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Abstract

De novo protein design holds promise for creating small stable proteins with shapes customized to 

bind therapeutic targets. We describe a massively parallel approach for designing, manufacturing 

and screening mini-protein binders, integrating large-scale computational design, oligonucleotide 

synthesis, yeast display screening and next-generation sequencing. We designed and tested 22,660 

mini-proteins of 37–43 residues that target influenza haemagglutinin and botulinum neurotoxin B, 

along with 6,286 control sequences to probe contributions to folding and binding, and identified 

2,618 high-affinity binders. Comparison of the binding and non-binding design sets, which are two 

orders of magnitude larger than any previously investigated, enabled the evaluation and 

improvement of the computational model. Biophysical characterization of a subset of the binder 

designs showed that they are extremely stable and, unlike antibodies, do not lose activity after 

exposure to high temperatures. The designs elicit little or no immune response and provide potent 

prophylactic and therapeutic protection against influenza, even after extensive repeated dosing.

Small (4–12 kDa) binding proteins have the potential to bridge the gap between monoclonal 

antibodies and small molecule drugs1–3, with advantages of stability and amenability to 

chemical synthesis over monoclonal antibodies, and of selectivity and designability over 

small molecules. Directed evolution, starting from naturally occurring small protein 

scaffolds, has previously been used to generate new binding proteins4. While powerful, such 

approaches have limitations: they cannot modify the overall shape of the starting scaffold 

protein(s), they can sample only a very small fraction of sequence space, and naturally 

occurring disulfide mini-proteins can be difficult to express. Computational protein design 

has the potential to overcome these limitations by efficiently sampling both shape and 

sequence space on a much larger scale, and by generating readily producible proteins, as 

recently demonstrated by the design of stapled mini-protein scaffolds with a wide range of 

shapes5. Despite this potential, the high cost of synthesizing genes for each designed protein 

has, until recently6, limited testing to small numbers (tens) of designs for any one 

application, which is too few to systematically explore the determinants of protein binding 

and folding and provide feedback to improve the computational model7,8.

Here, we describe an integrated computational and experimental approach that enables the 

rapid design and testing of tens of thousands of de novo mini-protein binders. Our approach 

exploits advances in both DNA manufacturing and protein design that have led to a fortunate 

convergence between the upper limit of the size of oligonucleotides (230 bp) that can be 

synthesized as pools of 10,000 or larger9,10, and the lower limit of the size of genetically 
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encodable computationally designed proteins (roughly 40 amino acids). To generate binders 

for a given target, we used Rosetta11 to design thousands of protein scaffolds with varying 

shapes, dock these onto the target, optimize the residues at the interface for high-affinity 

binding, and identify, from the resulting pool of hundreds of thousands of designs, 

approximately 10,000 with high predicted stability and affinity. This large pool of 

computational designs, together with controls probing aspects of the design procedure, was 

then experimentally evaluated by encoding each individual sequence in a single 

oligonucleotide, manufacturing the oligonucleotides in parallel, sorting yeast libraries 

displaying the designs labelled with fluorescent targets, and using deep sequencing to 

identify the designs most enriched for binding (Fig. 1).

High-throughput computational design

As targets, we selected Influenza A H1 haemagglutinin (HA), as this virus remains a serious 

public health concern12, and botulinum neurotoxin B (BoNT/B), which causes the acute 

neuroparalytic syndrome of botulism and is one of the most lethal natural toxins known 

(with a lethal dose of approximately 1 ng per kg)13. We generated virtual scaffold libraries 

with over 4,000 backbone geometries in five different topologies: HHH, EHEE, HEE, 

EEHE, and HEEH (where H indicates an α-helix and E a β-strand) with or without5,6 

diverse disulfide connectivities (Fig. 1a). To design binding interfaces, we superimposed 

helical segments of the scaffolds on interface helices in previously solved HA and BoNT/B 

complexes (the previously designed HA binders HB36.6 and HB80.414–16, and the natural 

target of BoNT/B synaptotagmin-II (Syt-II)17), seeded the newly formed interfaces with 

hotspot residues from these helices (Extended Data Fig. 1) and designed the remainder of 

the residues to maximize binding affinity and monomer stability using Rosetta combinatorial 

sequence optimization (Supplementary Fig. 1). The designs interact with the targets in a 

myriad of ways (Fig. 1b), with a wide range of buried surface areas at the interface (Fig. 1c) 

resulting from variations in the Rosetta designed interactions outside the hotspot residues. 

As HA and BoNT differ in shape (the HA epitope is more concave and the BoNT epitope is 

flatter), the design protocol favoured different topologies in the two cases (α-β for HA and 

all α for BoNT).

For experimental characterization, we selected 7,276 designs against HA and 3,406 designs 

against BoNT (see Methods). To probe contributions to folding and binding, we also 

included a variety of control sequences in which the amino acids outside the helical interface 

motif were randomly permuted, the core residues were randomly permuted, all the core 

residues were mutated to valine, the loop residues were mutated to Gly-Ser, or the designed 

binding sites were omitted. Oligo pools encoding all of the design and control sequences 

(16,968 in total) were synthesized, amplified, and co-transformed into yeast, along with a 

linearized yeast display vector (Fig. 1d). The resulting yeast libraries, displaying the 16,968 

proteins, were incubated with a range of concentrations of fluorescently labelled target, in 

some cases after protease treatment to remove poorly folded designs. Cells displaying 

designs that bound the target were retrieved by fluorescence-activated cell sorting (FACS, 

Fig. 1e). The frequency of each design and control sequence in each pool was determined by 

deep sequencing the sorted cell populations, and the sequences were categorized on the basis 

of the sorting condition in which they were most enriched (Extended Data Fig. 2).
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Deep sequencing of the initial yeast-transformed pools showed near complete representation 

of full-length genes; the HA pool contained 11,002 of the 11,657 sequences ordered (94.4%) 

and the BoNT pool contained 5,306 of the 5,311 sequences ordered (99.9%). Sorting the 

pools under conditions of increasing stringency (decreasing concentration of target) sharply 

reduced the number of distinct sequences recovered (Fig. 2). For the BoNT pool, after 

sorting at target concentrations of 100, 10 and 1 nM, the enriched binder populations 

contained 2,685, 987 and 355 distinct sequences, respectively; a final higher stringency 

screen that involved incubating with protease before assaying for binding (to favour highly 

stable designs) reduced the population to 57 distinct sequences. At 1 nM of BoNT with no 

protease treatment, 7.8% of the designed sequences, 5.1% of the scrambled core variants, 

1.4% of the valine core variants and none of the Gly-Ser loop variants were enriched. For the 

HA pool, after sorting against HA (from influenza strain A/PuertoRico/8/1934 (PR8)) 

concentrations of 1,000, 100 and 10 nM, the enriched populations contained 115, 41 and 29 

distinct sequences, respectively. For both targets, the population fraction of the 

computationally designed mini-proteins increased over that of the scrambled control 

sequences as selection stringency increased; computational design considerably increased 

the probability of binding the target with high affinity. The simplest explanation for this is 

that a substantial fraction of the proteins fold into the designed structures.

