

disease; MI, myocardial infarction. Total N was reported where number of cases/non cases 

was not available. Pooled estimates within and across studies were pooled via inverse-

variance weighted random effects.
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Table 1

Characteristics of biomarkers of metal exposure

Metal Biomarker
Timing of
exposure reflected Characteristics of biomarker

Antimony Urine Recent exposure
Rapidly excreted in urine. Intravenous exposure: 90% excreted in 24 hours [158]; 
Inhalation exposure: half-life of 94 hrs (SbIII) and 24 hrs (SbV) [69,159].

Tungsten Urine Recent exposure
Rapidly excreted in urine[95]; half-life in kidneys of 5 days (70%) and 100 days (30%) 
[109]

Chromium Serum Recent exposure Reflects Cr(III) but not Cr(VI) exposure, as Cr(VI) is taken up by erythrocytes [96].

Urine Recent exposure
Reflects dietary Cr(III) intake (1–2 days), considered inadequate for Cr(VI) exposure 
[95,96].

Whole blood Species dependent

Reflects more recent exposure of Cr(III) (intravenous half-life of 10–40 hrs), but less 
recent Cr(VI) exposure (intravenous half-life of 25–35 days). Cr(VI) is taken up by 
erythrocytes, while Cr(III) is not [96].

Toenail Long term exposure
Considered less reliable than blood or urine [96]. Moderate reproducibility across 5–6 
years [100].

Barium Urine Recent exposure
No well-established biomarkers of Ba exposure. Intravenous exposure: 75% cleared in 3 
days [160].

Nickel Whole blood Recent exposure
Rapidly excreted in urine; half-life of 20–34 hrs in plasma [133] and 3.6–3.8 hrs in rats 
following intravenous exposure [161].

Uranium Urine Recent exposure

Primary biomarker of U exposure [139]. Rapidly excreted in urine and feces; half-life in 
kidneys of 1–6 days (99%). Kidney excretion reflects inhalation or dermal exposure 
[138].
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