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Abstract

Propensity score analysis (PSA) is a common method for estimating treatment effects, but 

researchers dealing with data from survey designs are generally not properly accounting for the 

sampling weights in their analyses. Moreover, recommendations given in the few existing 

methodological articles on this subject are susceptible to bias. We show in this article through 

derivation, simulation, and a real data example that using sampling weights in the propensity score 

estimation stage and the outcome model stage results in an estimator that is robust to a variety of 

conditions that lead to bias for estimators currently recommended in the statistical literature. We 

highly recommend researchers use the more robust approach described here. This article provides 

much needed rigorous statistical guidance for researchers working with survey designs involving 

sampling weights and using PSAs.
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1 Introduction

Propensity score analysis (PSA) is now an exceedingly common statistical approach for 

estimating treatment effects from observational data. However, when the data are collected 

from a survey design, such as those that require the use of sampling weights, there is very 

limited guidance for researchers on how to use the sampling weights properly in their PSA. 

DuGoff et al. [1] searched for articles in health services research and found 28 studies using 

data containing design weights with an analysis involving propensity scores. Sixteen of 

those studies ignored the weights completely (with many nonetheless still claiming 

representativeness), seven used the weights only in the outcome model, and five used the 

weights in both the propensity score and outcome model. Unfortunately, we argue in this 

paper that only the latter group (the smallest group) adopted the best approach. Through 

derivation, simulation, and a real data example, we show that using sampling weights as 
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observation weights in both the propensity score model and the outcome model provides 

robustness and failing to do so leaves analyses susceptible to bias.

Previous research has examined how the combination of sample selection and treatment 

selection can affect treatment effect estimation. Smith and Sugden [2] conclude that correct 

analyses depend on analysts considering “the joint distribution of the observations and of the 

sampling and assignment indicator variables.” While their analysis only briefly touches on 

propensity scores, their conclusion that a proper accounting of sampling design is essential 

still holds.

Two recent studies examined the question of survey design and PSA. Zanutto [3] writes 

“Since the propensity score model is used only to match treated and control units with 

similar background characteristics together in the sample and not to make inferences about 

the population-level propensity score model, it is not necessary to use survey-weighted 

estimation for the propensity score model.” While it may be true that we do not intend for 

the propensity score model to reflect a population, more precisely the choice to include or 

not to include sampling weights in the propensity score model hinges on which approach 

produces better population-level treatment effect estimates. Zanutto [3] did not provide 

mathematical support for the recommendation to exclude sample weights from propensity 

score estimation.

DuGoff et al. [1] echo the assertion from Zanutto [3], “we argue that the propensity score 

model does not need to be survey-weighted, as we are not interested in generalizing the 

propensity score model to the population.” However, DuGoff et al. [1] do “recommend 

including the sampling weight as a predictor in the propensity score model” as they “may 

capture relevant factors, such as where individuals live, their demographic characteristics, 

and perhaps variables related to their probability of responding to the survey.” Still, the 

authors state that their guidance should not be the final say on how to properly implement 

PSAs with survey data as more work on the topic was needed.

The current recommendations in the literature conflicted with our intuition. We believe the 

majority of studies that involve survey designs are inherently designed to understand 

population-level effects and sampling weights should, therefore, be incorporated at every 

stage of estimation. Given the differing views on this topic, we set out to analyze more fully 

the proper use of sampling weights in PSA. Based on our investigations, we conclude that 

three scenarios in particular will cause problems if researchers use currently recommended 

approaches:

1. If there is a covariate z used in the sampling weights that is not used or available 

for the propensity score model even if z is independent of the potential outcomes.

2. If the propensity score model has limited degrees of freedom and spends those 

degrees of freedom on the domain of pretreatment covariates x with small 

sampling weights.

3. If the sampling probability depends on treatment assignment, particularly for the 

case when treatment and control cases are drawn from different survey efforts or 

different survey waves.
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We find that using sampling weights in the propensity score estimation stage (as weights, 

not as a covariate), computing final weights as the product of the sampling weight and the 

propensity score weight, and using those final weights in an outcome model will be robust in 

these scenarios and be competitive in other considered scenarios.

