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Abstract
Histone chaperones are indispensable regulators of chromatin structure and
function. Recent work has shown that they are frequently mis-regulated in
cancer, which can have profound consequences on tumor growth and survival.
Here, we focus on chaperones for the essential H3 histone variants H3.3 and
CENP-A, specifically HIRA, DAXX/ATRX, DEK, and HJURP. This review
summarizes recent studies elucidating their roles in regulating chromatin and
discusses how cancer-specific chromatin interactions can be exploited to target
cancer cells.
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Introduction
Histones are a highly conserved family of proteins that facili-
tate the compaction of DNA by wrapping it around an octamer  
containing two copies each of the canonical histones H2A, H2B, 
H3, and H4. These canonical forms comprise the large majority of 
all histones bound to DNA and are responsible for the regulation 
of a variety of cellular processes including replication, transcrip-
tion, and DNA repair. In addition, several histone variants have 
evolved to allow for additional levels of regulation. These variants 
can differ from their canonical counterparts in sequence, structure, 
and the timing of their incorporation. Canonical histone assembly 
is typically coupled to DNA replication at S-phase, whereas the  
assembly of histone variants is replication independent and spans 
all phases of the cell cycle1.

Human histone variants have been identified for all canonical 
histones except for H4. The canonical histone H3 has six  
variants including H3.3, CENP-A, H3.1T, H3.5, H3.X, and  
H3.Y2. This diversity allows for variants that specialize in a 
wide variety of different functions, including the regulation of  
transcription, chromosome segregation, and telomere function. 
Interestingly, the two most abundantly expressed and essential  
H3 variants differ not only in function but also in how much  
they have diverged from the canonical form. For example, the H3 
variant H3.3 differs by five amino acids and shares 96.3% amino 
acid sequence similarity with its canonical counterpart H3.1; in 

contrast, CENP-A exhibits only 45.1% similarity with H3.12.  
Furthermore, while their assembly is replication-independent,  
they localize to distinct regions of the genome: CENP-A is  
normally found predominantly at the centromere, whereas H3.3 
localizes to heterochromatin, telomeres, enhancers, and genic  
areas of high nucleosome turnover (Figure 1).

The precise localization and assembly of these histones into  
chromatin is thought to be achieved through their interaction 
with histone variant specific chaperones by mechanisms not yet  
entirely elucidated. In addition, some chaperones are found to be 
closely associated with ATP-dependent chromatin remodelers.  
For example, proper H3.3 assembly and localization relies on 
the histone chaperone DAXX in complex with the SWI/SNF-like  
chromatin remodeler ATRX. Interestingly, H3.3 can associate 
with multiple chaperones, including HIRA and DEK, in addi-
tion to DAXX/ATRX. In contrast, human CENP-A normally 
associates with a single centromeric chaperone called HJURP.  
Intriguingly, while it has long been assumed that histone chap-
erones are mere carriers of histones, recent advances, includ-
ing patient tumor sequencing data, have shown that these critical  
chaperones may play an unanticipated role in disease progres-
sion. Here, we review recent literature on this subject and ask  
how changes in variant chaperones can influence the histone  
variant chromatin landscape in the epigenome and thereby impact 
human health.