The design population included 3,264 BoNT designs with single disulfides and 3,594 HA 

designs with multiple disulfides in geometrically allowed positions. For both targets, designs 

containing disulfides had similar success rates to those in which disulfides were absent 

(26.2% versus 25.5% for BoNT and 0.5% versus 0.8% for HA), consistent with a late and 

non-instructive role for disulfides in protein folding. However, when the design libraries 

were treated with trypsin before binding selection, only disulfide-stabilized designs were 

recovered; although they do not guide protein folding, the disulfides clearly confer stability 

against proteolysis (Extended Data Table 1).

Assessment of the computational model

The measured binding activity of a design reflects both the extent to which the protein is 

folded and the binding affinity of its folded state to the target. In general, sequences with 

binding activity had lower computed folding energies and binding energies (Fig. 3a): this 

may be the largest-scale confirmation to date of the ability of a computational model to 

recapitulate protein-protein interactions. The second-order features most strongly associated 

with binding were local sequence- structure compatibility and the numbers of contacts 

across the interface (Fig. 3b). On the basis of these results, we updated the design protocol 

(see Methods) and generated 11,420 new HA designs for a second round of experimental 

testing (Fig. 3c), in which the success rate increased from 1.4% to 3.1% (producing 342 new 

HA binders). The improvement was particularly marked in the subset of HB2 seeded 

designs, improving the success rate almost tenfold from 0.23% to 1.9%. Iterations of this 

design–build–test cycle should reveal additional contributions that are missing in the current 

model, which can then be captured in the energy function and design protocol.

The large dataset provides an opportunity to determine whether extensive molecular 

dynamics simulations in explicit solvent can reproducibly distinguish binding and non-
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binding designs. We simulated 143 randomly selected non-binders and 146 binders that were 

evenly split between HA and BoNT, for a total simulation time of 108 μs (see Methods). 

Although there was little correlation with the overall structural deviation from the design 

model, the interface hotspot residues fluctuated to a lesser extent in the binding designs than 

in the non-binding designs (Fig. 3d), suggesting that binding site preorganization is 

important for binding and that molecular dynamics simulations capture this property 

reasonably well (Extended Data Fig. 3).

To investigate the sequence dependence of folding and function in more detail, we generated 

and screened single-site saturation mutagen-esis (SSM) libraries for six HA and two BoNT 

designs, with every position mutated to every amino acid, one at a time (a total of 6,126 

mutants). Substitutions at the binding interface and in the protein core were more disruptive 

than substitutions at surface positions, and almost all the cysteines were highly conserved in 

designs containing disulfides (Fig. 3e–f and Supplementary Fig. 3a–h). Rosetta designed 

interactions outside the hotspot regions were found to make important contributions to 

binding (Supplementary Fig. 3a–h); mutations of the non-hotspot HB1.6928.2 residues 

Ala11, Trp19, and Tyr24 (see Fig. 4a), for example, greatly decreased binding affinity. The 

effects of each mutation on both binding energy and monomer stability were estimated using 

Rosetta design calculations, and a reasonable correlation was found between the predicted 

and experimentally determined susceptibility of positions to mutation for three of the six 

designs for HB1 and both of the two BoNT designs (Supplementary Fig. 2). Finally, the 

SSM datasets were used to guide generation of higher affinity HA and BoNT binders (see 

Extended Data Table 2 and Methods).

Individual characterization of designed binders

Eight BoNT and six HA binders, a mix of affinity-matured and original designs, were 

chemically synthesized or expressed in Escherichia coli, purified, and characterized in 

solution (Extended Data Table 2). All 14 designs had circular dichroism spectra consistent 

with the design models, and melting temperatures greater than 70 °C (Extended Data Fig. 

4a). Designs containing disulfides did not unfold at 95 °C and were resistant to trypsin 

(Extended Data Fig. 5); reduction of the disulfides with the reducing agent tris(2-

carboxyethyl)phosphine (TCEP) considerably decreased their stability (Extended Data Fig. 

4b,c). The BoNT binders bound to HCB with affinities ranging from 1 to 20 nM by biolayer 

interferometry, and also bound the serotype G of botulinum neurotoxin (BoNT/G) (see 

Methods and Supplementary Fig. 4). The HA binders bound to HA proteins from two H1N1 

influenza strains, PR8 and A/California/04/2009 (CA09); the three affinity- matured binders 

had affinities against CA09 below 10 nM (Extended Data Table 2). We succeeded in solving 

crystal structures of both HA and BoNT HCB binders (HB1.6928.2.3 and Bot.671.2.1, 

respectively) in complex with their targets. In both cases the complexes were in excellent 

agreement with the computational design models (monomer-Cα root-mean-square deviation 

(r.m.s.d.) = 0.94 Å for HB1.6928.2.3, and 0.82 Å for Bot.671.2.1, see Fig. 4a–b, Extended 

Data Fig. 6 and Supplementary Tables 1 and 2).

To compare the ability of the designs to survive high temperature exposure with that of 

antibodies, we incubated HB1.6928.2.3, Bot.671.2.1, and the haemagglutinin-targeting 
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antibody mAb FI6v3 at 80 °C for various times before performing binding assays to their 

respective targets. The mini-protein binders showed no detectable loss of binding after 1 

hour at high temperature, while FI6v3 binding activity was reduced by approximately 74% 

(Fig. 4c). These results suggest that therapeutics relying on small designed proteins could 

bypass the requirement for cold chain management for monoclonal antibodies.

In vitro assays were carried out for BoNT and influenza. HB1.6928.2.3, an affinity-matured, 

disulfide-containing design, strongly neutralized PR8 and CA09 influenza viruses after 48 

hours in culture, with a half-maximal effective concentration (EC50) value for Cal09 (CA09) 

more than 100-fold lower than the broadly neutralizing antibody FI6v318, or the previously 

designed HB36.614, on the basis of mass (Fig. 4d; the EC50 is similar to the antibody on a 

molar basis). Paralleling this, Bot.671.2 protected rat cortical neurons against the entry of 

the BoNT/B toxin and against cleavage of the vesicle-associated membrane protein 2 

(VAMP2; the intracellular target of BoNT/B) (Fig. 4e) at lower concentrations than Syt-II 

(the BoNT/B receptor), which contains the same hotspot residues (Extended Data Fig. 7). 

The increase in protection is likely to reflect both the reduction in conformational entropy of 

the binding motif and the additional designed interface contacts.

HB1.6928.2.3 protected mice from influenza both pre- and post-exposure. Intranasal 

administration of HB1.6928.2.3 twenty-four hours before lethal challenge with CA09 

influenza resulted in 100% survival at doses as low as 0.03 mg kg−1, which is 100-fold lower 

on the basis of mass than the dose of FI6v3 required for equivalent protection (Fig. 5a and 

Supplementary Fig. 6). Therapeutic administration of a single 3 mg kg−1 dose of 

HB1.6928.2.3 twenty-four hours after virus challenge resulted in 100% survival and little 

(less than 10%) weight loss (Fig. 5b); the same dose administered 72 hours after challenge 

imparted complete protection and 100% survival (Fig. 5b). Intravenous administration of 

HB1.6928.2.3, however, resulted in little protection, indicating that (as with the on-market 

drug Zanamivir19) intranasal administration is likely to be the optimal delivery route for 

these mini-proteins.