In Section 2, we provide a theoretical justification for using the sampling weight (as a 

weight) when estimating propensity score weights and then highlight a number of cases 

where current methods proposed in the literature will be susceptible to bias in light of the 

theoretical derivation. In Section 3, we implement a simulation study that compares our 

proposed approach to standard methods often used in practice. In Section 4, we compare the 

methods using the Insights from the Newest Members of America’s Law Enforcement 

Community survey. Finally, in Section 5, we discuss the implications of our findings.

2 Theoretical justification for using sampling weights when estimating 

propensity score weights

Recent articles suggest that there is no need to use sampling weights in the propensity score 

model [1, 3]. To examine this assertion we need to work out our objective and connect it 

with the source of our sample. In this section, we focus on estimating the population average 

treatment effect on the treated (PATT), but the computations are analogous for other 

estimands and later sections with simulations and data analyses examine those other 

estimands.

We assume the standard data structure. We have a sample of n observations from a 

population of treated and untreated cases. For observation i we have ti, the 0/1 treatment 

indicator, y1i, the potential outcome if case i were assigned to treatment, y0i, the control 

potential outcome, and xi, additional covariates possibly related to both ti and (y1i, y0i). We 

observe either y1i or y0i depending on the value of ti. In addition to this standard setup, we 

assume that observation i has been selected into the sample with probability pi. As a result, 

the sample of treatment cases do not represent the population of treated cases nor does the 

sample of control cases represent the population of cases that were not assigned to treatment. 

However, assigning observation i a sampling weight of 1/pi reweights the data so that they 

represent the population from which we drew them.

The expected treatment outcome for those assigned to treatment is straightforward and we 

can compute it directly from the data.

(1)

Note that eq. (1) is a design-based approach to estimation rather than a model-based 

approach. Little [4] provides an extensive review of the design-based and model-based 

approaches to estimation and their strengths and weaknesses. As in DuGoff et al. [1], in this 

paper we assume the analyst is pursuing a design-based approach and work through 

scenarios with that approach.
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The challenge in causal analysis is to estimate the counterfactual E(y0∣t = 1), the expected 

outcome of treatment cases if they had been assigned to the control condition. Standard 

propensity score approaches for estimating PATT, whether matching, stratifying, or 

weighting, all adjust the control cases so that they resemble the treatment cases on observed 

features. The complication that sampling weights add is that we need to rebalance the 

comparison cases so that the distribution of their features resembles the feature distribution 

of the treated population. How exactly to do that has generated confusion. While DuGoff et 

al. [1] aim “to make the observed treated and control groups as similar as possible,” this 

approach will not yield a consistent treatment effect estimator at the population-level in 

many cases. If we make the distribution of the sampled control cases’ features resemble the 

feature distribution of the treatment population, as in eq. (2), then we can achieve 

consistency. Mathematically stated, we want to find propensity score weights w(x) such that

(2)

where x is a vector of case features, t is the 0/1 treatment indicator as before, and s is the 0/1 

indicator of inclusion in the sample. Rearranging and applying Bayes Theorem twice we 

find

(3)

These calculations show that the right weight for the comparison cases involve three terms. 

The first is a constant that will be absorbed into any normalization of w(x). The second term 

is the standard inverse sampling probability weight. The third is the standard odds of 

treatment propensity score weight. However, those propensity score calculations are not 

conditional on s = 1. Therefore, if f (t = 1∣x)≠f (t = 1∣x, s = 1) then w(x) might not result in 

aligning the treatment and comparison groups to the right distribution of case features. 

Simply replacing f (t = 1∣x) with an estimate based on f (t = 1∣x, s = 1) risks not satisfying 

the primary goal of propensity scoring, aligning the right feature distributions.

The next several subsections explore how various scenarios and estimation methods affect 

covariate balance and treatment effect estimates.

2.1 Effect of missing sampling weight variables when estimating the propensity score 
model

In this subsection, we introduce a key complication to demonstrate the risks associated with 

estimators that do not include sampling weights in the propensity score estimation step. 

Namely, we introduce a variable z that is used in the construction of the sampling weights, 

but is unavailable when estimating the propensity score. Such zs are not so unusual, 

particularly for datasets that are part of the federal statistical system. For example, sampling 

weights often include features related to fielding method, geography, and household, any of 

which could be related to outcomes of interest. These features might not be available (or 

might not be available at the same resolution) to the analyst. There is also the risk that the 
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analyst might not be entirely aware of what features were used in constructing the design 

weights even if all of those features are technically available.