Figure 1. Histone chaperones allow for assembly at specific genomic regions. The histone variant H3.3 relies on three specific chaperones 
for deposition at specific locations in the genome. The chaperones DEK, DAXX/ATRX, and HIRA have been shown to prefer distinct sites for 
H3.3 assembly. Furthermore, they have been found to be mis-regulated in many cancer types, as shown. The centromeric histone variant 
CENP-A normally associates with a single chaperone called HJURP. However, changes in the amount of CENP-A compared to its chaperone 
can allow for deposition throughout chromosome arms by the H3.3 chaperone DAXX.
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HIRA and senescence
The histone cell cycle regulator (HIRA) protein has been found 
to be a chaperone facilitating the assembly of the histone variant  
H3.3 into chromatin in a replication-independent manner3. It is 
at the center of a complex of proteins, conserved from yeast to 
humans, referred to as the HUCA complex that consists prima-
rily of HIRA, UBN1, CABIN1, and transiently includes Asf14. 
The UBN1 subunit imparts specificity to the complex by prefer-
entially binding to H3.3/H4 over H3.1/H4, thereby enabling this 
dimer’s assembly into chromatin5. Unlike other H3 variants like  
CENP-A, H3.3 normally associates with multiple chaperones 
and each complex appears to be responsible for its localization to  
specific places in the genome. For example, HIRA is necessary 
for H3.3 deposition at gene regulatory elements, gene bodies, and 
sites of DNA damage6,7. Targeting of the HIRA complex is thought 
to be achieved through its interaction with a number of different  
proteins including transcription factors, chromatin remodelers, 
and the single-stranded DNA (ssDNA)-binding protein RPA6,8.  
However, the precise mechanism by which this chaperone  
hones in on the correct regions of the genome has not been  
clearly elucidated. One possibility is that HIRA recruitment to 
gene regulatory regions requires the presence of R-loops. These 
RNA–DNA hybrid structures attract RPA owing to the presence 
of exposed ssDNA, which then recruits the HIRA complex and  
leads to H3.3 assembly at these sites. From these studies, it is 
clear that the HIRA complex is an important regulator of H3.3  
deposition, but HIRA’s role in human health is still unclear.

This is particularly intriguing because human HIRA was origi-
nally identified through the study of DiGeorge syndrome patients,  
who commonly have heart and brain abnormalities, arising from 
a deletion of the q11 cytogenetic band of chromosome 22, which  
contains the HIRA gene9,10. Despite intense study, it is still  
unclear as to whether HIRA is responsible for these defects or 
if it is a result of the deletion of multiple genes. More recently,  
HIRA has been shown to have a clear role in establishing and 
maintaining senescence. Indeed, early studies discovered that 
HIRA and Asf1 are necessary for the formation of senescence-
associated heterochromatic foci, which, in turn, are thought to be 
essential to shut down genes involved in cell cycle progression11. 
Furthermore, the overexpression of HIRA and Asf1 is sufficient 
to induce senescence. In addition, post-translational modifications 
of HIRA have been identified and were shown to be necessary  
for its function. Consistent with HIRA’s proposed role, the expres-
sion of a non-modifiable mutant led to defects in senescence12. 
Multiple mechanisms have been proposed to explain the role 
of HIRA in the establishment of senescence. One provocative  
possibility involves a cleaved H3.3 protein lacking the first 21 
amino acids. HIRA-mediated assembly of this cleaved protein 
has been shown to be sufficient to induce senescence and results  
in the repression of cell cycle regulators13. Other work has  
reported that HIRA is necessary for replication-independent  
deposition of H3.3 in senescent cells and for maintaining the 
H4K16ac histone mark at gene promoters14,15. Furthermore, the 
same study found that HIRA was required to suppress oncogene- 
induced neoplasia in a mouse model. This work highlights the 

importance of this H3.3 chaperone in fine tuning the chroma-
tin environment to allow cells to permanently exit the cell cycle 
and preventing uncontrolled cell growth. As discussed in the next 
section, many questions remain unanswered: for instance, how 
is HIRA function affected by changes in levels of another H3.3  
chaperone, DAXX, commonly observed in tumors? For exam-
ple, can HIRA bind to other H3 variants as has been observed 
with DAXX? Furthermore, in Arabidopsis, H3.3 and DNA meth-
ylation are inversely related and H3.3 knockdown alters the DNA  
methylation profile16,17. Moreover, it has been proposed that H3.3 
prevents the recruitment of the linker histone H118. These findings 
beg the following questions: can global changes in DNA meth-
ylation, coupled to widespread mis-regulation of linker histone 
H1 isoforms, both commonly associated with cancer, alter H3.3  
deposition? Or, conversely, does gain or loss of H3.3 at a specific 
locus alter its DNA methylation profile? Both of these funda-
mental questions need to be addressed in future studies.