Three sequential doses of the mini-proteins, administered by intranasal or intravenous 

delivery every two weeks, induced little or no antibody response (Fig. 5c): the low levels of 

antibody detected were comparable to those induced by mouse IgG (negative control), and 

substantially less than levels induced by human IgG (positive control). Intranasal 

administration of the influenza mini-protein binders 24 hours prior to viral challenge still 

achieved 100% prophylactic efficacy even in mice that had previously received four repeated 

intranasal or intravenous doses of the mini-protein over a space of twelve weeks (Fig. 5d), 

indicating that any immune response and clearance is minimal and not sufficient to interfere 

with antiviral potency. The low immunogenicity is likely to be a consequence of the very 

small size and hyperstability of the mini-proteins, and suggests that the binders could be 

used for prophylactic protection against influenza over an extended period of time. To our 

knowledge, this is the first investigation of the immunogenicity of de novo designed 

proteins.
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Conclusions

The high throughput of our pipeline from computational design to experimental testing 

enables the characterization of computationally designed binding proteins on a scale that is 

orders of magnitude greater than those of previous studies, providing insights into the 

contributions to folding and binding on thousands of test cases simultaneously. For example, 

our observation that substituting designed loop sequences with generic Gly-Ser linkers 

reduced binding fitness to a greater degree than did substituting the designed core residues 

with valine (or scrambling their order) suggests that loops may play an underappreciated, 

instructive role in the folding of proteins of this size. Different topologies were found to be 

optimal for the BoNT and HA interfaces, supporting the hypothesis that no single protein 

topology or shape is the best fit for all interfaces. The massively parallel design process 

succeeded in generating folded high-affinity binding proteins despite uncertainties in 

designing 40-residue proteins with multiple hydrophobic residues (which potentially 

complicate folding) on their surfaces. Iteration between data-driven model improvement and 

experimental testing is likely to improve both the computational design methodology and 

our understanding of the determinants of folding and binding: the limited number of native 

protein structures from which much of our current knowledge is derived is dwarfed by the 

nearly unlimited number of de novo proteins that can be designed and tested using our 

approach.

De novo protein design has the potential to generate pharmaceutically superior molecules 

that combine the specificity of antibodies with the high stability and manufacturability of 

small molecules. Designed protein binders have previously been produced by re-engineering 

naturally occurring proteins; although these achieve some of the above goals (such as 

accurate site-specific binding), they are not more robust than antibodies. The de novo 
designed binders described here exhibit much greater stability to incubation at elevated 

temperatures and better neutralization than comparable antibodies and natural protein 

derivatives, have approximately 1/30th of the molecular weight, and are readily chemically 

synthesizable, which enables the introduction of a wide variety of chemical functionality. 

Probably as a result of their small size and very high stability, they elicit little immune 

response even without explicit negative design20, and the best of the HA designs provides 

prophylactic and therapeutic protection against influenza infection in vivo with a potency 

rivalling or surpassing that of antibodies. Unlike antibodies, the mini-proteins do not contain 

the effector recruiting IgG Fc region; our results show the latter is not required for potent 

protection against influenza, and therapeutics which lack the Fc could avoid issues of 

antibody enhanced infectivity. More generally, hyperstable designed mini-proteins show 

promise for both therapeutic and diagnostic applications.

METHODS

Unless stated otherwise, the experiments were not randomized and the investigators were not 

blinded to allocation during experiments and outcome assessment.
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Mini-protein binders design

Mini-protein design began by defining a variety of mixed α–β and α-only scaffold 

topologies using the RosettaRemodel ‘blueprint’ format21 with the requirement of at least 

one 10–14-residue helix. The blueprints were used to generate backbones using the Rosetta 

Monte Carlo-based fragment assembly protocol22,23. Between one and three disulfides were 

added to a subset of these backbones at geometrically allowed positions. Sequence design 

was performed using the FastDesign protocol with layer control active, alternating between 

side-chain rotamer optimization and gradient-descent-based energy minimization. For each 

topology, over 10,000 structures were generated and filtered on overall energy per residue 

and score terms related to backbone quality, compactness and disulfide quality (see 

Supplementary Appendix).

To match the mini-protein scaffolds with the desired target helix-binding motifs, we used the 

Rosetta MotifGraft Mover7,24. The inputs were composed of: (1) HB36, HB80 or Syt-II 

helical binding motifs (Protein Databank (PDB) IDs: 3R2X, 4EEF and 2NM1, respectively); 

(2) the context target protein (influenza HA or BoNT HCB); and (3) the above described 

library of de novo mini-protein scaffolds. Matching parameters were set to perform full 

backbone alignment of the input motif, with a maximum backbone r.m.s.d. = 1 Å, endpoints 

r.m.s.d. = 1 Å, clash_score_cutoff = 5 and enabling revert_graft_to_native_sequence. In the 

case of BoNT/B’s Syt-II binding domain, the hotspots were defined as: Met1, Phe2, Leu5, 

Lys6, Lys8, Phe9, Phe10, Glu12, Ile13 (see Extended Data Fig. 1). For the influenza HA 

HB80.4 (HB1) binding domain, the hotspots were defined as: Phe1, Ile5, Ile9, Phe13. For 

the influenza HA HB36.6 (HB2) binding domain, the hotspots were defined as: Phe1, Met5, 

Trp9, Phe13. Following MotifGraft, we performed Rosetta’s sequence repack of interface 

neighbouring residues (except hotspots), Cartesian minimization and filtering using the 

scoring function Talaris2013 or Talaris2014.

After the first round of HA design and testing, the Kolmogorov–Smirnov two-sample test 

was used to determine P values for the null hypothesis that the computational metrics of the 

binding versus non-binding designs were drawn from the same underlying distribution. 

Using the metrics that correlated strongly with success (such as those shown Fig. 3b), a 

second round of HA design was performed which incorporated more stringent filtering on a 

broader range of metrics. The metrics used to select the first round of HA designs were delta 

G of binding (ddg filter), shape complementarity (sc), and interface buried surface area 

(SASA). The additional metrics used to select the second generation HA designs and shown 

to be highly predictive of round one success in the logistic regression model (Fig. 3c inset) 

were average degree (degree), side-chain probability given phi-psi (p_aa_pp), per cent core 

by side-chain neighbours, phi-psi probability given side-chain (rama) and more stringent 

shape complementarity. Design models are available online (https://zenodo.org, http://

dx.doi.org/10.5281/zenodo.838815).

Software analysis

All amino acid sequences were reverse translated and codon optimized for yeast using 

DNAworks 2.025. Sequence identity calculations were performed with a subset of designs 

using PRALINE26 after PSI-BLAST global alignment. Sequencing pairing after Illumina 
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deep sequencing was performed using PEAR27. Plots and visualizations were created using 

Seaborn statistical visualization tools28, Python (Python Software Foundation) and Python’s 

scikit- learn (INRIA).