Combining eqs (1) and (3), the estimator of PATT has the form

(4)

where ei = f (t = 1∣xi), the propensity score. The first term estimates E(y1∣t = 1) regardless of 

the relationship of z to the treatment assignment or to the potential outcomes. We write out 

the details of this well-known property to more easily guide the analysis into the more 

complicated second term.

(5)

(6)

(7)

(8)

The second term in eq. (4) should estimate E(y0∣t = 1), but we will see that this depends on 

how we estimate the propensity scores, pi, and on a few key assumptions. Here we will just 

analyze the numerator since, as seen in eq. (7) the denominator is simply a normalization 

term.

If we use the approach described in Zanutto [3] and DuGoff et al. [1] then we insert the 

propensity score conditional on s = 1 in place of ei.

(9)
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(10)

In eq. (10) we need t to be independent of y0 conditional on x, the standard independence 

assumption used in PSA, in order to insert y0 in the treatment conditional probabilities. 

Integrating out z we obtain

(11)

(12)

Bringing in the denominator normalizing term we arrive at

(13)

However, eq. (13) shows that the estimator is not necessarily consistent for E(y0∣t = 1). We 

need f (y0, x, s∣t) = f (y0, x∣t)f (s∣t) but the independence of s and (y0, x) cannot be 

guaranteed when z, even though no longer directly visible in the expression, might have 

induced a correlation.

To repair the treatment effect estimator, we need to modify eq. (9) by using the sampling 

weights in the estimation of the propensity score model so that we obtain a consistent 

estimate of f (t = 1∣x). Doing so results in

(14)

(15)
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(16)

The following simple example shown in Table 1 makes the situation more concrete. In this 

example, the sampling and treatment assignment probabilities depend on z, but the potential 

outcomes do not depend on z.

The inclusion or exclusion of the sampling weights in the propensity score model and the 

necessary assumptions do in fact matter. Table 2 compares the asymptotic results for this 

example. The first column in Table 2 shows the asymptotic mean of x and y for the treated 

group. The second column shows using sampling weights in both stages of the PSA results 

in balance on x and an E(y0∣t = 1) identical to the treatment group, consistent with the actual 

null treatment effect simulated here. The third column shows that without sampling weights 

in the propensity score model we do not get balance on x and do not correctly estimate the 

null treatment effect.

This analysis demonstrates that when there are case features used in the development of the 

sampling weights that are unavailable when estimating the propensity score, consistent 

estimates depend on additional independence assumptions, assumptions that are not needed 

if the propensity score estimator uses the sampling weights.

2.2 Propensity score models with limited degrees of freedom

Even if the situation described in the previous example does not occur, the propensity score 

estimates should still involve the sampling weights. While we recommend the use of readily 

available non-parametric propensity score estimators [5-7], we recognize that propensity 

score models with limited degrees of freedom, such as standard logistic regression models, 

are exceedingly common. Ideally, researchers will use propensity score methods that are 

flexible, can accommodate non-linearities and interactions, and are not sensitive to outliers 

and high leverage cases. However, in practice we find researchers not taking advantage of 

more flexible methods.

Analysts using such parametric models should focus the expenditure of their limited degrees 

of freedom on the domain of x with the largest weights. Equation (3) shows that the final 

analytical weight on a control case will be the case’s sampling weight times the propensity 

score weight,

Clearly the quality of the propensity score will matter more for values of x where 1/pi is 

large and will be inconsequential for cases with 1/pi near 0. Therefore, the propensity score 

model should allocate available degrees of freedom to the regions of x with the largest 

weight.
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The example shown in Figure 1 demonstrates this. In this example the treatment probability 

has a curvilinear relationship with x (black). Because in this example we limit ourselves to a 

propensity score model with two degrees of freedom, the resulting propensity score model 

will vary based on which cases have the most weight.

The density plots shown in the top margin show that f (x) (blue), which puts more mass on 

larger values of x, is quite different than f (x∣s = 1) (red), generated by uniformly sampling 

across x. The red curve overlaying the treatment probability is the result of a standard 

logistic regression model with an intercept and a coefficient for x. The limited capacity of 

such a model to learn the treatment’s relationship with x means that it results in a mediocre 

fit everywhere along x. The blue curve is the result of a logistic regression model fit using 

inverse sampling probability weights. The result is that this propensity score model produces 

a poor fit for x < 40, but a good fit for x > 40, the region with the highest sampling weights.