H3.3 deposition by DAXX/ATRX in cancer
The histone chaperone DAXX, or death domain-associated 
protein, was originally named for its association with the Fas  
receptor, wherein it was thought to induce apoptosis by activat-
ing the JNK pathway19. However, further work identified it as a  
bona fide H3.3 chaperone that forms a complex with the  
SWI/SNF-like chromatin remodeler ATRX20–22. Like other  
H3.3 chaperones, ATRX/DAXX targets H3.3 to very specific 
regions of the genome in a replication-independent manner,  
specifically, to telomeres, pericentric heterochromatin, and other 
repetitive elements23–25. Both ATRX and DAXX seem to be  
equally important in this process, with DAXX providing the  
H3.3 binding specificity and chaperone activity while ATRX  
targets the complex in part through binding to modified histones 
like H3K9me3 and also stretches of G-rich repeats with a unique 
secondary DNA structure called a G-quadruplex26–30. Moreover, 
proper functioning of this complex is critical, since mutations in 
both of these proteins have been strongly linked to cancer and  
other diseases (Figure 2B, Table 1).

ATRX was first discovered by identifying mutations in patients 
with an inherited disorder, ATRX syndrome, which resulted in 
a wide array of developmental defects31. Since then, mutations  
in both ATRX and DAXX have been found in a variety of  
different tumor types and seem to be especially prevalent in  
tumors associated with the central nervous system32–35. For  
example, in pediatric glioblastoma multiforme (GBM), 31% of 
patients have mutations in either ATRX or DAXX36. It is unclear 
how these mutations are driving cancer in young patients, but it 
is likely that ATRX and DAXX deficiencies have adverse effects 
on chromatin structure that may contribute to the development 
of cancer. As has been noted in patient tumors, ATRX/DAXX  
deficiency is commonly associated with alternative lengthening 
of telomeres (ALT) pathway activation, in which telomere length 
is maintained in a telomerase-independent manner, allowing cell 
growth to continue on uncontrolled37. Moreover, DAXX has also 
been shown to suppress lung cancer metastasis driven by the  
transcription factor Slug, directly binding to it, sequestering it, 
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Figure 2. Mutations in H3 variant chaperones occur in many cancer types. A. Percentage of cases affected by HIRA mutations in 
multiple cancer types obtained from The Cancer Genome Atlas (TCGA) analysis. Numbers listed above each bar represent total number of 
cases analyzed. TCGA cancer types listed in order from left to right include uterine corpus endometrial carcinoma (UCEC), skin cutaneous 
melanoma (SKCM), colon adenocarcinoma (COAD), stomach adenocarcinoma (STAD), urothelial bladder carcinoma (BLCA), head–neck 
squamous cell carcinoma (HNSC), lung squamous cell carcinoma (LUSC), glioblastoma multiforme (GBM), rectum adenocarcinoma 
(READ), and cholangiocarcinoma (CHOL). Locations of mutations within the HIRA protein. HIRA protein domains include a WD-40 repeat-
containing domain, the B-domain (B) necessary for binding to Asf1, and the conserved Hir domain. B. DAXX mutations as above. TCGA 
cancer types listed in order from left to right include UCEC, SKCM, adrenocortical carcinoma (ACC), STAD, COAD, LUSC, BLCA, lung 
adenocarcinoma (LUAD), GBM, and READ. DAXX protein domains include the four-helix bundle (4HB) necessary for ATRX binding, a 
histone-binding domain, an acidic domain, and the Ser/Pro/Thr-rich region. C. DEK oncogene mutations listed as above. TCGA cancer types 
listed in order from left to right include UCEC, diffuse large B-cell lymphoma (DLBC), STAD, COAD, cervical squamous cell carcinoma and 
endocervical adenocarcinoma (CESC), BLCA, pancreatic adenocarcinoma (PAAD), SKCM, GBM, and ovarian cancer (OV). DEK protein 
domains shown include a DNA-binding domain, the scaffold attachment factor-box (SAF), and a DNA-binding and multimerization domain. 
D. HJURP mutations listed as above. TCGA cancer types listed in order from left to right include UCEC, SKCM, READ, STAD, COAD, CESC, 
OV, LUAD, uterine carcinosarcoma (UCS), and BLCA. HJURP protein domains include the SCM3 domain, the conserved domain (CD), the 
HJURP C-terminal domain (HCTD) responsible for centromere targeting, and the dimerization domain.

and preventing its association with DNA. Consequently, low  
DAXX expression levels correlated with lower overall survival  
in lung cancer patients with Slug expression38.