Gene pools

Oligo library pools ordered from either CustomArray or Agilent with all genes 3′ and 5′ 
flanked with common 20-bp adaptor segments to allow amplification. We obtained 

conventional oligonucleotides (PCR primers and sequencing primers) from Integrated DNA 

Technologies. The raw oligonucleotide pools were amplified with Kapa HiFi Hotstart Ready 

Mix (Kapa Biosystems) using extension primers to add pETCON yeast homologous 

recombination segments (40 bp) to each end. All amplifications were performed using real-

time PCR on a MiniOpticon (Bio-Rad) for between 9 and 20 cycles. Quantitative PCR 

amplification was critical as over-amplification of gene pools resulted in low transformation 

efficiency. Amplified pools were size-selected on a 2% agarose gel and cleaned (Qiagen 

QIAquick Gel Extraction Kit). A second round of quantitative PCR amplification was 

performed with the same primers on the size-selected pools to generate 2–4μg of DNA. 

Yeast EBY100 cells were transformed with library DNA and linearized pETCON plasmid29 

using an established protocol30. After transformation (minimum 1 × 107 transformants), 

cells were grown overnight in SDCAA medium in 30-ml cultures at 30 °C, passaged once, 

and stored in 20 mM HEPES 150 mM NaCl pH 7.5, 20% (w/v) glycerol in 1 × 107-cell 

aliquots at −80°C.

Yeast display and deep sequencing

Cell aliquots were thawed on ice, centrifuged at 13,000 r.p.m. for 30 s, resuspended in 1 × 

107 cells per ml of C-Trp-Ura medium and grown at 30 °C for 16 h. Cells were then 

centrifuged at 13,000 r.p.m. for 1 min and resuspended at 1 × 107 cells per ml SGCAA 

medium and induced at 30 °C for 16–24 h. Cells were labelled with either biotinylated 

BoNT HCB, PR8 haemagglutinin, or CA09 haemagglutinin, washed, secondarily labelled 

with streptavidin- phycoerythrin (SAPE, Invitrogen) and anti-c-Myc fluorescein 

isothiocyanate (FITC, Miltenyi Biotech), and sorted by fluorescent gates under various 

stringency conditions using a Sony SH800. HA target proteins were produced as previously 

described16. Cells were recovered overnight at 2.5 × 105 collected cells per ml SDCAA 

medium, whereupon at least 1 × 107 cells were spun down at 13,000 r.p.m. for 1 min and 

stored as cell pellets at −80 °C before library preparation for deep sequencing. Between 1 × 

107 and 4 × 107 yeast cells were barcoded and prepared for deep sequencing for each library 

as previously described15. Enhanced score files including all sequences ordered, 

computational metrics, and enrichments are available online (https://zenodo.org, http://

dx.doi.org/10.5281/zenodo.838815).

SSM and affinity maturation

SSM libraries for eight designs (Supplementary Figs 2 and 3a–h) were constructed from 

Agilent gene pools, and yeast display selections performed as described above, using target 

protein concentrations of 1,000 nM, 100 nM, 10 nM and 1 nM for HA, and 100 nM, 10 nM, 

1 nM, 1nM + (trypsin at 18.5 μg ml−1) for BoNT HCB. Upon deep sequencing, the five most 

beneficial mutations at nine positions in each of the HA designs predicted to result in higher 
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affinity were combined into high-diversity libraries (<1 × 107) using wobble bases as guided 

by SwiftLib31. A DNA library for each design was constructed from assembly PCR using 

Ultramer oligonucleotides (Integrated DNA Technology) to encode the variable region. 

Primers and sequences are listed in Supplementary Table 3. These libraries went through 

three increasing stringency sorts: rd1 100 nM, rd2 10 nM, and rd3 1 nM against CA09. 

Promising constructs were identified through Sanger sequencing of a subset of the final rd3 

pool. Versions of the BoNT designs were directly generated from SSMs by incorporating the 

best beneficial mutations to create high-affinity variants; no selections were used.

Mini-protein expression and peptide synthesis

Genes encoding the designed protein sequences were synthesized and cloned into pET

−28b(+) E. coli plasmid expression vectors (GenScript, N-terminal 6 × His tag and thrombin 

cleavage site). Plasmids were then transformed into chemically competent E. coli Lemo21 

cells (NEB). Protein expression was then induced with 1 mM of isopropyl β-D-

thiogalactopyranoside (IPTG) at 18 °C. After overnight expression, cells were collected and 

purified by nickel affinity followed by size-exclusion fast protein liquid chromatography 

(Superdex 75 10/300 GL, GE Healthcare) and mass spectrum verification of the molecular 

weight of the species in solution (Thermo Scientific). Peptide sequences were synthesized 

from commercial vendors Biomatik or CS Bio in 50 mg quantities with 70% purity 

requirements. Sequences containing cysteines underwent standard natural oxidation 

performed by vendor.

Circular dichroism

Far-ultraviolet circular dichroism measurements were carried out with an AVIV 

spectrometer model 420 in PBS buffer (pH 7.4) in a 1 mm path-length cuvette with protein 

concentration of approximately 0.25 mg ml−1 (unless otherwise mentioned in the text). 

Temperature melts were from 25 to 95 °C and monitored absorption signal at 222 nm (steps 

of 2 °C per min, 30 s of equilibration by step). Wavelength scans (195–260 nm) were 

collected at 25 °C and 95 °C, and again at 25 °C after fast refolding (roughly 5 min). Four 

chemically synthesized, disulphide-containing mini-proteins (see Extended Data Fig. 4b) 

were also characterized at a concentration of approximately 0.2 mg ml−1 in the absence or 

presence of 2.5 mM of the reducing agent TCEP5.

Biolayer Interferometry

Binding data were collected in an Octet RED96 (ForteBio) and processed using the 

instrument’s integrated software using a 1:1 binding model. For BotNT/B binding proteins, 

the target BoNT heavy chain protein domains (HCB or HCG) were covalently linked to 

amine-reactive sensors (ARG2, ForteBio) at 5 μg ml−1 in acetate buffer for 300 s, while the 

binding proteins to assay were diluted from a concentrated stock into binding buffer (10 mM 

HEPES, pH 7.4, 150 mM NaCl, 3 mM EDTA, 0.05% surfactant P20, 0.5% non-fat dry 

milk). For influenza binding proteins, streptavidin-coated biosensors were dipped in wells 

containing biotinylated HA proteins (100 nM) in binding buffer for immobilization for 300 

s, while the binding proteins to assay were diluted from a concentrated stock into binding 

buffer (1 × phosphate buffered saline (PBS) pH 7.4, 0.01% BSA, 0.002% Tween 20). After 

baseline measurement in binding buffer alone, the binding kinetics were monitored by 
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dipping the biosensors in wells containing defined concentrations of the designed protein 

(association) and then dipping the sensors back into baseline wells (dissociation). For heat-

time courses, the proteins were incubated for defined times at a concentration of 160 nM in 

PBS buffer (150 nM NaCl, pH = 7.4) and then diluted to 8 nM in the final buffer and 

assayed as described above.

