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Abstract

Atrial fibrillation is the most common sustained arrhythmia and its prevalence is rapidly rising 

with the aging of the population. Cardiac alternans, defined as cyclic beat-to-beat alternations in 

contraction force, action potential (AP) duration and intracellular Ca2+ release at constant 

stimulation rate, has been associated with the development of ventricular arrhythmias. Recent 

clinical data also provide strong evidence that alternans plays a central role in arrhythmogenesis in 

atria. The aim of this article is to review the mechanisms that are responsible for repolarization 

alternans and contribute to the transition from spatially concordant alternans to the more 

arrhythmogenic spatially discordant alternans in atria.
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1. Introduction

Atrial fibrillation (AF), the most common cardiac arrhythmia, currently affects 1–2% of the 

population, and over the next several decades the prevalence of AF is expected to reach 

unprecedented levels as the population of developed countries ages. AF is associated with 

increased risk of stroke, cardiomyopathies as well as heart failure, and accounts for 

significant morbidity and mortality [1,2].

Several mechanisms of AF have been described. Now it is well recognized that both 

arrhythmogenic triggers and an appropriate substrate are required for the initiation and 

perpetuation of AF [3–5]. It has been suggested that action potential (AP) repolarization 

alternans that are observed to precede AF episodes, plays a major role in generation of 

proarrhythmic substrate and facilitates re-entry phenomena that ultimately lead to sustained 

AF [3,6–14]. At the cellular level cardiac alternans is defined as cyclic, beat-to-beat 

alternations in contraction force, AP duration and intracellular Ca2+ release at constant 

stimulation rate.
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Most of our understanding of the mechanisms and the role of alternans stems from studies of 

ventricular tissue. While sharing many similarities, ventricular and atrial tissues bare distinct 

characteristics of excitation-contraction coupling (ECC) and intracellular Ca2+ regulation 

which also suggests differences in alternans generation and regulation. This review focuses 

on the mechanisms of atrial alternans, its clinical relevance for the initiation of AF, and 

highlights differences between atrial and ventricular alternans.

2. Putative mechanisms of alternans

Initially cardiac alternans was described as mechanical [15] and electrical alternans [16] at 

the whole heart level. Later alternans was also observed in isolated cardiomyocytes 

suggesting that the origin of this phenomenon resides at the cellular level. The strong spatial 

and temporal correlation between AP and Ca2+ alternans at both whole heart and single cell 

levels is well established (Fig. 1), [17,18] and it is generally agreed that the bi-directional 

relationship between cytosolic Ca2+ concentration ([Ca2+]i) and membrane potential (Vm) 

plays a key role in the generation of alternans. Bi-directional coupling of Vm and [Ca2+]i 

(Vm↔[Ca2+]i) is defined by the facts that (1) Vm directly determines the activity of Ca2+ 

handling mechanisms that are voltage-dependent (Vm→[Ca2+]i coupling), whereas (2) 

[Ca2+]i dynamics affect Vm regulation through Ca2+-dependent ion currents and transporters 

([Ca2+]i→Vm). Whether disturbances of Vm or [Ca2+]i regulation is the predominant 

mechanism of alternans remains an ongoing matter of debate. Theoretical and computational 

studies have supported both hypotheses [19–24]. However, due to the complex nature of the 

bi-directional coupling between Vm dynamics and intracellular Ca2+ handling and the many 

feedback pathways between the two parameters, the experimental distinction between effects 

of Ca2+ and Vm is difficult and therefore the mechanisms of alternans still remains 

incompletely understood, especially in atrial tissue.

2.1. Vm as key mechanism for the development of alternans

A possible contribution of Vm→[Ca2+]i coupling to alternans is well supported by 

computational studies [19,21,25–29]. Nolasco and Dahlen [25] suggested that at high 

stimulation rates beat-to-beat Vm alternation is determined by AP duration (APD) restitution 

and is an underlying cause for the development of alternans. APD restitution refers to the 

APD dependence on the preceding diastolic interval. The slope of the APD restitution curve 

is determined by the recovery of ion channels from inactivation and their dependence on Vm. 

