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Abstract

Electroencephalography (EEG) and magnetoencephalography (MEG) are non-invasive 

neuroimaging techniques that have been used extensively to study various resting state and 

cognitive processes in the brain. The purpose of this review is to highlight a number of recent 

studies that have investigated the alpha band (8–12 Hz) oscillatory activity present in MEG and 

EEG, to provide new insights into the maladaptive network activity underlying attentional 

impairments in attention-deficit/hyperactivity disorder (ADHD). Studies reviewed demonstrate 

that event-related decrease in alpha is attenuated during visual selective attention, primarily in 

ADHD inattentive type, and is often significantly associated with accuracy and reaction time 

during task performance. Furthermore, aberrant modulation of alpha activity has been reported 

across development and may have abnormal or atypical lateralization patterns. Modulations in the 

alpha band thus represent a robust, relatively unexplored putative biomarker of attentional 

impairment in ADHD, a strong prospect for future studies aimed at examining underlying neural 

mechanisms and treatment response among individuals with ADHD. Potential limitations of its 

use as a diagnostic biomarker and directions for future research are discussed.
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Over the last decade, cognitive neuroscience has made much gain in understanding the 

engagement and interactions of multiple brain networks that underlie cognitive processes (1–

3). Electroencephalography (EEG) and magnetoencephalography (MEG) are extensively 

used techniques that capture, on millisecond time scales, brain oscillatory activity present in 

electrophysiological signals; this allows for the study of cognitive processes via 
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quantification of brain network interactions as they occur, ostensibly in real time (4–7). The 

object of this review is to highlight recent studies that have used task-related modulations of 

alpha band (8–12 Hz) oscillatory activity to offer new insights into maladaptive network 

activity underlying attentional impairments in attention-deficit/hyperactivity disorder 

(ADHD). ADHD is one of the most prevalent disorders in childhood, affecting an estimated 

5–11% of children (8), with longitudinal studies indicating that 30–70% of individuals 

continue to meet diagnostic criteria into adulthood (9). In addition to highly variable rates of 

diagnostic persistence and treatment response, the need to further understand the neural 

mechanisms underlying ADHD is underscored by extremely poor outcomes in adulthood 

such as frequent psychiatric co-morbidity, substance abuse, incarceration, divorce, poor 

health, and high societal cost ($143–$266B annually; 10). In this review, we suggest that 

studies of oscillatory activity may address this need. We begin with a historical overview of 

oscillatory studies in ADHD, then focus on task-related modulation of alpha band activity, 

which have emerged more recently as promising indicators of the neurophysiological 

underpinnings of the cognitive deficits present in ADHD. Finally, we discuss oscillatory 

power as a potential biomarker in ADHD and consider possible directions, and challenges, 

for future research.

Resting State EEG and ADHD

There is a long history of EEG studies in ADHD, with the first study of resting state brain 

oscillations in children with behavioral problems consistent with ADHD reported in 1938 by 

Jasper et al (11). The earliest observations were described as frontocentral “slowing” in the 

EEG of affected children (11), which means an increase in the power expressed within 

slower frequency oscillations (theta band, 4–7 Hertz [Hz]) over frontal and central scalp (12, 

13). This led to a sustained 40-years and counting!) focus of research on elevated theta 

power (“slowing” of brain activity) and diminished power in “faster” frequencies (i.e., beta 

band, 13–25 Hz), as well as the corresponding ratio of theta- to beta-band power, also known 

as the theta to beta ratio (TBR) (14). Efforts to validate the TBR as a biomarker of ADHD 

diagnosis seemed promising until fairly recently (pre-2010). Previous research studies and 

meta-analysis of the TBR reported high accuracy (89%; 15, 16) and large effect size 

(ES=3.1; 13) for ADHD diagnosis. However, recent independent replication studies and 

meta-analysis (17–21) reported low accuracy (range: 38 to 63%; 22) and significant 

heterogeneity among study results, suggesting that even though the overall ES of 0.62 is 

significant for ADHD diagnosis, it is misleading and potentially an overestimation of the 

true ES (23). While a sufficient number of individuals with ADHD (20–30%) have elevated 

TBR, which drives a significant group effect, the TBR is not a valid discriminator of ADHD 

diagnosis.