While these studies conclude that DAXX activity may serve a  
cancer-protective function, recent work has shown, conversely, 
that the presence of DAXX in some cases may enhance tumor 
growth as well as generate resistance to treatment. For exam-
ple, in GBM cells lacking the tumor suppressor PTEN, there is a  
DAXX-dependent increase in the expression of oncogenes, 
and inhibition of DAXX in this context can suppress tumor  
growth39. DAXX has also been found to promote tumor growth 

in a mouse xenograft model of prostate cancer40. Furthermore, 
ONCOMINE meta-analysis revealed that overexpression of  
DAXX is common in prostate cancer patients and correlates with 
lower survival rates, suggesting that, in certain cases, DAXX may 
present itself as a viable therapeutic target.

One possibility is that chaperones might, in the cancer background,  
bind inappropriately to the wrong histone variant. Indeed,  
recent studies have shown that DAXX can bind to the centromeric  
histone variant CENP-A, which is naturally overexpressed  
in colorectal cancer cells. Indeed, both DAXX and ATRX  
are present at severalfold excess in these cells41. These data  
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Table 1. Expression changes of histone variant chaperones in cancer. ALT, alternative lengthening of 
telomeres; GBM, gliobastoma multiforme.

Histone 
Variant

Chaperone/Chromatin 
Remodeler

Cancer Expression 
Level

Functional Consequences Refs

H3.3 HIRA ? Decreased levels prevent senescence and 
increase oncogene-induced neoplasia in 

mouse model

14

DAXX Increased Promotes tumor growth in mouse prostate 
cancer model 

Increased expression of oncogenes 
in GBM cells lacking PTEN 

Promotes mis-localization of CENP-A, 
leading to chromosomal instability 

Promotes proliferation and resistance to 
anticancer treatments

39 
 

38 
 

40–42 
 

43

Decreased Potentiates Slug-driven lung cancer 
metastasis

37

ATRX Decreased Activation of ALT pathway 36

DEK Increased Upregulates anti-apoptotic factors 
Fusion protein dominant negative for DEK 

function 
Increased colony formation and 

tumorigenesis

44 
45–50 

 
51

CENP-A HJURP Increased ? 52–60

Decreased Chromosomal instability 61,62

suggest that serendipitous overexpression of chaperones along-
side non-target histone variants might promote their association 
and drives mis-localization. Interestingly, this mis-localization 
has been shown to lead to genomic instability and also greater  
resistance to anticancer treatments42,43. These findings may  
provide a mechanistic explanation for earlier data showing that 
DAXX appears to promote proliferation and chemoresistance in 
ovarian cancer cells63.

From these studies, it is clear that the roles of DAXX and ATRX 
in cancer are complex and dependent on many factors, includ-
ing the accompanying mutations, the tumor type, and alterations  
in histone variant expression. In the future, it will be important 
to understand exactly how changes in DAXX expression can 
drive cancer progression. It is likely that cells rely on a delicate  
balance between different chaperones. It will be interesting to 
test whether the phenotypes observed when DAXX is overex-
pressed are due to a titration of H3.3 away from HIRA, resulting in  
mis-regulation of gene regulatory elements, or defects in  
senescence, both thought to be controlled by that chaperone. If so, 
this would support a “chaperone competition” model, in which 
changes in chaperone expression lead to widespread changes 
in localization of their target histone variants and binding of  

chaperones to non-cognate partners, thereby potentially driving 
tumorigenesis.

The proto-oncogene DEK
In addition to HIRA and DAXX, another H3.3 chaperone exists, 
namely the proto-oncogene DEK64. DEK has been implicated 
in a wide variety of cellular processes including transcription,  
replication, and DNA repair65. Interestingly, DEK also has 
the unique ability to bind preferentially to four-way junction 
DNA and induce positive supercoiling66,67. In its role as an H3.3  
chaperone, it has been shown to play a critical role in regu-
lating the deposition of H3.3 by HIRA and ATRX/DAXX68.  
Depletion of DEK in embryonic stem cells leads to the promis-
cuous incorporation of H3.3 throughout chromosome arms and 
pericentric heterochromatin by HIRA and DAXX. However,  
H3.3 is lost from telomeric chromatin and results in telomere  
dysfunction. Thus, DEK seems to behave as a gatekeeper, main-
taining a balance between soluble and chromatin-bound H3.3 by 
modulating access to H3.3 by different chaperones.