Computational [21,25,26,28,29] as well as several experimental studies [30,31] have 

suggested that self-sustaining oscillations of APD can occur if this relationship is steep 

enough, and that the role of Vm as a causative factor of alternans becomes more prominent 

with increasing pacing rates [28,32]. However, simulation results still differ and remain 

dependent on the computational models applied, even if they are designed to recreate 

processes of the same tissue [33]. Contrary to computational results, numerous experimental 

studies could not confirm these theoretical findings and actually show a poor relationship 

between experimentally determined APD restitution kinetics and inducibility of alternans 

[34–38]. While it was shown that in ventricular myocytes AP kinetics affect sarcoplasmic 

reticulum (SR) Ca2+ release [39,40], activity of the electrogenic Na+/Ca2+ exchanger (NCX) 

[41–43] and L-type Ca2+ channels (LCC) [42,44–46], experimental evidence for the intricate 
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details of how Vm→ [Ca2+]i coupling modulates the occurrence of alternans is still lacking. 

Such discrepancy in theoretical and experimental findings can be explained, at least to some 

extent, by the fact that because of the slow recovery of ion channels and gradual change in 

intracellular ionic concentrations, cardiac myocytes exhibit a “memory” of the preceding 

stimulation conditions and thus APD is not determined solely by the preceding diastolic 

interval, and therefore constitute more complex APD dynamics than are simulated by most 

computational models (discussed in detail in [47,48]). Due to “cell memory” real cardiac 

tissue APD restitution curves depend greatly on the conditions under which they have been 

recorded such as basal pacing frequency and rate of APD adaptation to the change in pacing 

rate [34,48]. Also, electrical restitution is determined by inactivation and recovery thereof of 

different ion channels (Na+, LCCs, slow rectifier K+ channels and others), each of which has 

individual properties and kinetics and consequently experimentally measured restitution 

curves rarely follow a simple mathematical function [48]. Furthermore, APD restitution 

curves may also be poor predictors of alternans occurrence because AP morphology is 

strongly influenced by intracellular Ca2+ dynamics [18,49,50], and Ca2+ alternans can be 

initiated independently of Vm alternans [17,51] (see discussion below). While the question 

whether Vm→ [Ca2+]i or [Ca2+]i→Vm coupling plays a leading role in the initiation of 

alternans is still debatable, there is little doubts that Vm→ [Ca2+]i coupling is critical for 

development and sustainability of atrial alternans. A recent study by Kanaporis and Blatter 

[52] in voltage-clamped rabbit atrial myocytes using AP waveforms observed during Ca2+ 

alternans (APCaT_Large observed during large systolic Ca2+ transient (CaT) and APCaT_Small 

observed with small CaT) demonstrated that both threshold for induction of Ca2+ alternans 

and degree of Ca2+ alternans are strongly modulated by the morphology of the AP (Fig. 2A) 

[52]. This study also demonstrated that AP morphology affected Ca alternans by two 

mechanisms: (1) by determining SR Ca2+ content (Fig. 2B) and (2) by regulating kinetics of 

L-type Ca2+ current (Fig. 2C) [52].

2.2. Intracellular Ca2+ cycling as an underlying mechanism of alternans

The inconsistent correlation between APD restitution properties and occurrence of alternans 

suggests that mechanisms other than Vm play a major role for the development of cardiac 

alternans. Indeed, there is growing evidence that alternans is initiated and sustained by 

disturbances of intracellular Ca2+ handling [17,50,51,53,54]. Major support for this 

hypothesis stems from the demonstration that Ca2+ alternans can be elicited in voltage-

clamped ventricular myocytes where beat-to-beat Vm is kept constant. Recently we 

demonstrated that the same principle also holds for atrial myocytes (Fig. 3A) [17]. In 

addition, beat-to-beat alternation in AP morphology was abolished when intracellular Ca2+ 

release was blocked (Fig. 3B). These studies have provided strong evidence that AP 

alternations are not required for Ca2+ alternans to occur and thus instabilities of inherent 

Ca2+ handling properties of cardiac myocytes underlie cardiac alternans.