Findings for alpha band spectral power at rest in ADHD have been mixed and may depend 

on developmental level, ADHD subtype, and psychiatric comorbidities. Overall, higher 

levels (21, 24–26), no significant differences (27–31), and lower levels (30, 32–39) of alpha 

spectral power between samples with and without ADHD have been reported; however, no 

clear pattern has emerged according to age or ADHD subtype, the latter of which is not 

often reported. Recent studies suggest significant heterogeneity in resting state EEG spectral 

power characteristics within ADHD (36, 40) and at the population level (41) (see Fig. 1a). 
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Furthermore, while spectral power is the predominant metric used to reflect alpha band 

activity, there are other measures that have been reported such as power density, mean 

frequency, peak frequency, coherence, and laterality (see Table 1 for summary and 

definitions). While the plurality of results may reflect poor control over what participants are 

actually doing during ‘resting’ state, this also suggests that there may not be a resting state 

electrophysiological profile that accurately discriminates between those with and without 

ADHD. The purpose of the present paper is to suggest that other EEG/MEG signals, and in 

particular task-related suppression of alpha-band activity, may provide a more fruitful 

avenue for future research. These effects are more closely tied to specific neural systems and 

to cognitive functions, such as attention and working memory.

Task-related Modulation of Alpha Power

The observation of a coupling between the power of oscillations in electrophysiological 

signals and cognitive processing was first reported by Hans Berger (42). He noted 8–12 Hz 

oscillations (alpha) in patients, resting with eyes closed, that disappeared when the eyes 

were opened, a phenomenon later referred to as alpha “blocking”. In 1934, Adrian & 

Matthews (43) reported that while alpha generation is most strongly modulated by visual 

inputs (and was abolished by blindness), it is also linked with cognitive processing of visual 

inputs, or attention. For instance, they noted that alpha increased in the presence of light 

when the participant was not expecting to see a stimulus, and, conversely, it is attenuated 

when the eyes were closed but the subject was mentally searching for something. Based on 

these findings, alpha oscillations were thought to represent the brain in an “idling” state (44), 

a view that has now been replaced by the consensus that alpha oscillations functionally 

inhibit specific regions, which serves to route information by blocking task-irrelevant 

pathways (2, 45–47). This has been demonstrated in a variety of experiments of attention 

and working memory, and using a spectrum of methods including MEG, spike-field animal 

data, concurrent EEG-fMRI, and neuromodulation. For instance, anticipation of visual 

targets decreases visual cortex alpha activity, whereas anticipation of visual distractors 

increases it (48–50). Similarly, alpha-band activity increases with attention and working 

memory load to selectively suppress external inputs and task-irrelevant information (51–55). 

In sum, the picture emerging is that alpha oscillations are associated with top-down 

executive control in attention and working memory tasks by selectively inhibiting (when 

alpha increases) or disinhibiting (when alpha decreases) specific brain regions (i.e., serving a 

gating function in the visual cortex; (46, 53, 56, 57). Given that children with ADHD have 

problems in these domains, it is natural to examine if they also have reduced abilities to 

modulate their alpha oscillations.

Across several types of attention and working memory type tasks (Fig. 2ab), differences 

between children with ADHD and controls have been observed in modulation of alpha band 

oscillatory power. For example, within a spatial working memory (SWM) delayed match-to-

sample task (Fig. 2a), robust ADHD (54) diagnostic group effects were observed during the 

encoding phase of the task when compared to typically developing (TD) controls (Fig. 2c). 

During this encoding phase, control children showed an event-related decrease (ERD) in 

alpha band power, consistent with increased attention to and processing of the visual inputs. 

In children with ADHD, however, the alpha ERD during encoding was attenuated (Cohen’s 
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d>0.79), which occurred primarily at low load rather than high load, was more prominent 

among younger children (7–10 years) versus older children (11–14 years) with ADHD, and 

was predictive of task performance. This finding is broadly consistent with reports by 

Mazaheri et al. (58, 59), who, using cross-modal attention and flanker tasks, also found 

attenuated alpha ERD in ADHD (Fig 2e). The alpha ERD finding was significant after an 

informative (‘response preparation’) cue but not after a null cue (suggesting a tight coupling 

to attentional processes) and was associated with reaction time benefit among TD children 

but not those with ADHD (59). In visuospatial attention paradigms (60) (Fig. 2b), alpha 