BoNT/B (HCB) co-crystal structures

HCB was expressed and purified as previously described32. For X-ray crystallography, the 

HcB-Bot.671.2 complex was prepared by mixing HCB with the binder at a molar ratio of 

1:1.5 and the complex was further purified by a Superdex 200 SEC (GE Healthcare) in a 

buffer containing 150 mM NaCl, 10 mM Hepes pH 7.0, 1 mM TCEP Initial crystallization 

screens were carried out using a Gryphon crystallization robot (Art Robbins Instrument) and 

commercial high-throughput crystallization screen kits from Hampton Research and Qiagen. 

After extensive manual optimization, the best crystals were grown by sitting-drop vapour 

diffusion at 18 °C. The protein (5 mg ml− 1) was mixed in 2:1 ratio with a reservoir solution 

containing 100 mM Tris pH 8.0, 25% polyethylene glycol (PEG) 400. The crystals were 

cryoprotected in the original mother liquor and flash-cooled in liquid nitrogen. X-ray 

diffraction data were collected at 100 K at beamline 24-ID-E, Advanced Photon Source 

(APS). The data were processed using XDS32,33. The structure was determined by molecular 

replacement software Phaser using the structure of the HCB (PDB code: 2NM1) as the 

search model32. The manual model building and refinement were performed in COOT34 and 

PHENIX35 in an iterative manner. The refinement progress was monitored with the Rfree 

value36 using a 5% randomly selected test set. The structures were validated through the 

MolProbity web server36,37 and showed excellent stereochemistry. Data collection and 

structural refinement statistics are listed in Supplementary Table 1.

Influenza H1 co-crystal structure

For the HA-HB1.6928.2.3 complex, A/PuertoRico/8/1934 HA and HB1.6928.2.3 peptide (in 

25 mM Tris pH 8.0, 150 mM NaCl) were mixed at a 1:4 molar ratio at a final concentration 

of 10 mg ml−1 HA in 25 mM Tris pH 8.0, 150 mM NaCl. Crystals were grown with a well 

solution of 5% PEG 3000, 30% PEG 200, 100 mM MES pH 6.0 using the sitting drop 

vapour diffusion method and directly flash cooled in liquid nitrogen. Data were collected at 

ALS beamline 5.0.3 and processed with HKL200038. Phaser35,38 was used for molecular 

replacement within Phenix39 using a single protomer of PR8 H1 HA (PDB ID: 1RVX40) as 

a search model. The HB1.6928.2.3 peptide was manually built into FO—FC and 2FO—FC 

maps using clearly defined aromatic residues and disulfide bonds to confirm the register. The 

model was refined through iterative rounds of model building in COOT34 and refinement in 

Phenix. TLS groups were automatically identified by Phenix. Glycans and waters were 

manually added and edited in COOT. The final model was assessed with quality metrics 

within the Phenix.refine interface which utilizes MolProbity37. Data collection and 

refinement statistics are listed in Supplementary Table 2.

Molecular dynamics simulations

A total of 289 independent mini-protein binders (without the target) were simulated (143 for 

BoNT, and 146 for Influenza H1 HA see Extended Data Fig. 3) using Gromacs 5.0441 and 
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Amber99sb-ILDN force field42. Each protein was simulated in a triclinic box with explicit 

water solvent (TIP3P43), with box edges at least 10 Å from the protein. Counterions (Na+ 

and Cl−) were used to neutralize the system. Integration time step was 2 ps and LINCS44 

was applied to constrain all the bonds. Long-range electrostatics (greater than 12 Å) were 

treated with the particle-mesh Ewald method45. Van der Waals interactions were smoothly 

switched off between 10 Å and 12 Å. After minimization (10,000 steps), the system was 

position restrained for 200 ps in an NVT ensemble (only heavy atoms, restraint = 10 kJ per 

mol × Å−2, T = 310 K), followed by 500 ps of NPT (T = 310 K, restraint = 10 kJ per mol × 

Å−2, 1 bar) using Berendsen thermostat and barostat46. For each protein, we then performed 

five independent NPT production simulations (T = 310K, 1 bar) with 500 ps of initial 

temperature annealing (T0 = 50, Tfinal = 310 K) using V-rescale thermostat47 and Parrinello-

Rahman Barostat48. Each production simulation was in the length of 100 ns for BoNT and 

50 ns for influenza binders (see Supplementary Information). Snapshots were recorded every 

50 ps, and all of them were used for subsequent data analysis (Extended Data Fig. 3).

Influenza neutralization assays

One hundred TCID50 units of virus and half-log dilutions of binders were incubated in 

quadruplicate at 37 °C for two hours in 200 μl neutralization assay medium (‘NAM’: 

medium 199, 0.3% BSA, 10 mM HEPES, 1 mM CaCl2, penicillin-streptomycin). Ninety-

six-well plates with confluent monolayers of Madin–Darby canine kidney epithelial cells 

(ATCC) were washed twice with PBS followed by addition of 50 μl of 5 μg ml−1 TPCK-

trypsin in NAM and the virus/binder neutralization mix. Plates were incubated for 48 h and 

virus detected by combining 50 μl each of assay supernatants and 0.5% turkey red blood 

cells (TRBC). Virus-positive wells that haemagglutinated the TRBC were identified, and the 

EC50 was calculated using Reed–Muench method.

Botulinum neurotoxin neutralization assays

All procedures were conducted in accordance with the guidelines approved by the Institute 

Animal Care and Use Committee (IACUC) at Boston Children’s Hospital (#3030). Timed-

pregnant rats (Sprague Dawley strain, purchased from Charles River) were euthanized and 

primary rat cortical neurons were prepared from E18–19 embryos using a papain 

dissociation kit (Worthington Biochemical). For immunoblot analyses, neurons were 

exposed to BoNT/B (20 nM) or BoNT/A (10 nM) with GST-Syt-II or Bot.671.2 for 10 min 

in high [K+] buffer. Subsequently, the neurons were washed and incubated in culture 

medium for 10 h (BoNT/B) or 6 h (BoNT/A). Cells were then lysed (lysis buffer: PBS, 1% 

Triton X-100, 0.05% sodium dodecyl sulfate (SDS), plus protease inhibitor cocktail 

(Roche)). Lysates were centrifuged (4 °C) for 5 min at maximum speed using a 

microcentrifuge. The supernatants were collected for immunoblot analysis against BoNT/A, 

BoNT/B or actin. For immunocytochemistry, the neurons were seeded on cover glass in 24-

well plates. The cells were then exposed to 20 nM BoNT/B for 10 min (middle panel, 

positive control), or with 20 nM BoNT/B and 600 nM Bot.671.2 for 10 min. Cells were 

washed with PBS and fixed with 4% paraformaldehyde for 20 min. The cells were then 

blocked with PBS containing 10% goat serum for 45 min and exposed to primary antibody 

(rabbit anti-BoNT/B antibody) for 1 h and secondary antibody (Alexa-488) for 1 h. The 
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coverslips were then mounted on a slide and images collected using a fluorescence 

microscope. See Extended Data Fig. 7.