Several hypotheses on the mechanisms of Ca2+ alternans have been proposed. SR Ca2+ load 
hypothesis. Under steady-state conditions influx of Ca2+ through LCCs, SR Ca2+ release, 

Ca2+ uptake by sarco/endoplasmic reticulum Ca2+ ATP-ase (SERCA) and extrusion from 

the cell by NCX are well balanced and therefore there is little beat-to-beat variation in 

diastolic [Ca2+]SR. If the balance between Ca2+ uptake and release is disturbed beat-to-beat 
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alternation in diastolic [Ca2+]SR can occur. Consequently, due to the steep SR load – Ca2+ 

release relationship [55], a higher SR load would lead to a larger Ca2+ release and vice 

versa. In support of this hypothesis beat-to-beat alternations in diastolic SR Ca2+ load in 

conjunction with Ca2+ alternans have been reported by several studies [53,56]. However, 

contrary to these observations, cytosolic Ca2+ alternans occurring without significant beat-

to-beat oscillations in diastolic SR load in single myocytes [57–59] and intact heart [60] was 

also demonstrated. These findings suggest that alternation in diastolic [Ca2+]SR is not an 

obligatory condition for Ca2+ alternans to occur. Such observation was particularly common 

in atrial myocytes [57,59,61] and might be related to the higher activity of SERCA in the 

atrium [62–64] and therefore the higher capacity to refill the SR. L-type Ca2+ channel 
hypothesis. LCCs are activated by AP-dependent membrane depolarization and serve as the 

trigger for SR Ca2+ release in a process known as Ca2+-induced Ca2+ release (CICR). 

Importantly, the activity and inactivation of ILCC is controlled by both voltage and [Ca2+]i 

and these channels play a central role in the bi-directional coupling between Vm and 

intracellular Ca2+ dynamics. Therefore, incomplete recovery from inactivation of LCCs on a 

beat-to-beat basis has been proposed as a causative factor of Ca2+ alternans [56,65,66]. 

Partial inhibition of LCCs was indeed shown to increase susceptibility to Ca2+ alternans 

[53]. However numerous other studies have demonstrated that L-type Ca2+ currents can 

remain unchanged from beat to beat during Ca2+ alternans in both ventricular and atrial 

myocytes [17,51,53,57,59,67]. Refractoriness of ryanodine receptors (RyR) Ca2+ release 
hypothesis. Finally, refractoriness of the SR Ca2+ release was suggested as a possible 

mechanism responsible for Ca2+ alternans [59,60]. In this case, it is hypothesized that Ca2+ 

alternans can arise due to varying beat-to-beat recovery from inactivation of RyR Ca2+ 

release channels of the SR. Since the magnitude of an intracellular Ca2+ release, referred as 

Ca2+ transient (CaT), is dictated by the number of activated RyRs, it is suggested that during 

a large CaT a larger number of RyRs is activated and therefore at high pacing rates these 

channels become unavailable for subsequent release resulting in a smaller CaT. The study of 

Shkryl et al. [54] demonstrated that in rabbit atrial myocytes a large amplitude CaT indeed 

prolongs RyR refractoriness and that the kinetics of RyR recovery from inactivation is a key 

factor in the generation of Ca2+ alternans. This hypothesis also found support from in silico 
simulations [68].

3. Differences between atrial and ventricular alternans

To date, the mechanisms of alternans have been investigated primarily in ventricular tissue 

and to a much lesser extent in atria. While it can be anticipated that mechanisms of alternans 

in atrial and ventricular cells share similarities, recent experimental data point towards 

important differences. For example, we reported subtle differences in APD alternans in atrial 

and ventricular rabbit myocytes where atrial myocytes exhibited a higher degree of beat-to-

beat alternation in APD and a higher pacing frequency threshold to induce alternans [17].

The atria have unique structural properties that affect development of atrial alternans. The 

atrium has a complex geometry and regional structural features, such as the atrial 

appendages, the pectinate muscle network and specialized tissues like the sinus node, the 

Bachmann’s bundle and crista terminalis, as well as multiple orifices for veins, arteries, and 

valves, which play an important role in AF initiation and maintenance [69]. An important 
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difference between ventricular and atrial myocytes is also encountered at the single cell 

level. Atrial cells lack or have only a poorly or irregularly developed transversal tubule (t-

tubule) system (Fig. 4A) [24,70,71], resulting in unique Ca2+ cycling features during ECC. 