ERD arises as a lateralization effect, where alpha power decreases over the hemisphere 

contralateral to the attended visual hemifield relative to alpha power increases over the 

ipsilateral hemisphere. Using this paradigm, Vollebregt et al (61) observed that boys with 

ADHD were unable to modulate lateralized alpha in posterior regions when compared to 

typically developing peers (Fig. 2d), however, alpha lateralization was not associated to 

performance in either group. In a study of lateralized activity in the motor cortex, Yordanova 

et al (62) reported exaggerated suppression of alpha activity over sensorimotor cortex (i.e., 

mu wave) in response to non-attended (distractor) stimuli, potentially an indicator of 

enhanced processing of distractors and deficient inhibition of motor cortical networks. 

Attenuated lateralization of alpha may be indicative of inappropriate allocation of attention 

between attended and ignored streams of inputs. Finally, Heinrich (63) reported higher alpha 

power (which likely represents attenuated alpha ERD) during attention network task 

segments without stimulus processing or overt behavior among children with ADHD 

compared to controls, consistent with poor attentional allocation during the task.

We note that alpha ERD group differences seem to be associated primarily with ADHD 

inattentive symptoms. Lenartowicz et al (54) reported a correlation between alpha ERD and 

inattentive symptoms (p=0.008), but less so for hyperactive symptoms (p=0.08). In the 

Mazaheri et al (59) study, alpha ERD was attenuated among adolescents with Inattentive 

Type but not with Combined Type ADHD (see Fig. 2e). Similarly, alpha ERD deficits were 

not observed by Gomarus et al (64) during a visual selective memory task where the ADHD 

sample was characterized primarily by hyperactive-impulsive behaviors. Overall, alpha ERD 

is attenuated primarily in ADHD inattentive type, consistent with ineffective selective 

attention to visual inputs, and is often associated with poorer task performance (accuracy, 

reaction time or reaction time variability).

Aberrant alpha modulation has also been consistently observed in studies examining adults 

with ADHD during attentional tasks. While performing a flanker task, posterior alpha ERD 

was significantly attenuated among adults with ADHD during visuospatial orienting (65). 

During stimulus processing in a N-back working memory task, adults with ADHD exhibited 

reduced alpha ERD in frontal channels relative to controls. Attenuated alpha ERD was 

particularly pronounced during the low versus high load condition (66), an interaction that 

was also present in the SWM study with children (c.f., Fig. 2c) (54). This suggests that 

aberrant alpha modulation may interact with sluggish recruitment of attention or 

maintenance of vigilance, which is more difficult in easier task conditions. Finally, MEG 

studies have found that adults with ADHD also have difficulty sustaining posterior 

hemispheric alpha lateralization during visuospatial attention (c.f., Fig 2b) in the period 

between the cue and target, particularly when attending to the left visual hemifield (67). A 
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follow up study revealed a similar deficit in alpha power observed over sensorimotor cortex 

(i.e., mu wave) (68). Coupled with behavioral performance results, the authors suggested 

that adults with ADHD have an attention bias to the right visual field, which has been linked 

not only to ADHD severity but also other ADHD risk factors such as gender, handedness, 

and genetic factors (69). Collectively, adult ADHD studies are consistent with effects 

observed in children and support the notion of continued deficits in the ability to modulate 

alpha power across development, with a potential rightward bias in alpha power.

Neural mechanisms underlying alpha oscillatory activity

A mechanistic understanding of alpha oscillations has clear implications for the neural 

circuitry underlying deficient attention control in ADHD. Seminal in vivo (70, 71) and in 
vitro (72–74) experiments of thalamic alpha, and studies of occipital alpha (75–77) in the 

dog have identified a circuit between excitatory thalamocortical cells and inhibitory reticular 

neurons that generates alpha oscillations in thalamocortical neurons via a feedback loop 

between excitation and inhibition (78, 79). These studies were initially interpreted as 

supporting the hypothesis that alpha oscillations were indicative of the brain in an idling 

state (80). This is because the thalamic generator of alpha is dependent on decreasing 

arousal (79, 81, 82), whereby ascending cholinergic projections “deinactivate” (i.e., 