The weighted control mean of x when using the sampling weights in the propensity score is 

65.67, quite close to the treatment mean of 65.45. Using a propensity score model without 

sampling weights the control group mean is 63.48. If x were a feature like age, then a two 

year difference between the treatment and control group reasonably could be a confounder 

for morbidity and mortality outcomes. A consequence of this would be that it will be harder 

to find good balance if an analyst is using the wrong (unweighted) propensity score model 

and easier when using the weighted one.

Using the sampling weights as described in this subsection can reduce the effect of model 

misspecification of some kinds, but is not a cure-all. This example involved modest non-

linearity, most of which was in a region with low sampling weight and so using the sampling 

weights produced a better propensity score model. Cases with large sampling weight and 

high leverage (i.e. outliers with large sampling weights) will cause estimation problems for 

the propensity score model with or without weights, and possibly for the outcome analysis 

as well. This problem could be more completely resolved by directly addressing propensity 

score model misspecification. However, the example shown here demonstrates that modest 

misspecification can be accommodated when using sampling weights.

2.3 Issues when sampling weights drawn from different sources

Additional complications arise for propensity score estimators that are not weighted by the 

sampling weights when the treatment group and the control group come from different 

survey efforts. For example, data fusion is a form of statistical data linkage that does not aim 

to match individual records into two data sources, but rather match a collection of cases in 

the two data sources that have similar features. Such questions arise in comparisons between 

military spouses and similar members of the general public [8], comparing television 

viewing and consumer behavior [9], and when comparing any study sample to government 

or administrative surveys with similar measures. In these cases, the data needed to answer 

the question reside in two different data collections and the sampling weights for one dataset 

are not normalized to the same scale as the comparison data source.

Respondents with the same sampling weight from different surveys will not share the same 

features. Using the sampling weight as a covariate (as suggested in DuGoff et al. [1]) in such 
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circumstances will result in bias. Using the sampling weights as weights does not have the 

same issue. The sampling weights are still derived from valid sample inclusion probabilities. 

Therefore, the PATT estimator defined in eq. (4) is still valid. Any rescaling of the weights 

in either sample will have no effect as the scaling factor will cancel out. Regarding the 

propensity score model, only the intercept term will be affected by a rescaling of the weights 

and that too cancels out of eq. (4). When estimating the population average treatment effect 

(PATE), the propensity score model intercept term does not cancel out of the estimator. 

Therefore, when estimating PATE the control cases’ weights should be scaled so that their 

share of the total weight matches the fraction of control cases in the population of interest.

This is a case in which the sampling probability depends on the treatment assignment. As we 

saw in Section 2.1, correlations between sampling probabilities and treatment assignment (in 

that case possibly induced by z) can produce inconsistent estimators. Rather than conduct 

another derivation showing the special issue that a dependence between sampling probability 

and treatment creates, we include this scenario in our simulated examples in the following 

section.

3 Simulation study

DuGoff et al. [1] previously reported results of a simulation study comparing the bias and 

coverage of different estimators of the PATE and PATT using survey data. In this section, we 

expand on their study in order to examine the comparative performance of a broader set of 

propensity score estimators and modeling scenarios. The simulation is the same as DuGoff 

et al. [1]: a single normally distributed covariate x, with mean conditional on the population 

stratum; a binary treatment indicator t; normally distributed potential outcomes y0, y1 with a 

heterogeneous treatment effect that varies with x; and a stratified population of 90,000 

persons with three strata of equal size but unequal probabilities of selection. Details of the 

simulation are included in Appendix A1.

The five data generation scenarios investigated in our simulation study are listed across the 

top of Tables 3 and 4. For each scenario, we vary the selection probability model to include 

cases where selection depends on x (s ~ x), selection is independent of x (s ⊥ x), selection 

depends on both x and t (s ~ (x, t)), and where selection depends on x with weights 

differentially scaled by t to simulate samples generated from different survey efforts (s ~ 

x∣t). We also varied the treatment probability model to depend on x (t ~ x) or to have a non-

linear relationship with x (t ~ x2).