T-tubules, deep invaginations of the sarcolemmal membrane, allows action potential 

penetration to the interior of the cell and ensures fast and uniform SR Ca2+ release in 

ventricular myocytes. In contrast, in atrial myocytes lacking t-tubules LCCs are restricted to 

the periphery of the cell and thus, membrane depolarization induced Ca2+ release first 

occurs in subsarcolemmal regions and subsequently propagates via CICR to the center of the 

cell (Fig. 4B) [72]. Computer simulations using cell models with and without t-tubules have 

predicted significant differences in possible alternans mechanisms [23,68,73]. The cardiac 

cell models lacking t-tubules exhibited higher likelihood to develop Ca2+ alternans and 

pointed towards the role of Ca2 + diffusion, inhomogeneity in [Ca2+]i [73] and RyR 

refractoriness [68] in the process. This is consistent with experimental observations of 

intracellular gradients of the degree of Ca2+ alternans and that Ca2+ alternans can be 

spatially and temporally inhomogeneous even at the level of a single atrial myocyte and, in 

the extreme cases, subcellular regions can even alternate out-of-phase (Fig. 5) [57,61,74]. 

Another difference in Ca2+ handling between atrial and ventricular cells is the lower 

expression of phospholamban that leads to higher SERCA activity in the atria [62–64]. Since 

beat-to-beat fluctuation in SR Ca2+ load was proposed as a possible cause of Ca2+ alternans 

[53,75], it is conceivable that the lower SERCA activity in ventricle may contribute to Ca2+ 

alternans at increased pacing frequencies due to incomplete filling of the SR, whereas a 

more rapid filling is consistent with the observation that in atrial cells end-diastolic [Ca2+]SR 

typically did not alternate during Ca2+ alternans [59,61]. This notion is also consistent with 

findings that upregulation of SERCA suppresses alternans in murine [76] and guinea pig 

[77] ventricular myocytes.

Furthermore, atrial and ventricle cells contain unique sets of ion channels [78,79] leading to 

distinctive AP morphologies and Ca2+-dependent modulation of AP properties in these two 

cell types. For example, ventricle and atrium differ in activity of small-conductance Ca2+-

activated K+ (SK) channels [80,81], Ca2+-activated Cl− channels [82], while acetylcholine-

activated and ultrarapid rectifier K+ channels are expressed exclusively in the atria [83–85]. 

Recently we demonstrated that Ca2+-activated Cl− channels play a major role in sustaining 

APD alternans in rabbit atrial cells [86]. Our data indicated that while these channels might 

be also important in ventricular alternans [87], atrial myocytes exhibit a higher density of 

this current that could explain in part the significantly higher degree of beat-to-beat 

alternation in APD in atrial myocytes [17]. In addition, atrial tissue displays substantial 

regional heterogeneity in conduction velocity (CV) and AP morphology, ranging from a 

triangular shape with no sustained plateau to ventricular like APs [88]. This phenomenon 

results in significant regional differences in electrical restitution and local intrinsic 

differences in rate-adaptation [88].

Finally, under pathological conditions such as heart failure, ischemia or during the 

progression of AF, the electrophysiological and structural properties of the atrium become 

significantly remodeled. Remodeling includes changes in CV [89,90], AP morphology and 

heterogeneity, intracellular Ca2+ signaling [91], ion channel expression [92,93] and fibrosis 
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[94]. All these changes are considered to be key factors that contribute to the development of 

sustained atrial arrhythmias.

4. Clinical relevance of cardiac alternans

To this date the majority of clinical data that relates cardiac alternans and arrhythmias was 

obtained in ventricle. The beat-to-beat alternations in the time course of ventricular AP 

repolarization are reflected in the ECG as T-wave alternans (TWA). Even subtle TWA at 

microvolt levels (referred to as microvolt TWA) was demonstrated as a valuable prognostic 

tool for ventricular arrhythmia risk stratification [95]. The clinical use of atrial AP 

repolarization alternans as a diagnostic tool, however, is hindered by the fact that the atrial 

repolarization signal is masked in the conventional ECG recordings by the ventricular QRS 

complex and therefore the clinical exploitation of the relationship between atrial alter-nans 

and the development of atrial arrhythmias for risk assessment has been limited. However, 

recently progress has been made in several experimental [12,90,96] and clinical studies 

[7,8,11,97,98] using monophasic AP electrodes to monitor atrial repolarization alternans in 

vivo. These and other studies involving computer simulations [99], animal models 

[12,90,96,100] and studies in humans [7,8,11,97,98] have provided convincing evidence that 