inactivation gate reopens and activation gate closes) low-threshold-Ca2+ channels, which 

reduces the reactivity of cortex to inputs (83–85). And while alpha oscillations are typically 

strongest over occipital cortex, they are also detectable in sensorimotor (the “mu” wave) and 

temporal cortices (the “tau” wave) (86–89), supporting a general mechanism by which 

sensory processing is gated by the thalamus. Hence, core thalamo-cortical interactions may 

play an important role in the aberrant alpha patterns observed in ADHD at rest. It is 

noteworthy that the dependence of thalamic generators of alpha on decreasing arousal is 

reminiscent of and consistent with energetic (low-arousal) models of ADHD etiology (90). 

However, given a lack of consistency in group differences in alpha during rest, further 

research is warranted to establish if links exist between alpha-generating thalamo-cortical 

interactions, alpha at rest and ADHD diagnosis.

In addition to the thalamo-cortical mechanisms, the modulation of alpha during task is 

thought to represent fronto-parietal interactions biasing activity in occipital cortex in line 

with attentional goals. This idea is supported by: (a) recordings in (primarily) primate 

occipital cortex of alpha generators in deep layers (which receive inputs from cortical 

regions other than thalamus) (91–93); (b) intracranial and MEG recordings, and Granger 

causality modeling showing that alpha (and beta) range oscillations carry feedback 

information from higher-order association areas (in contrast to >30Hz gamma oscillations, 

most prominent in superficial layers and carrying feedforward information) (94–99); and (c) 

disruption of frontal/parietal activities by transcranial magnetic stimulation that 

compromises performance and alpha modulation during visual attention (83, 100–102). 

Attenuated alpha ERD in ADHD is therefore a likely indicator of weakened attention control 

and, given prior association of fronto-parietal circuitry with alpha power (103–106), it 

predicts weakened interactions between the fronto-parietal network and occipital cortex 

during tasks. Consistent with this prediction, alpha ERD impairments do not appear to 

indicate an impairment with basic sensory processing as alpha ERD is independent of 
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perceptual processing (53); it can occur before (101, 107, 108) or after (109) the stimulus, 

and can be absent during a stimulus when no post-perceptual processing is required (110).

It is an outstanding question whether thalamus (111) or fronto-parietal interactions via either 

the thalamus and/or the superior longitudinal fasciculus (112) (Fig. 3a), are critical in 

generating the aberrant alpha patterns in ADHD. A thalamic impairment can certainly 

account for ineffective fronto-parietal activities (e.g., contributing to poor alpha ERD) 

because the thalamus (in particular the pulvinar nuclei) displays attentional modulation 

signals and has been shown to drive alpha synchrony in primate occipital cortex during 

attentional selection (113, 114). It may thus be a mediating structure for fronto-parietal top-

down control. In turn, the relationship between thalamic generators of alpha and ascending 

cholinergic projections (79, 81, 82) implies that faulty arousal regulation could impact both 

thalamic and fronto-parietal activities. It is noteworthy that these alternatives are analogous 

with (i.e., capture the same circuits as) existing multi-pathway models of ADHD (e.g., 115). 

Further research into the mechanisms of alpha generation versus modulation will be 

imperative in distinguishing the critical pathways behind both alpha (and related behavioral) 

deficits in ADHD, and thereby informing existing models. Increasingly promising are 

multimodal approaches such as concurrent EEG-fMRI, which has been fruitful in non-

invasively confirming the associations between alpha power and thalamic, occipital and 

fronto-parietal activities (103–106, 116–122). Extensions of such approaches to map the 

functional connectivity of alpha in ADHD (123, 124) may prove particularly revealing. 

Indeed, a recent study used concurrent EEG-fMRI recordings during SWM (Fig. 2a) in a 

small sample of adolescent boys with and without ADHD (N=30, 15 ADHD; 121). Overall, 

alpha ERD during SWM encoding was associated with occipital activation and fronto-

parieto-occipital functional connectivity (Fig. 3b), with the latter predicting ADHD 

symptoms and response variability. The degree to which these two substrates were recruited 

differed by diagnosis, with greater occipital activation in controls and greater fronto-parieto-

occipital connectivity in ADHD. The finding is consistent with the pattern of results in the 

larger EEG-only sample (54), namely that ADHD participants had to work harder (through 

recruitment of executive function fronto-parietal mechanisms) to compensate for a poor 

visual attention response.