In vivo immunogenicity and influenza challenge

Animal studies were approved by the University of Washington Institutional Animal Care 

and Use Committee. BALB/c mice (female, 6–8 weeks old, n=5–10 per group) were 

randomly separated into groups, anaesthetized and then were dosed either intranasally or 

intravenously with PBS (negative control), the antibody FI6 (SFFV-FI6v3 IgG, Molecular 

design & Therapeutics) or mini-protein binders (HB1.6928.2.3 or HB36.6). Between 24 and 

96 h after being dosed (see Fig. 5), the mice were anaesthetized with 2.5% isoflurane and 

challenged intranasally with 2 MLD50 of CA09. Following challenge, the mice were 

monitored twice daily for weight loss and survival until up to 14 days post-infection. 

Animals that lost 30% of their body weight (as a proportion of their initial weight) were 

euthanized by carbon dioxide in accordance with our animal protocols. For the 

immunogenicity experiment, BALB/c mice (female, 6–8 weeks old, n = 5 per group) were 

randomly separated into groups, anaesthetized and dosed with (intranasal or intravenous) 

PBS, mini-proteins (HB1.5702.3.3, HB1.6928.2.3, HB1.6394.2.3, HB36.6, Bot2110.4 or 

Bot3194.4), or monoclonal antibodies mIgG (Innovative IR-MSBC-GF) or hIgG (Innovative 

IR-HU-GF-ED). A total of three or four doses were administered two weeks apart for both 

the intranasal and intravenous doses. Blood was collected two weeks after each dose by retro 

orbital bleed using micro-haematocrit capillary tubes (Fisher). Serum was separated by 

centrifuging the blood samples in polymer gel chemistry tubes. For mouse experiments, 

researchers were not blinded to animal identity.

ELISA

HB36.6, HB1.6928.2.3, HB1.6394.2.3, Bot 2110.4, Bot 3194.4, mIgG, hIgG and BSA-

specific IgG antibody levels in mouse serum were assessed by ELISA. Maxisorp (Thermo 

Scientific-Nunc) were coated with 100 ng per well of HB36.6, HB1.5702.3.3, 

HB1.6928.2.3, HB1.6394.2.3, Bot 2110.4, Bot 3194.4, mIgG (Innovative IR-MSBC-GF), 

hIgG (Innovative IR-HU-GF-ED) or BSA (LAMPIRE Biological laboratories, cat no. 

7500804) in PBS overnight at 4 °C. Plates were blocked with 5% nonfat milk powder in 

PBS for 1 h at room temperature, and then washed three times with wash buffer (PBS-T; 

phosphate-buffered saline containing 0.05% Tween 20). Samples were diluted in a buffer 

containing 1% nonfat milk powder in PBS-T, added to the wells, and incubated for 1 hr at 

room temperature. Following three washes with PBS-T, plates were incubated with 

horseradish-peroxidase conjugated goat anti-mouse IgG (1/5,000 dilution) secondary 

antibodies (ThermoFisher 62–6520) for 1 h at room temperature. After five washes with 

PBS-T, TMB substrate (KPL 52-00-03) was added to the wells for 30 min at room 

temperature. Colour development was stopped by the addition of 50 μl HCl (1 M), and the 

plates were read at 450 nm to measure relative optical densities. The average optical density 

of blank wells was subtracted to calculate the reported values.

Statistical and power analyses

For animal studies, mice were randomly assigned to either treatment or control groups. In 

mouse influenza challenge studies, investigators were blinded to which treatment group each 
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animal was assigned to during measurement of weight loss and survival. For all other 

analyses, investigators were not blinded to treatment groups or in the data analysis. A group 

size of n = 10 mice was determined based on power analysis, yielding 80% power to discern 

a difference of 5% weight-change between groups at an alpha value of 0.05, considering a 

standard deviation of 4% in weight-change at 4–7 days after infection. Survival analyses 

were performed using the Kaplan–Meier log–rank test. A P value of <0.05 was considered to 

be significant. For mice, the minimum group size was determined using weight loss data 

with 70% of control mice becoming infected with CA09. Comparisons in antibody 

responses were performed using unpaired student t-test. With a standard deviation of 2% in 

weight loss, a group size of n = 5 yields >80% power to detect a minimum of a 10% 

difference between groups in weight loss using a two-sided t-test with an alpha value of 

0.05.

Code availability

Computational protein designs and filtering were performed using RosettaScripts. The 

respective XML code is available as part of the Supplementary Information Appendices A–

C.

Data availability

Computational design models, Rosetta-metrics, and experimental results that support the 

findings in this study have been deposited in the online zenodo repository (https://

zenodo.org. http://dx.doi.org/10.5281/zenodo.838815). Structures have been submitted to 

the Research Collaboratory for Structural Bioinformatics Protein Databank under the codes 

5VLI (HB1.6928.2.3 co-crystal with influenza HA), 5VID (Bot.671.2 co-crystal with BoNT 

HCB) and 5VMR (Bot.2110.4 co-crystal with BoNT HCB).
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Extended Data

Extended Data Figure 1. Target proteins architecture and interactions with anti-BoNT/B and 
anti-influenza motifs
a, Full complex of BoNT, showing heavy chain binding domain (HCB) target epitope 

position in relation to catalytic and translocation domains. Inset shows inhibitory fragment 

Syt-II (in orange) bound to HCB with hotspots shown as sticks, and grey areas excluded 

from design calculations. b, Crystal structure of SC1918/H1 showing HA1 and HA2 

subunits in complex with HB36.3. Inset shows detailed view of HB36.3 (in green) bound to 
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stem region epitope with hotspots shown as sticks, and grey areas excluded from design 

calculations. c, Crystal structure of SC1918/H1 showing HA1 and HA2 subunits in complex 

with HB80.4. Inset shows detailed view of HB80.4 (in magenta) bound to stem region 

epitope with hotspots shown as sticks, and grey areas excluded from design calculations.

Extended Data Figure 2. Categorization of binders from high- throughput sequencing data of 
yeast-display FACS-sorted yeast pools
a, Schematic representation of a resulting yeast pool experiment transformed with four 

genes, corresponding to four different binder designs (colours: blue, orange, grey, yellow). 