AP alternans in atria may lead directly to AF (Fig. 6) or its transition from atrial flutter. In 

addition, newer clinical studies have demonstrated that atrial repolarization alternans, 

similarly to ventricular TWA, can be used to predict vulnerability to AF [11,98]. For 

example, Narayan et al. [11] have demonstrated that APD alternans preceded AF episodes, 

while APD alternans was absent in subjects with no AF. Furthermore, in patients with 

persistent AF APD alternans was typically induced at relatively low pacing rates (100–120 

bpm). In contrast, in control subjects alternans developed only at rapid pacing rates (>230 

bpm) indicating that atrial repolarization alternans has potential as a prognostic tool to 

identify susceptibility to atrial arrhythmias. Similarly, Lalani et al. [98] established that AP 

alternans was larger and more prevalent in patients with persistent AF than in subjects with 

paroxysmal AF, while alternans was not observed in the control group. Taken together, 

evidence is accumulating that AP alternans in both ventricle and atrium precedes 

development of fibrillation, and thus, has prognostic value for arrhythmia prediction.

The mechanisms linking AP alternans to ventricular arrhythmias involve the development of 

spatially discordant alternans [101–104]. Usually AP alternans starts as concordant 

alternans, i.e. APD either prolongs or shortens simultaneously in all cells of a particular 

region of the ventricular myocardium. Concordant AP alternans itself may not exacerbate 

into fibrillation, i.e. its arrhythmogenic potential is relatively low. However, as development 

of alternans progresses, AP alternation can turn discordant where different regions of the 

heart alternate out-of-phase, i.e. in some regions APD is prolonged while during the same 

beat APD is shortened in other regions of the heart. Development of discordant alternans is 

believed to have major effects on the spatial organization of repolarization across the cardiac 

tissue and significantly contributes to arrhythmogenicity [101–104]. This notion is supported 

experimentally by the demonstration that ventricular fibrillation is always preceded by 

discordant AP alternans [102]. Similarly to findings in ventricle, discordant alternans was 

also observed in atria and has been directly linked to the development of atrial fibrillation 

[7,12,96]. The underlying mechanisms for the formation of spatially discordant alternans 
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remain uncertain and most likely are determined by the combination of factors that are 

discussed below.

5. Mechanisms of spatially discordant alternans

Several mechanisms for discordant alternans have been suggested that revolve around Ca2+ 

cycling, cell-to-cell communication and electrical tissue properties.

5.1. Calcium cycling heterogeneity

As discussed above disturbances in intracellular Ca2+ handling have been proposed as an 

underlying mechanism of alternans at the cellular level [17,32,50,51,53,54,75]. Spatial 

heterogeneities in electrical as well as Ca2+ cycling properties of cardiac tissue between the 

endocardium and epicardium or between the base and apex of the heart are essential for 

maintaining normal function of the heart [105,106], including excitation spread and 

coordinated contractility. However, under pathological conditions, such heterogeneity in 

Ca2+ cyclingcan lead to the development of spatially discordant Ca2+ alternans. 

Furthermore, since [Ca2+]i dynamics feedback on ion conductances of myocytes and thus in 

turn affect APD, the heterogeneity in Ca2+ handling contributes to spatial differences in AP 

morphology as well. Additional support for Ca2+-dependent development of discordant 

alternans comes from computational models, demonstrating that discordant APD alternans 

can be induced if [Ca2+]i→Vm coupling results in APD shortening [107] or, alternatively, by 

SR Ca2+ accumulation during rapid pacing [108]. Furthermore, suppression of intracellular 

Ca2+ release from SR by ryanodine significantly reduces development of spatially 

discordant alternans during tachypacing induced cardiomyopathy in transgenic rabbits with 

Long QT type-1 syndrome [49]. The aforementioned insights come from ventricular tissue, 

however experimental evidence that heterogeneity in Ca2+ cycling underlies generation of 

discordant alternans also in atria is still lacking.