Oscillations as biomarkers of ADHD

Can measures of alpha oscillations serve as a biomarker of ADHD? Given the large effect 

sizes of group differences in alpha modulation, and clearly defined mechanistic targets, it 

seems the answer ought to be yes. However, large effect sizes are not sufficient to define a 

biomarker, which additionally needs to show reliability as well as both sensitivity (ability to 

detect the disorder) and specificity (ability to discriminate between disorders). Less 

commonly reported alpha measures such as lateralization, coherence, and mean/peak 

frequency have not been well studied with respect to reliability, however, several previous 

studies indicate high within-subject reliability of alpha ERD. Neuper et al (125) (n=29, 18–

45 years) reported a Cronbach’s alpha>0.85 and r(27)>0.7 test-retest reliability of alpha 

ERD (up to 107 days apart) during numerical processing (125). Similar results were reported 

for resting state alpha power by Tenke et al (126), in 39 adults (18–65 years), test-retest 

reliability of 0.84 recorded 5–16 days apart, and by McEvoy et al (127) (n=20, 18–29 years), 
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test-retest correlation >0.8 in psychomotor vigilance task and >0.9 in a Sternberg working 

memory task, recorded 7 days apart. Impressively, Näpflin, Wildi and Sarnthein evaluated 

both resting state alpha (128) and alpha ERD in a modified Sternberg working-memory task 

(129) in test-retest sessions 12–40 months apart (n=55, 19–79 years). They were able to 

predict if the oscillatory metrics came from within the same subject or from different 

subjects with a sensitivity over 87% and specificity over 99%. Thus, we cautiously conclude 

that alpha ERD is a reliable signature within individual, an important property for a 

biomarker, though it is notable that all of these studies were performed in adults and may not 

generalize to children.

However, the sensitivity and specificity of alpha ERD are questionable, and we suggest that 

alpha ERD, like its theta-beta ratio predecessor, is not likely to provide a reliable biomarker 

of ADHD diagnosis. The reason for this conclusion lies in the clinical (130), mechanistic 

(131, 132), and etiologic (133) heterogeneity of the disorder, which likely degrades the 

reliability of putative biomarkers of ADHD. For example, the ADHD 200 competition, 

which challenged scientists to develop diagnostic group classifiers for ADHD based on over 

700 MRI datasets, had accuracy rates ranging from 43% to 62% (mean 56%), with the 

highest prediction accuracy of 62.5% coming from a prediction model that did not include 

any imaging data at all (134).

Several EEG/ERP studies have had more success using multivariate EEG profiles, (~90%, 

e.g., 135, 136, 137) but the high accuracy results require further validation because of 

potential statistical model overfitting. This is because of either small sample size precluding 

ability to split the data into independent training and testing sets (N < 22 per group; 135, 

136, 138, 139), or the common practice of selecting classification features from the same 

dataset that is subsequently used for the classification (i.e., artificially inflating diagnostic 

classification accuracy) (140). For instance, in two large-sample EEG studies, Mueller et al 

(141) reported diagnostic classification accuracy of 92% (n=150), and Tenev et al (142) 

reported an accuracy of 82% (n=112), but in both cases the features used for the 

classification were those that were most discriminant in the sample, thus creating circularity 

in the analysis (critique also applies to the findings of Hammer et al (143) who cited 92.5% 

classification based on fMRI data). Notably, in an independent validation sample of 17 

adults, Mueller et al (137) reported an impressive accuracy of 94%, yet because the 

validation sample was comprised of only individuals with ADHD, it is impossible to assess 

whether the classifier was inaccurately labeling all new data as ADHD (i.e., specificity). 

Moreover, across the studies, there is a lack of consistency in the features that are most 

effective in diagnostic classification (i.e., in EEG studies: TBR, absolute or relative power 

within various frequency bands, fractal measures, and event-related potential components 

(22)). We may therefore conclude that past classification efforts, including those using theta-

beta ratio, have not yielded reliable diagnostic classification results, a finding that is not 

surprising if we consider the distribution overlap in EEG features across groups (e.g., Fig. 1b 

for alpha ERD).