The first column represents the initial yeast pool, which presents some variability in the 

initial number of cells transformed with each gene. Subsequently, the cells are subject to 

different stringencies of selection condition (display, high, medium and low target 

concentrations). The number of cells selected during FACS (see Methods) is proportional to 

both the binding affinity and the fractional population of the design. b, Instead of observing 

a ‘classical’ readout where each measurement is directly proportional to the amount of 

binding, the result is a convoluted readout (using high-throughput sequencing of each FACS 

of selected yeast pools under different conditions, see Methods) of both the population 

fraction and the binding strength. c, Our method of analysing the strength of an individual 

design is to assign each of them to a binding condition (category) if they produce a peak in 

its enrichment (as compared to its own initial population in the unselected, but displaying, 

population). Since, at higher categories, ‘better’ binders will always out-compete weaker 

ones, this method clusters binders into categories of binding (for example, weak, medium, or 

strong). If protease is used to further select the populations for stability, the same concept 

applies (see Fig. 2).
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Extended Data Figure 3. Molecular dynamics simulations to assess the flexibility of mini-protein 
binder designs, their binding motifs and hotspots
a, Schematic representations of the helical segments and hotspots used to calculate the 

average r.m.s.d. for mini-protein binders containing binding motifs from HB36, HB80 and 

Syt-II. The four conserved hotspots (orange) used to calculate the average r.m.s.d. of each 

binding motif are also shown. b, Top, average r.m.s.d.s (with respect to the designed bound 

conformation) of the whole mini-proteins versus those of the hotspots. The results for non-

binders and binders are shown in black and red, respectively. Bottom panel, same as top, 

except that the x-axis displays the r.m.s.d.s of the entire helical motif. These results were 

obtained from an aggregation of 108 μs molecular dynamics simulations, from a 

representative sample of designs (143 for BoNT and 146 for influenza, see Methods for 

details). The r.m.s.d. values for hotspot residues were calculated using a subset of side-chain 

heavy atoms that are invariant to the rotation of the aromatic ring (CG and CZ for Phe and 

Tyr). The backbone heavy atoms were used for the r.m.s.d. calculations of ‘binding helical 

motif’ and ‘whole protein’. c, The convergence of molecular dynamics simulations 

discriminates binders and non-binders as a function of simulation length (30 ns, 40 ns, 50 ns 

and 100 ns), subject to a similar amount of total sampling. The results show that simulations 

of 50 ns in duration are sufficient to discriminate the stability of binders and non-binders, 

even though longer molecular dynamics simulations (such as 100 ns) may further improve 

the discrimination power. Ten randomly selected mini-proteins designed against BoNT 

(which are also included in b) were used in this figure. d, Similar to Fig. 3d, the normalized 

traces of the histograms (fitted using a normal probability density function) show that, for 

both targets, the designs that are binders (cyan, yellow and red lines) show trends with 
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smaller fluctuations in hotspot residues than non-binders (blue lines); however, no particular 

trend is observed regarding strength of binding.

Extended Data Figure 4. Circular dichroism studies
a, Designed mini-proteins that were co-crystallized in complex with their respective targets 

(as shown in Fig. 4). Designed anti-HA mini-protein HB1.6928.2.3 does not denature up to a 

temperature of 95 °C. Designed anti-BoNT/B mini-protein shows partial denaturation at 

95 °C that is completely reversible after fast-cooling to 25 °C. Black shows the circular 
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dichroism spectrum at 25 °C, red at 95 °C, and yellow at 25 °C (after fast refolding, 5 min). 

Proteins were measured at 0.25 mg ml−1 in PBS buffer pH 7 (see Methods). b, Proteins that 

were solubly expressed or chemically synthesized. Plots are analogous to a. HB1.10027.3 

contains two disulfides, HB1.6394.2.3 contains three disulfides, Bot.6782.4, Bot.6827.4, 

Bot.7075.4, Bot.4024.4, Bot.3318.4, Bot.5721.4, and Bot.5916.4, each contain one disulfide 

bond. The rest of the proteins were designed without disulfide bonds. c, Three disulfide-

containing proteins with and without reducing agent. Plots are analogous to a. Proteins were 

measured at 0.25 mg ml−1 in PBS buffer pH 7 without (top row) and with (bottom row) the 

reducing agent TCEP. The disulfides are shown to be crucial for the thermal stability of 

these disulfide-containing proteins (HB1.6928.2.3 contains two disulfides, Bot.2110.4 and 

Bot.3194.4 each contain one disulfide).

Extended Data Figure 5. Trypsin resistance of HA binders
Chemically synthesized HA binder (0.3 mg ml−1) was incubated in PBS with various 

dilutions of trypsin (52 μM stock) for 20 min at room temperature. Reactions were quenched 

with addition of 1% weight per volume BSA and samples run on SDS–PAGE gel. The 

relative concentrations of trypsin are shown at the top. ImageJ was used to quantify the 

intensity of each band (below the band). a, Both HB36.6 and HB1.5702.3 show weaker gel 

bands at trypsin concentrations higher than 0.055 stock (2.86 μM), indicating proteolytic 

degradation. HB1.6928.2 and HB1.6394.2, both of which contain disulfides, show no 

degradation at any trypsin concentration. b, Scatter plot of gel intensities in a.
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Extended Data Figure 6. Omit map of HB1.6928.2.3
a, A simulated annealing FO–FC omit map for HB1.6928.2.3 (green) residues 10–22 

(contoured at 3σ) shows clear density for amino-acid side chains at the interface (dark blue 

HA1, light blue HA2). A single residue (Asn32), in a loop between the first and second β–

strands, is not observed in the electron density. b, 2FO–FC map for Bot.671.2 (green) 

residues 2–13 (contoured at 2σ) shows clear density for side chains at the interface except 

for the flexible lysine residue. BoNT HCB is shown in dark blue. The entire backbone, 

interface, and core residues for Bot.671.2 are all well resolved in the electron density map.
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Extended Data Figure 7. In vitro neutralization of BoNT/B
a, b, Immunoblots of cultured primary rat cortical neurons that were exposed to BoNT/B (20 

nM) or BoNT/A (10 nM) with or without GST–Syt-II or Bot.671.2 (see Methods). The 

supernatants of lysed neurons were collected for immunoblot analysis to detect the indicated 

proteins, and actin served as control for loading. The designed mini-protein appears to 

confer protection against degradation of VAMP2, but not against degradation of the negative 

control, SNAP25 (the intracellular target of BoNT/A). c, Immunocytochemistry for 

detection of BoNT/B in neurons (see Methods). Left, negative control (no toxin); middle, 

positive control (cells incubated with 20 nM of BoNT/B for 10 min); right, near-total 

protective effect against 20 nM of BoNT/B conferred by co-incubating the cells with 600 

nM of the design Bot.671.2. Top panels show a representative image of fluorescence 

microscopy for the detection of BoNT/B; bottom panels show backfield illumination 

microscopy for the same area.
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Extended Data Figure 8. In vitro neutralization of influenza
Comparison of in vitro neutralization of influenza viruses by HB36.6, FI6v3 and the 

designed mini-protein HB1.6928.2.3. Each antiviral was compared for its efficiency (EC50) 

in inhibiting the infection of Madin– Darby canine kidney cells by a range of influenza 

strains. It is clear that HB1.6928.2.3 most efficiently inhibited infection for all of the 

group-1 influenza strains tested (H1N1, H5N1 and H6N2). As expected, no neutralization 

was observed against H3N2 (group 2). In all experiments, n = 3 independent samples were 

tested for each condition, except for T/Mass/1965 (H6N2) and HK/ X31 (H3N2), for which 

n = 2 samples were tested. Dots show raw values for independent tests and whiskers show 

± 1 s.d.
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Figure 1. Massively parallel binding protein design
a, Hundreds of 37–43 residue mini-protein backbones with different secondary structure 

elements, orientations and loop lengths were matched with hotspot binding motifs for HA 

(HB1 and HB2) and BoNT (Bot) by identifying compatible mini-protein local backbone 

segments, superimposing them onto the hotspot motif-target complex, and discarding docks 

with mini- protein/target backbone clashes. Each topology included designs with many 

different disulfide configurations; several possibilities are illustrated. b, For each non-

clashing dock of each scaffold onto each target, the monomer and interaction energies were 

optimized with Rosetta sequence design. Representative models are shown at the left of each 

column. Right columns show a top view of the target with the hotspot interaction areas 

coloured as above and new contact areas generated by Rosetta sequence design coloured 

yellow; the total number of unique designs generated is indicated at the bottom. c, Designed 

contacts substantially increase the interface buried surface area of the designs beyond the 

starting hotspot residues. d, Genes encoding 16,968 mini-protein designs, including 6,286 

controls, were synthesized using DNA oligo pool synthesis (see Methods). e, The oligo 

pools were recombined into yeast display vectors and transformed into yeast (see Methods), 

and binding of the designs HA or BoNT at different concentrations was assessed by FACS. 