5.2. Insufficient cell-to-cell coupling

Cardiac myocytes are electrically coupled via gap junctions that allow the flow of ionic 

currents between cells. In the heart, different isoforms of gap junction forming proteins 

connexins exhibit regional expression. While in the ventricle electrical coupling between 

myocytes is achieved almost exclusively by connexin 43 (Cx43), in the atria three types of 

connexins are expressed – Cx40, Cx43 and Cx45 (with levels of Cx45 being very low). A 

strong coupling between myocytes results in well-coordinated and relatively homogeneous 

repolarization of the cardiac tissue. However, in various pathological situations decreased 

gap junction expression and/or increased inhomogeneity of gap junction distribution in both 

ventricle and atrium occurs [109]. In humans with AF and in AF animal models altered 

expression and distribution of atrial Cx40 is well documented which can lead to dispersed 

conduction and thus formation of a substrate for atrial arrhythmias [93,109]. Furthermore, 

pharmacological enhancement of intercellular coupling effectively suppressed development 

of discordant alternans, and decreased susceptibility to ventricular arrhythmias [101] and 

atrial fibrillation [110]. In addition to the changes in connexin expression, cell-to-cell 

coupling can be disrupted also by increased fibrosis of the tissue. While insufficient 

coupling between cells is likely to contribute to increased susceptibility to arrhythmias in 

Kanaporis and Blatter Page 7

Medicina (Kaunas). Author manuscript; available in PMC 2018 February 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



remodeled myocardium, it can hardly explain development of discordant alternans in 

relatively healthy hearts with normal intercellular coupling. Also, it is noteworthy that 

cardiomyocytes have a large safety margin with respect to cell-to-cell coupling, i.e. the 

myocardium maintains near normal conduction velocities even when electrical coupling is 

significantly reduced [111]. Therefore, it is unlikely that moderate reduction in gap junction 

protein levels alone is sufficient for induction of cardiac arrhythmias. However, decreased 

intercellular coupling may amplify cell-to-cell differences in AP morphology, conduction 

velocity and Ca2+ cycling which in turn facilitates the development of spatially discordant 

alternans and arrhythmic events.

5.3. Conduction velocity and APD restitution

Computer modeling studies predict that impairment of CV or APD restitution can result in 

discordant alternans [22,47]. CV restitution refers to the relationship between CV and the 

preceding diastolic interval. In cardiac tissue CV is determined by intercellular electric 

coupling and the activity and kinetics of Na+ channels which drive the upstroke of cardiac 

APs. Under normal conditions recovery of Na+ channels from inactivation is fast and thus 

slowing of CV is observed only at very fast beating rates, however slowing of CV was 

demonstrated in several pathological conditions including AF [89,90]. Data addressing the 

relationship between CV and APD restitution heterogeneities and development of alternans 

in atria are scarce. Heterogeneous and slower CV together with prolongated and spatially 

dispersed APDs were demonstrated in atria of diabetic rats and these changes were 

associated with the increased inducibility of APD alternans and susceptibility to atrial 

tachyarrhythmias [112]. Also, the spatial dispersion of APD restitution was significantly 

increased in a canine vagally mediated AF model and in rapid pacing-induced AF [100]. 

Similarly, a greater spatial dispersion of APD restitution kinetics was reported in patients 

with chronic AF compared to patients with paroxysmal AF and control subjects [10].

6. Conclusions

While numerous clinical and animal research data obtained in ventricular tissue have greatly 

contributed to the understanding of putative mechanisms of alternans and their relation to 

ventricular arrhythmias, alternans in atrial tissue remains much less investigated. The 

availability of clinical data on atrial alternans is hindered by the fact that measurements of 

atrial repolarization require invasive methods as atrial repolarization is masked by electrical 

activity of ventricles in the conventional ECGs. The available clinical data, however, suggest 

that alternans plays a vital role in AF. In this review we summarized the current knowledge 

about mechanisms of alternans and their relevance to arrhythmogenesis in atria.
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Fig. 1. 
AP and Ca2+ alternans occur simultaneously.

(A) Simultaneously recorded APs and Ca2+ transients in current-clamped atrial myocytes. 

(B) Superimposed AP traces recorded during large (black) and small (gray) amplitude Ca2+ 

transients.

Figure modified with permission from [17].
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Fig. 2. 
Membrane potential determines calcium alternans through modulation of sarcoplasmic 

reticulum Ca2+ load and L-type Ca2 + current.