It may be a more useful exercise to consider the prognostic utility of alpha oscillatory effects 

as a biomarker of a cognitive process (and associated neural circuits), developmental 

outcomes, or treatment response rather than diagnosis. As noted previously, attenuated alpha 
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ERD was associated with inattentive symptoms (54) and subtype of ADHD (58, 144) and 

much less so with the ADHD combined subtype (64, 144). Moreover, stronger alpha ERD is 

predictive of better task performance both in studies of ADHD (54, 144) and otherwise, with 

alpha power predicting success of visual discrimination (108), errors on no-go trials (145) 

and successful inhibition of distractor items during working memory (146). Alpha 

oscillations may therefore be considered a putative predictor of visual attention processes 

and related behavioral outcomes. In the context of ADHD, this may translate into prediction 

of inattentive symptoms and how they may change with development or in response to 

treatment. The practical significance lies in the strong relationship between attention 

processes and real-life outcomes. We know that working memory deficits can have 

significant effects on academic achievement, educational attainment (repeating a grade, 

special education classes, learning disabilities) and IQ (147), which contribute significantly 

to occupational, academic, and social functioning in adulthood. Furthermore, the 

demonstrated population-level heterogeneity in alpha band activity (40, 41) may be framed 

as a potential advantage of EEG based-measures, if it reveals neurophysiologically distinct 

clusters. If so, alpha suppression may potentially be used not only as a measure of treatment 

response but also a predictor of which treatment may be effective for a given individual.

Conclusions, challenges and future directions

EEG and MEG oscillatory activity have long been used to quantify neural mechanisms and 

network interactions underlying cognitive processes such as attention. Alpha ERD appears 

to be a robust, yet relatively unexplored (in ADHD) putative biomarker of attentional 

impairment that subsequently impacts performance on WM and other executive function 

tasks. Despite its potential utility, there remain a number of challenges in the interpretation 

of alpha that need to be addressed. First, the group differences in alpha ERD that we have 

described require replication in larger samples, under identical task conditions. For instance, 

while attenuation of alpha suppression during SWM encoding and attenuation of alpha 

lateralization in ADHD are hypothesized to stem from similar mechanisms, a study 

comparing the paradigms (and alpha measures) within the same population would be 

instructive. Similarly, while most group differences have been reported over occipital 

electrodes/cortex (Table 1), some group effects have also been reported over frontal 

electrodes and/or over sensorimotor cortex. It is not currently known if these alpha measures 

in various regions represent different or overlapping mechanisms. Moreover, effects of pre-

stimulus alpha on group differences in alpha modulation have not been systematically 

considered and likely introduce another source of variability (e.g., pre-stimulus alpha 

differences were present in (63) but not (54). Finally, it is not clear if alpha suppression 

deficit reflects a fundamental dysfunction in associated circuitry or if this is a downstream 

effect (e.g., a problem with arousal).

In addition, more work is needed to address clinical correlates associated with alpha ERD. 

In terms of inattention symptoms, it would be important to understand whether alpha ERD 

indexes specific types of inattention, such as distractibility, a lack of vigilance, or 

daydreaming. More specificity with respect to which inattention symptoms are represented 

by alpha ERD may support its use as a biomarker of treatment response or developmental 

outcomes. Such specificity would also be instructive in interpreting deficits in alpha 
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modulation in other disorders (e.g., alpha suppression impairment during working memory 

in patients with schizophrenia (148) and, in a visual attention task among those with autism 

(149). Finally, further research is critical to ascertain whether alpha ERD is indeed predictive 

of clinical features typically associated with working memory deficits. If so, the association 

could potentially reveal shared neural mechanisms underlying inattention and academic 

achievement, or, identify risk for highly co-morbid diagnoses such as learning disability 

among children with ADHD. Remaining challenges notwithstanding, the promising research 

findings described herein suggest that alpha ERD is a strong prospect for future studies 

aimed at examining underlying neural mechanisms and putative biomarkers of ADHD.
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Figure 1. Heterogeneity within and between groups limits potential of existing EEG metrics as 
biomarkers of ADHD
(A) Population-level EEG heterogeneity is evident in the presence of five clusters within 

both ADHD and typically developing (TD) control groups. Each cluster is defined by 

elevations in oscillatory power within a frequency band (delta 1–3 Hertz [Hz] theta, 4–7 Hz, 

alpha 8–12 Hz, beta 13–20 Hz) and no spectral elevation [NSE]). There is no cluster or 

spectral power profile characteristic of either ADHD or TD group, suggesting resting EEG 

spectral power measures are insufficient to serve as a biomarker of ADHD. Figure 

reproduced with permission from (41). (B) The distribution of alpha ERD during the 

encoding interval in Fig. 2c. The image illustrates that ADHD and TD controls, despite a 
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significant difference in group mean, have largely overlapping distributions of alpha ERD. 