For each of the five data generation scenarios, we examined the performance of four 

candidate propensity score approaches, listed down the side of Table 3, including no PSA 

(None, t ~ 1), estimating the propensity score ignoring the sampling weights (None, t ~ x), 

estimating the propensity score with the sampling weight as a covariate (Covariate, t ~ x + 

sw), and estimating the propensity score using the sampling weight as an observation weight 

(Weight, t ~ x). PATE estimators use propensity score weights equal to 1/f̂ (t = 1∣x) for the 

treated and 1/f̂ (t = 0∣x) for controls. PATT estimators use propensity score weights equal to 

1 for all treated and f̂ (t = 1∣x)=f̂ (t = 0∣x) for controls. Our study focuses on population 

treatment effects so we did not examine within-sample treatment effects.
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We first judged the performance of the estimators by examining the balance of the covariate 

x after propensity score weighting. We measured covariate balance using the population 

standardized mean difference (SMD), equal to the mean difference in x between the treated 

and control group, weighted by the product of the propensity score weight and sampling 

weight, and divided by the pooled standard deviation of x in the survey sample.

In Table 3 we compare the balance achieved by each of the estimators. Only propensity 

score models using sampling weights as weights consistently provided good covariate 

balance across the scenarios. In contrast all other methods had at least one scenario that 

resulted in poor covariate balance. This was particularly true of the method using the 

sampling weight as a covariate. These findings illustrate the potential problems with using 

sampling weights as a covariate when the sampling weights are associated with treatment 

group (Scenario 3); when the treatment groups being compared are from different target 

populations (Scenario 4), as described in Section 2.3; or when the propensity score model is 

misspecified (Scenario 5). When sampling weights were strongly associated with treatment 

assignments, the propensity scores would perfectly separate treated and control cases. We 

found a similar set of issues for estimators of PATT.

We also evaluated the candidate treatment effect estimators in terms of their root mean 

squared error (RMSE) when estimating the true population treatment effect. Table 4 again 

lists the five data generation scenarios along the top and the four propensity score methods 

down the side. We also considered two different outcome models. The first includes x as a 

covariate (y ~ t + x). This is the approach used in DuGoff et al. [1]. While this is an 

appropriate model and provides a doubly robust treatment effect estimate, this is not the 

typical propensity score approach. Therefore, we also include the more typical PSA 

estimator that excludes x in the outcome model (y ~ t). In this simulation x is a strong 

predictor of the outcome and, therefore, outcome models that include x will generally have 

smaller RMSE. All outcome models used weights equal to the product of the sampling 

weight and the propensity score weight.

We found that the estimator using the sampling weights as observation weights in the 

development of the propensity score model had among the smallest RMSE of all the 

estimators across the range of scenarios. Particularly in contrast to using the propensity 

score that incorporates sampling weights as a covariate, using sampling weights at all stages 

of PSA produces notably more precise treatment effect estimates for scenarios 3 through 5. 

These findings mirror the covariate balance findings.

We also examined the coverage and Type I error of the population estimators presented in 

this section. Coverage describes the frequency with which the true population treatment 

effect was captured by a 95% confidence interval for the given estimator, which depends on 

bias and standard error properties of the estimator. Type I error refers to the frequency that 

the coverage interval does not include zero in scenarios in which there was no treatment 

effect. For the set of scenarios considered in this study, no important differences in coverage 

or Type I error were found among the different approaches for estimating population 

treatment effects.
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We also checked to make sure that the findings shown here were not the result of common 

support issues. The data generating process used in the simulation study specified a common 

support for both treatment groups. That is, the theoretical range of x was equal for treated 

and controls. However, any finite sample might result in extreme cases in each treatment 

group, such that, no comparable “match” can be found. The proportion of these cases was 

small. For example, if we were to have truncated the samples to the observed common 

support based on the estimated propensity score, only 1.5% of the sample would have been 

discarded in Scenario 1 and only 2% in Scenario 5, on average. Importantly, there was no 

difference in the common support depending on the method of propensity score estimation 

used (e.g. no survey weight, with survey weight as covariate, or weighted by survey weight). 

This indicates that the comparative performance evaluation was not sensitive to exclusions 

based on the common support.

In summary, this simulation study demonstrates that most propensity-weighted estimators of 

population treatment effects perform well under ideal conditions, in which the survey design 

is not complicated and the propensity score model and outcome model are correctly 

specified. However, when the study design becomes more complex or model 

misspecification is present, a sample-weighted propensity score model reduces population 

covariate imbalances and produces more robust and more accurate causal effect estimates. 