Two distinct AP-like voltage commands were generated from prerecorded atrial APs 

observed during Ca2+ alternans: APCaT_Large (observed during large systolic Ca2+ release) 

and APCaT_Small (observed during small CaTs). Morphology of these voltage commands is 

shown on the bottom of panel C. Sequences with only APCaT_Large, only APCaT_Small or 

alternating AP waveforms (as shown in B bottom) were applied to rabbit atrial myocytes. 

(A) (a) CaTs elicited in the same voltage-clamped atrial myocyte stimulated with different 

sequences of AP waveforms at various pacing frequencies. (b) Pacing with same- shape 

APCaT_Small waveforms (open circles) enhances degree of CaT alternans compared to 

APCaT_Large stimuli (black squares). CaT alternans ratio (AR, where 0 indicates conditions 

without alternans and 1 indicates a full skipping of Ca2+ release on every other beat) is 

further increased during alternans AP voltage clamp protocol (grey triangles). (B) 

Sarcoplasmic reticulum Ca2+ load ([Ca2+]SR) measurements with Fluo-5N from the same 

voltage-clamped atrial myocyte exposed to three different AP clamp protocols (bottom). 

End-diastolic [Ca2+]SR was higher during the same-shape APCaT_Small protocol compared to 

APCaT_Large and revealed [Ca2+]SR alternans during the alternans AP clamp protocol. (C) 

Representative traces of L-type Ca2+ currents elicited with APCaT_Large and APCaT_Small 

voltage commands from the same atrial myocyte.

Figure modified with permission from [52].
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Fig. 3. 
Disturbances in intracellular Ca2+ cycling as a key mechanism for the development of 

alternans.

(A) Ca2+ transient alternans recorded in voltage-clamped atrial myocytes under AP-clamp 

conditions when beat-to-beat Vm is kept constant. (B) Inhibition of cytosolic Ca2+ release by 

ryanodine abolishes AP alternans. APs and [Ca2+]i recorded simultaneously from a current-

clamped atrial myocyte.

Panel B is from [17].

Kanaporis and Blatter Page 17

Medicina (Kaunas). Author manuscript; available in PMC 2018 February 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Ca2+ signaling during excitation-contraction coupling in atrial myocytes.

(A) Confocal images of a ventricular and an atrial myocyte from the same cat heart stained 

with the membrane-bound fluorescent dye Di-8-ANEPPS. The regular structures spaced in a 

sarcomeric pattern in the ventricular cell represent t-tubules. In contrast, the atrial myocyte is 

devoid of any t-tubular staining. (B) Ca2+ transient recorded in the confocal linescan mode. 

The scanned line was positioned perpendicular to the longitudinal axis of the cell (c). 

Electrical stimulation of the cell during acquisition of the linescan image triggered a ‘U’-

shaped Ca2+ transient (b), indicating that [Ca2+]i increased first at the periphery of the cell 

(a) before propagating towards the center of the myocyte. Panel d shows local Ca2+ 

transients measured in the subsarcolemmal space (ss) and the center of the cell (ct).

The Figure is modified with permission from [72].
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Fig. 5. 
Neighboring regions within an atrial myocyte can alternate out-of-phase.

(A) Series of fluo-4 fluorescence images recorded under control conditions and during Ca2+ 

alternans. The images illustrate the rising phase of the Ca2+ transients marked by the arrows 

in (B). (B) Subcellular Ca2+ transients recorded from the regions marked by the boxes a–d 

(A). [Ca2+]i images and subcellular Ca2+ transients reveal that the time of onset, the 

magnitude, and the phase of Ca2+ alternans exhibit large subcellular variations and that the 

upper and the lower half of the cell alternate out-of-phase.

The Figure is modified with permission from [74].
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Fig. 6. 
Atrial alternans precedes initiation of atrial fibrillation.

Rate dependence of AP alternans in a 61-year-old male patient with paroxysmal atrial 

fibrillation. (A) No significant atrial AP alternans is observed at baseline pacing with cycle 

length (CL) of 500 ms. (B) At CL 300 ms, APD alternans is observed. (C) APD alternans 

were detectable and preceded AF initiation while pacing at CL 280 ms. V1, first ECG 

precordial lead; CSmid, middle coronary sinus; MAP, monophasic action potential.

Figure is modified with permission from [98].
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