These data, argue for the unsuitability of a single EEG metric as a diagnostic biomarker of 

ADHD.
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Figure 2. Alpha ERD is attenuated in ADHD during visual attention
In the spatial working memory task (A) participants encode the spatial location of 1 or 3 

(low load) or 5 or 7 (high load) dots. Following a maintenance interval, they indicate if the 

probe dot occurs in the same or different location than any of the stimuli in the encoding 

stimulus. Attenuation of alpha event-related decrease (ERD) in ADHD was apparent during 

the 2-sec encoding period (C) (relative to pre-stimulus baseline). This effect was most 

pronounced at low load among children with ADHD (top left). Alpha ERD plots are 

calculated from the time-courses of a single occipitally-distributed (inset) independent 

component. Figure reproduced with permission from (54). (E) A similar result was reported 
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by Mazaheri et al (59), in a cued spatial attention task. Attenuation of alpha ERD at 

electrode Oz in response to cues (cue duration is 1 s) was more pronounced in ADHD 

Inattentive Type than ADHD Combined Type (left panel), relative to TD controls. Figure 

reproduced with permission from (59). In the prototypical cued spatial attention task (B), a 

cue indicates the most likely location of the upcoming target stimulus (e.g., left). Following 

a preparation interval, the target appears either on right or left, requiring participants to 

indicate on which side the target appeared. In this paradigm, alpha ERD is lateralized, 

greater in the hemisphere contralateral to the hemifield indicated by the cue (attended, e.g., 

right) than in the hemisphere ipsilateral to the hemifield indicated by the cue (ignored, e.g., 

left). The normalized difference can be quantified as a modulation index (MI), the difference 

in alpha power for left minus right attention cues. The expected topography of the MI during 

the preparation interval is evident in panel (D) for typically developing (TD) boys, a relative 

decrease in alpha power for contralateral cues (attended) and increase for ipsilateral cues 

(ignored). This effect was significantly attenuated in boys with ADHD. Figure reproduced 

with permission from (61). In both (A) and (B), ITI is intertrial interval.
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Figure 3. Candidate neural mechanisms of alpha modulation include thalamo-occipital and 
fronto-parietal interactions
(A) Modulation of alpha in occipital cortex is likely the result of one of three pathways: 

bidirectional interactions between occipital cortex and thalamus (Direct Thalamic 

Pathways), or fronto-parietal interactions exerting top-down influence over occipital 

activities either via thalamus (Thalamus-Mediated Pathway) or directly (Direct Prefrontal 

Pathway) via the superior longitudinal fasiculus. (B) Results from a small (n=21) concurrent 

EEG-fMRI study (121) indicates that alpha ERD in the encoding phase of a spatial working 

memory trial (c.f., Fig. 2ac) is correlated with both increases in occipital cortex activation 

and strengthening of functional connectivity between occipital cortex and fronto-parietal 
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regions that include frontal pole, inferior frontal gyrus, post-central sulcus, and, in posterior 

cortex, intraparietal sulcus and lateral/superior occipital regions. The connectivity also 

included thalamus (not shown). The data thus support the thalamus-mediated and direct 

frontal models. Overlays in this image are regression parameters, with threshold at z>2.0, 

p<0.05 (whole-brain corrected for multiple comparisons using Gaussian random field 

theory) and mapped to the PALS atlas of human cortex, PFC=prefrontal cortex, 

PPC=posterior parietal cortex, Th=thalamus, Occ=occipital cortex, iPS=intraparietal sulcus, 

iFG=inferior frontal gyrus, FP=frontal pole, FEF=frontal eye fields, SLF=superior 

longitudinal fasiculus.
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