As with the other chaperones, DEK overexpression can be 
found in many cancer types and correlates with increased prolif-
eration and tumorigenesis (Table 1)42,44,69–74. DEK may promote 
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tumorigenesis in multiple ways. First, it has been shown to pre-
vent apoptosis by upregulating anti-apoptotic factors45. Con-
sequently, reducing DEK levels led to increased apoptosis and  
susceptibility to genotoxic agents in melanomas. Second, in acute 
myeloid leukemia, DEK has been reported to be the target of  
translocations that generate a fusion protein with NUP21446–50.  
Precisely how this contributes to tumorigenesis is unclear;  
however, this fusion protein has been shown to interact with  
wild-type DEK and also inhibits chaperone activity64. Third, 
DEK overexpression has been shown to inhibit senescence51. 
Indeed, DEK levels are reduced upon replicative senescence, and  
overexpression of the protein leads to prolonged lifespan.  
Consequently, DEK-knockout mice develop fewer tumors in a 
chemical carcinogenesis model, while overexpression leads to 
increased colony formation and tumorigenesis75.

Since DEK is involved in so many different pathways, it will  
not be trivial to pin down exactly how, or whether, its overex-
pression promotes tumorigenesis via histone variant assembly  
pathways. One possibility involves its regulation of H3.3 assem-
bly by HIRA and DAXX. Normally, DEK seems to function 
to counteract the assembly of H3.3 by these two complexes by  
maintaining the soluble pre-nucleosomal H3.3 pool68. Thus,  
overexpression may prevent the proper assembly of this impor-
tant histone variant by sequestering away H3.3 from HIRA  
or from DAXX. Indeed, it has been shown that depletion of  
HIRA leads to defects in senescence11–14, which has also been  
shown in cases of DEK overexpression51.

The centromeric chaperone HJURP
The centromere-specific histone H3 variant CENP-A/CENH3 
is the epigenetic mark that specifies the site for kinetochore  
assembly during mitosis76. This allows for proper microtubule 
attachment to the chromosome and facilitates proper segrega-
tion of sister chromatids during anaphase. Like the H3.3 histone  
variant, CENP-A deposition occurs in a replication-independent 
manner. In human cells, the histone chaperone HJURP is respon-
sible for its deposition during late mitosis/early G161,77–78.  
HJURP localization and licensing is tightly linked to cell cycle 
progression and requires phosphorylation by CDK/cyclin A79,80.  
Both in the soluble preassembly complex and on chromatin,  
HJURP forms a homodimer81. Chromatin-bound HJURP is lost 
from centromeric chromatin by late G1/early S phase52, while a 
trace amount of it appears to return after replication, which may 
ensure that CENP-A can be deposited once and only once per  
cell cycle.

Like most other histone chaperones, the overexpression of  
HJURP has been observed in various cancers53–60. In particu-
lar, breast, liver, and prostate cancer mis-regulate 14 centromere 
and kinetochore genes, including HJURP82; this combinatorial 
mis-regulation has been proposed as a prognostic and predictive  
marker. These data also provide tantalizing functional links  
between cancer progression and mis-regulation of centromere  
chromatin because half of the 14 mis-regulated genes were found 
to be involved in the directed assembly of CENP-A nucleosomes.  
Interestingly, recent work has shown that the tumor suppressor  
p53 binds to elements in the promoters of CENP-A and HJURP 

and serves to repress the expression of these genes. Thus, loss 
of p53, a common phenomenon in cancer, can result in the  
overexpression of HJURP and CENP-A62. Indeed, in colon can-
cer cells with a mutated p53 gene, a DNase I hotspot maps to 
the CENP-A promoter, suggesting enhanced transcription of this 
gene, and correlates with increased RNA and protein levels of  
CENP-A41. This might explain why various types of tumors  
overexpress HJURP and CENP-A. In addition, a SNP located in 
the HJURP gene was found to be associated with increased risk 
for hepatocellular carcinoma among a Chinese population that  
were infected with hepatitis B virus83. This correlated with a 
decrease in expression of HJURP at the mRNA and protein level.