For each sorting condition, enriched designs were identified by comparing the frequencies in 

the original and sorted populations using deep sequencing. These data were used to guide 

improvement of the computational design model, and the entire design, synthesis and testing 

cycle was iterated

Chevalier et al. Page 28

Nature. Author manuscript; available in PMC 2018 February 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Massively parallel evaluation of binding
Vertical bars indicate FACS binding enrichment at different target concentrations for each of 

the 16,968 designs and 6,286 controls for Influenza H1 HA (a) and BoNT HCB (b). All α-

helical designs are in green; mixed α-β topologies, in orange. The mini-proteins are grouped 

by type as indicated by the horizontal bars and text at the top of the panels. ‘High+Protease’ 

indicates 5 min incubation with trypsin (18.5 μg ml−1) followed by incubation with 1 nM 

target. Right panels indicate normalized population fraction of each type of design (colour 

scheme as in corresponding left panel) for each of the selection conditions at the far left 

(Extended Data Table 2); the total number of surviving designs is indicated by the numbers 

at the far right. For example, after incubation of the HA mini-protein population with 100 

nM HA, FACS and deep sequencing, the population fractions of both non-disulfide (blue) 

and disulfide (yellow) designs doubled compared to the starting population, while that of the 

non-disulfide scrambles decreased approximately fivefold and the disulfide scrambles 

completely disappeared
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Figure 3. Experiment-based assessment of computational models
a, Computed energies of folding and binding for binding designs (orange) and non-binding 

designs (grey); x-axis is binding energy per nm2 and y-axis is monomer (folding) energy per 

residue, both in kcal per mol. b, Kernel density estimates for HA (top) and BoNT (bottom) 

show that designs that bind target (blue) have better local sequence-structure compatibility, 

quantified by the Rosetta side-chain probability score -p_aa_pp, and higher interface atom 

counts than non-binding designs (red). Design success rate (dark green) is shown with 1σ 
confidence interval (light green). c, Inset: Receiver–operator characteristic curve for 

discriminating first generation HA binders using a five-factor logistic regression. A second 

generation of HA binder design incorporating filtering on these five features (see Methods) 

had an increased success rate (y-axis); the numbers of successes are indicated above the 

bars. d, Interface residue fluctuations in molecular dynamics simulations are smaller for 

binding designs than non-binders (see Methods and Extended Data Fig. 3). e, f, Left, design 

models of Bot.671.2 (e) and HB1.6928.2.3 (f) bound to their targets, coloured by the mean 

change in binding at each position in the comprehensive mutagenesis pools; conserved 

residues (blue) are shown as sticks, non-conserved positions in red. Right, the 

experimentally observed mean changes in binding at each position (y-axis) correlate with 

those computed from the structures (x-axis) (Pearson cross-correlation test: e, r = 0.76; f, r = 

0.64).
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Figure 4. Characterization of structure, stability and activity of designs
a, Left, comparison of design model with X-ray structure of HB1.6928.2.3 in complex with 

PR8 H1 HA (HA used in design calculations is essentially identical to crystal structure and 

not shown). Right, close-up of the HB1.6928.2.3 X-ray structure with designed residues 

conserved in the SSMs outside of the hotspot seed indicated in sticks; these residues make 

both packing (e.g. W19 and Y24) and electrostatic interactions with HA. b, Left, as in a, but 

for Bot.671.2 in complex with BoNT HCB. c, Binding activity remaining following 

incubation of the indicated molecules at 80 °C for different durations (x-axis), measured by 

biolayer interferometry. The designs are considerably more robust than the mAb FI6v3 

antibody. d, HB1.6928.2.3 (HB1) more effectively prevents influenza infection of Madin-

Darby canine kidney cells than do FI6v3 or the previously designed binder HB36.6 (see also 

Extended Data Fig. 8). n = 3 independent virus titrations were performed for each condition. 

Dots show raw values for each test and whiskers show ± 1 s.d. e, Bot.671.2 better protects 

cultured rat cortical neurons against degradation of VAMP2 than does Syt-II, and it prevents 

binding of the toxin to neurons. n = 4 independent samples for each condition, dots show 

raw values for each condition and whiskers show ± 1 s.d.
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Figure 5. In VIVO efficacy and immunogenicity
a, b, d, Weight change (top) and survival (bottom) of BALB/c mice receiving influenza 

binder. a, Prophylactic efficacy: mice received HB1.6928.2.3 (orange) or FI6v3 mAb (green) 

intranasally or intravenously 24 h before challenge with 2 MLD50 (fifty per cent mouse 

lethal dose) of H1N1 CA09 virus (n = 10, except 0.03 mg kg−1, n = 5), see also 

Supplementary Fig. 6. b, Therapeutic efficacy: mice were first challenged with 2 MLD50 of 

CA09 virus and then received HB1.6928.2.3 intranasally 1–4 days post-challenge (n = 5). 

The mini-proteins have remarkable therapeutic efficiency even if administered after three 

days. c, Immune (IgG) responses in BALB/c mice (n = 5) that received three intravenous 

doses (3 mg kg−1) of miniproteins, human IgG (hIgG) or mouse IgG (mIgG) spaced three 

weeks apart (left) or three intranasal doses of mini-proteins or bovine serum albumin (BSA; 

3 mg kg−1) spaced two weeks apart (right). IgG responses in both cases were measured by 

enzyme-linked immunosorbent assay (ELISA, 1:500 serum) two weeks after each dose. d, 

Prophylactic efficacy is not reduced by repeated dosing: Mice received four doses (weeks 0, 

3, 6, and 12, 3 mg kg−1) of either HB1.6828.3.2, a Bot protein (mock dosing controls), or 

buffer (PBS), followed by a fifth intranasal dose of HB1.6828.3.2 or a Bot protein (0.3 mg 

kg−1) nine days after the fourth administration. Twenty-four hours after the fifth dose, mice 

were challenged with 2 MLD50 of H1N1 CA09 flu virus. HB1.6928.2.3 remains equally 

protective after repeated administration when compared to protection with no prior dosing. 
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In all panels, whiskers show ± 1 s.e.m. Raw data for all the experiments in this figure are 

available in the Supplementary Information. i.n., intranasal; i.v., intravenous
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