Given these are scenarios we believe are most likely to occur in real applications, the safest 

bet in any particular analysis will be to use the weights at all stages of an analysis.

4 Insights from the newest members of America’s law enforcement 

community

In this section, we show that the inclusion or exclusion of sampling weights in the 

propensity score model stage can affect covariate balance and study outcomes in a real 

dataset.

For much of the last 15 years recruiting has been among the greatest challenges for the law 

enforcement community, particularly for large municipal agencies seeking to develop a 

larger, diverse workforce well suited to community-oriented policing. The Office of 

Community Oriented Policing Services (COPS) in the U.S. Department of Justice was 

interested in learning more about the barriers new and potential recruits face when 

considering a law enforcement career. The 2009 Insights from the Newest Members of 

America’s Law Enforcement Community survey [10] was conducted to aid the law 

enforcement community in refining its recruitment practices and improving recruitment 

results. The survey targeted new law enforcement recruits, reaching a national pool of 1,600 

respondents from 44 of the United States’ largest police and sheriff departments. The survey 

asked recruits about their reasons for pursuing a career in law enforcement, potential 

disadvantages of such a career, influencers on a career in law enforcement and employment 

within the recruit’s chosen agency, and the perceived effectiveness of both actual and 

potential recruiting strategies.

One research question of interest in the study included understanding how attractions and 

barriers to joining a law enforcement agency differed for minority and white respondents. 
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Recruiting minority officers is particularly challenging, both at the time of the fielding of the 

survey and today following nationwide protest concerning police use of lethal force against 

unarmed minorities. However, confounding is likely since minority recruits were more likely 

to be female, be married, have children, and have never attended college than white recruits. 

Moreover, minority respondents in the survey were a select sample who needed to be 

reweighted using the sampling weights in the study to ensure they represented the general 

population of new minority recruits. Respondents were more likely to be married, more 

likely to have children, and less likely to have attended college. Therefore, correct analyses 

depend on proper use of propensity scores and sampling weights.

Propensity score analyses are useful in such circumstances to untangle the effects of race 

from these other respondent features. We considered four approaches for adjusting for 

covariance imbalances between minority and white recruits. The four methods varied on 

propensity score method (no propensity score adjustment, propensity score estimated 

without sampling weights, and propensity score estimated with sampling weights) and 

whether sampling weights were used when computing the SMD for each covariate (without 

sampling weights and with sampling weights).

Figure 2 shows the SMD for each method for 22 covariates, which included demographic, 

educational, and work history factors. Each line in the plot traces the path of one of 22 

covariates as we used different survey adjustment methods. From the left side of Figure 2 we 

see that the raw data show large SMDs between minority and white respondents with many 

covariates having SMDs in excessive of 0.2. The SMDs shown on the far right of Figure 2 

are from the method that the previous sections of this paper support, using sampling weights 

at all stages of analysis. The SMDs are all within 0.1 of zero. The two other approaches 

shown in the middle, using no propensity scores or fitting propensity scores without using 

sampling weights, both fare worse in terms of covariate balance.

The extent to which achieving better covariate balance has an impact on the results depends 

on the strength of the relationship between those covariates and the outcomes of interest. In 

this example, the choice of method impacts some conclusions from the survey, primarily in 

terms of the magnitude of effects. For example, results from the survey show that minority 

officers are significantly more concerned about benefits, particularly health insurance. If we 

do not use weights in the propensity score model, the analysis yields an odds ratio of 2.68 

with a 95% confidence interval of (0.97, 7.41). Using the sample weights in both the 

propensity score model and the outcomes analysis yields and odds ratio of 2.56 (1.00, 6.53), 

a more precise estimate and, for those who are particular about an α = 0.05 confidence level, 

a 95% confidence interval that does not overlap 1.0. The survey also suggests that minority 

officers are more concerned about police excessive force to the point that they considered 

not joining. Without sampling weights in the propensity score model the estimated odds 

ratio is 1.64 (0.61, 4.44), but with sampling weights in the propensity score model the 

estimated odds ratio is 1.93 (0.92, 4.06). While neither estimate reaches standard levels of 

statistical significance, the first estimate likely would make the analyst dismiss the issue 

altogether while the second would draw some attention.
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5 Discussion

PSA is a widely used technique and DuGoff et al. [1] show that many researchers are 

struggling to properly incorporate complex survey designs into their PSA. The analysis 

presented here can help researchers gain a better understanding of how best to handle 

sampling weights in PSA. In this paper, we showed that estimating propensity score models 

without the sampling weights has risks and will not be consistent in some cases:

1. If the sampling weights involve variables that are unavailable to the analysts 

estimating the propensity score model even if the missing variables are unrelated 

to the potential outcomes.

