Table 2. Linear regression models for missing_events_percent based on predictor variables of representation completeness of Domain variables generated by applying independent and correlated degradation.
Predictor | Coefficient | SE coefficient | t -Value | p -Value |
---|---|---|---|---|
Independent degradation | ||||
Birth_date | −0.9949 | 0.0069 | −144.7 | < 0.0001 |
Admission_type | −0.9941 | 0.0069 | −144.6 | < 0.0001 |
Medication_start_date | −0.3927 | 0.0072 | −54.3 | < 0.0001 |
Catheter_duration | −1.2136 | 0.0083 | −145.9 | < 0.0001 |
Catheter_rationale_for_continued_use | −0.1226 | 0.0070 | −17.6 | < 0.0001 |
Correlated degradation | ||||
Birth_date | −0.9955 | 0.0066 | −151.2 | < 0.0001 |
Admission_type | −0.9972 | 0.0066 | −151.5 | < 0.0001 |
Medication_ start _date | −0.4155 | 0.0073 | −56.8 | < 0.0001 |
Catheter_duration | −1.1863 | 0.0080 | −149.0 | < 0.0001 |
Catheter_rationale_for_continued_use | −0.1178 | 0.0067 | −17.7 | < 0.0001 |