These observations raise several questions. First, can 
changes in HJURP expression observed in cancer result in 
ectopic deposition of CENP-A? Indeed, in various cancers, 
ectopic CENP-A has been observed41,84, and the overexpres-
sion of CENP-A has been shown to be sufficient for ectopic  
localization42,43. Furthermore, this ectopic localization of CENP-A  
can result in chromosome instability. As noted above, CENP-A  
is deposited ectopically not by HJURP but by the H3.3 chaper-
one DAXX. This would suggest that when HJURP is limiting, 
CENP-A can bind promiscuously to other chaperones, allowing for  
ectopic localization85. In addition, ectopic CENP-A nucleosomes  
can form highly stable heterotypic CENP-A/H3.3 nucleosomes41,42,86. 
The origin, and consequences, of these heterotypic hybrid nucle-
osomes in vivo is a focus of intense studies. One possibility is  
that CENP-A is able to associate directly with DAXX but requires 
HJURP as an intermediate chaperone. Another possibility is that 
upon HJURP overexpression, DAXX and HJURP can form a 
heterodimer analogous to the HJURP homodimer, leading to the 
formation of these heterotypic nucleosomes81. Finally, in high- 
turnover regions, H3.3 nucleosomes are thought to ‘split’ in half 
during transit of RNA polymerases87–89, providing a tantalizing 
means for invasion of an existing H3.3 nucleosome by a dimer of 
CENP-A/H4.

Second, can mutations in CENP-A’s protein sequence, or in the 
gain or loss of specific post-translational modifications, alter 
its affinity for HJURP in cancer? Recently, a modification of  
CENP-A through acetylation and ubiquitination of lysine 124 
as well as phosphorylation of serine 68 was discovered52,90–93.  
Interestingly, ubiquitination of K124 and phosphorylation of 
S68 seem to play antagonistic roles, the first being necessary for  
HJURP binding and the latter inhibiting it, resulting in enhanced 
ectopic localization93,94. In addition, recent work has shown  
that when the tumor suppressor Fbw7 is lost, CENP-A S18 
becomes hyper-phosphorylated, leading to chromosomal insta-
bility and tumor progression as a result of reduced CENP-A at  
centromeres95. It is clear from this work that the proper localiza-
tion and function of CENP-A relies on modifications that either 
enhance or reduce its affinity for the chaperone HJURP. However, 
it is also likely that cancer cells exploit these pathways to promote 
tumor growth. In the future, it will be interesting to investigate  
whether this occurs for other H3 variants as well. For example, 
pre-assembly H3.3/H4 heterodimers have also been shown to be 
modified, but it is unclear whether these modifications are altered 
in tumors96,97.
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Conclusion
A major problem when trying to identify specific mechanisms 
that promote tumorigenesis is that even seemingly subtle changes,  
such as point mutations in a chaperone (Figure 2), can dramatically  
alter the epigenetic landscape of a tumor36. Therefore, in the  
battle against cancer, the enemy has an apparent advantage.  
Indeed, in this regard, cancer cells appear to have mastered the 
maxim, “be extremely subtle, even to the point of formlessness... 
thereby you can be the director of the opponent’s fate” (Sun Tzu, 
The Art of War).

The crucial question is whether the chaperone–histone mis- 
interactions listed above, driven by mutation, mis-expression, 
or mis-regulation, can serve as therapeutic targets in the treat-
ment of disease98. What makes such interactions an attractive 
target is precisely that they do not exist in normal cells. Thus, 
there are likely a small set of critical interactions that might be  
meaningful to exploit. Consequently, it will be informative to 
test whether identifying and blocking cancer-specific interac-
tions between histone variants and chaperones, such as DAXX 
binding to CENP-A, or between chaperones and chromatin  
regulatory complexes can serve as a potent method to singularly 

attack cancer-specific networks while sparing normal cells.  
In this quest, using advanced techniques such as molecular  
docking, computational modeling, sophisticated machine- 
learning algorithms to query mutated protein interactomes, and 
focused small molecule design to identify and disrupt local affini-
ties in protein–protein or DNA–protein interactions presents  
exciting and promising avenues of research. Thus, in our battle 
against disease, we note another maxim that promises hope: “in 
the midst of chaos, there is also opportunity” (Sun Tzu, The Art of 
War).
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