2. If degrees of freedom of the propensity score model are wasted on regions of x 
with small sampling weight resulting in poor model fit in the regions of x that 

matter most.

3. If the sampling probability depends on treatment assignment, particularly for the 

case when treatment and control cases are drawn from different survey efforts or 

different survey waves.

Through simulation we showed that across a range of scenarios the most robust strategy is to 

use the sampling weights in the propensity score model and to use the sampling weight 

times the propensity score weight as the weight in the final outcome analysis. Whether the 

use of sampling weights in the analysis will affect the conclusions depends on the strength 

of the relationships between outcomes, treatment, covariates, and sampling weights. We 

found that for some outcomes for the Insights from the Newest Members of America’s Law 

Enforcement Community survey the choice of analytical method mattered. The choice of 

method had a great effect on the quality of the covariate balance and a modest effect on 

conclusions drawn from the results.

We note that our findings here generalize readily to best practices for incorporating any kind 

of survey weight, such as nonresponse weights. If a study has computed nonresponse 

weights to make the sample of responders representative of the original baseline sample, our 

analysis here indicates that the use of the nonresponse weight (as a weight and not a 

covariate) in the propensity score model will lead to better inferences. This article focuses 

on simple survey designs which only entail sampling weights. However, we believe similar 

logic will apply for more complex survey designs and future research should carefully 

explore the impact that more complex surveys designs have on PSAs. Future work should 

also explore comparisons of the design-based approaches to model-based approaches in 

cases where differences in survey weights will be large between the treatment and control 

groups and the increase in variance from the design-based approach might lead to a 

preference for a model-based approach.
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Appendix

A.1 Details of the simulation

This appendix describes the simulation study in more detail. The R script for the simulation 

is available at JCI webpage for supplementary material.

First, we generate a simulated population of 90,000 observations divided into three strata of 

30,000 cases each. Each observation has a single covariate X ~ N(μj, 1) where μj varies by 

the three strata,  for j = 1, 2, 3.

Treatment probabilities are logit P(t = 1∣x) = −1 + log(4)x except for Scenario 5 where logit 

P(t = 1∣x) = −1 + log(4)x2.

Selection probabilities are logit P(s = 1∣x, t) = −2.8 − log(4)x except for Scenario 2 where 

logit P(s = 1∣x, t) = −2.8 and Scenario 3 where

In Scenario 4 we leave the selection probabilities unchanged by artificially scaling the 

sampling weights of control cases by 1.3 to simulate the scenario of treatment and control 

case coming from different data collections with mismatched weight scales.

We simulate potential outcomes as .

All performance measures were based on summaries of 2,000 iterations of the indicated 

scenario.
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Figure 1. 
Example propensity score models. The black curve traces the true treatment assignment 

probability. The red curve is the estimated propensity score without sampling weights. The 

blue curve is the propensity score estimated using the weights. The plot in the top margin 

shows the distribution of x in the sample (red and nearly uniform) and the distribution of x 
weighted to reflect the population (blue and increasing with x).
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Figure 2. 
Population covariate balance contrasting the population standardized mean differences 

(SMD) between minority and white new police recruits for 22 individual-level covariates. 

We calculate SMD for each of the 22 covariates using four different methods, each using 

propensity score weights and sampling weights in different ways. Each line in the plot tracks 

one of the 22 covariates across the four methods. The red horizontal lines mark the range of 

SMD for the method using sampling weights at all stages of the modeling. Values near zero 

represent better balance.
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Table 2

Asymptotic values for methods with and without sampling weights in the propensity score model.

t = 1 t = 0 t = 0

Sampling weight PS model Yes No

Sampling weight outcomes Yes Yes Yes

E(x∣t) 0.615 0.615 0.537

E(yt∣t = 1) 2.846 2.846 2.610
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