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Abstract
Increased availability of data and accessibility of computational tools in recent years have created an unprecedented
upsurge of scientific studies driven by statistical analysis. Limitations inherent to statistics impose constraints on the
reliability of conclusions drawn from data, so misuse of statistical methods is a growing concern. Hypothesis and
significance testing, and the accompanying P-values are being scrutinized as representing the most widely applied
and abused practices. One line of critique is that P-values are inherently unfit to fulfill their ostensible role as measures
of credibility for scientific hypotheses. It has also been suggested that while P-values may have their role as summary
measures of effect, researchers underappreciate the degree of randomness in the P-value. High variability of P-values
would suggest that having obtained a small P-value in one study, one is, ne
vertheless, still likely to obtain a much larger P-value in a similarly powered replication study. Thus, “replicability of P-
value” is in itself questionable. To characterize P-value variability, one can use prediction intervals whose endpoints
reflect the likely spread of P-values that could have been obtained by a replication study. Unfortunately, the intervals
currently in use, the frequentist P-intervals, are based on unrealistic implicit assumptions. Namely, P-intervals are
constructed with the assumptions that imply substantial chances of encountering large values of effect size in an
observational study, which leads to bias. The long-run frequentist probability provided by P-intervals is similar in
interpretation to that of the classical confidence intervals, but the endpoints of any particular interval lack
interpretation as probabilistic bounds for the possible spread of future P-values that may have been obtained in
replication studies. Along with classical frequentist intervals, there exists a Bayesian viewpoint toward interval
construction in which the endpoints of an interval have a meaningful probabilistic interpretation. We propose
Bayesian intervals for prediction of P-value variability in prospective replication studies. Contingent upon approximate
prior knowledge of the effect size distribution, our proposed Bayesian intervals have endpoints that are directly
interpretable as probabilistic bounds for replication P-values, and they are resistant to selection bias. We showcase our
approach by its application to P-values reported for five psychiatric disorders by the Psychiatric Genomics Consortium
group.

Introduction
Poor replicability has been plaguing observational stu-

dies. The “replicability crisis” is largely statistical and while
there are limits to what statistics can do, a serious concern

is misapplication of statistical methods. Significance
testing and P-values are often singled out as major cul-
prits, not only because these concepts are easy to mis-
interpret, but for purported inherent flaws. Variability of
P-values appears to be underappreciated in the sense that
when a small P-value is obtained by a given study,
researchers commonly suppose that a similarly designed
independent replication study is likely to yield a similarly
small P-value. We will use the term “replication P-values”,
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introduced by Killeen1, to mean the P-value obtained
from subsequent, replicate experiments with the same
sample size, taken from the same population. Great
variability of replication P-values casts doubt on validity of
conclusions derived by a study at hand and implies lack of
confidence in possible outcomes of any follow-up studies.
In reality, one should expect a greater uncertainty in what
a replication P-value will be. Special prediction intervals
for P-values, named “P-intervals”, have been employed to
characterize that uncertainty2–6. P-intervals have been
presented as an objective measure of P-value variability, as
opposed to subjective judgments reported by researchers
in surveys, with the conclusion that the subjective esti-
mates are too narrow and, therefore, researchers tend to
underestimate randomness of replication P-values3. While
P-intervals have been used mainly as a tool to elucidate
flaws of P-values, they have also been defended as
important additions to P-values themselves in publica-
tions supportive of P-values as universal measures that
provide useful summary of statistical tests6. It has been
suggested that P-intervals may serve the purpose of
improving P-value interpretability, especially in large-
scale genomic studies with many tests or in other studies
utilizing modern high-throughput technologies5,6. For
example, in their discussion of P-values and their pre-
diction intervals, Lazzeroni and colleagues6 argued that
the P-values “will continue to have an important role in
research” and that “no other statistic fills this particular
niche.” They present P-intervals not as a way to expose
alleged weaknesses of P-values but rather as a tool for
assessing the real uncertainty inherent in P-values.
In our view, the major difficulty with the applications of

P-intervals for prediction of uncertainty in replication P-
values is the lack of clear interpretation of their endpoints
due to their frequentist construction. Classical prediction
intervals, also known as “prediction confidence intervals”,
have statistical properties that are similar to the regular
confidence intervals (CI’s). Both types of intervals are
random and are constructed to cover the replication value
(1− α)% of the time, referred to as the coverage property
(here, α represents the desired type I error rate and (1−
α)% represents the desired confidence level). As Lazzeroni
and colleagues5 noted while discussing results of their
simulation experiments, “By definition, the coverage rate is
an average across the distribution” [of P-values]. This
statement can be expanded as follows: given a large
number of original studies with different P-values, if (1−
α)% P-intervals were to be constructed in each of these
original studies regardless of statistical significance of the
obtained P-value, then the average number of replication
P-values covered by respective P-intervals is expected to
be (1− α)%. In this model, there are multiple original
studies with a single replication P-value for each predic-
tion interval, and it either falls into the interval or it does

not. The average is taken over the proportion of times the
replication P-value falls into the prediction interval.
Caveating Lazzeroni et al.’s5 discussion, the endpoints of
an interval constructed around a P-value obtained in any
particular study cannot be interpreted in a probabilistic
way with regard to a replication P-value, because it is
either captured by the interval or not and the endpoints of
the interval do not represent the range of possible values.
Another difficulty with P-interval interpretation arises

when it is constructed for a specific P-value. The coverage
property of P-intervals as a long-run average is well-
defined for random P-values, and the resulting intervals
are themselves random. On the other hand, a P-interval
constructed for a given P-value, P, has specific, fixed
endpoints. One way to interpret the endpoints of a par-
ticular interval and to relate them to the long-run average
definition is to restrict the range of random P-values (0 to
1) to a narrow interval around P, i.e., P ± ε, for some small
ε. We can think of a process that generates these P-values
as being the same as in the unrestricted case, but then we
would discard any P-value outside the P±ε interval and
evaluate coverage only for the intervals around P-values
that are similar to P. In general, such selection can lead to
bias in coverage of the classical interval. For example,
Lazzeroni and colleagues reported that the coverage for P-
values restricted to a specific range could be much smaller
than the nominal (1− α)% level expected across all pos-
sible values of the P-value5. Thus, the endpoints of any
particular P-interval constructed around an obtained P-
value are not readily interpreted in terms related to the P-
value at hand or any future values in replication studies.
It is illustrative to follow the reasoning of Neyman, who

developed the theory of CI's7,8. Neyman starts by
approaching the interval estimation from a Bayesian
perspective, and describes a posterior distribution of the
parameter θ, given the data x (we will use a different
notation, e.g., μ in place of θ, for consistency with our
notation). Neyman writes that this distribution, Pr(μ|x),
“permits the calculation of the most probable values of the
μ and also of the probability that μ will fall in any given
interval,”7 for example, μL ≤ μ ≤ μU. Neyman notes that
the calculation of such a posterior interval requires pla-
cing a prior probability distribution on μ, something he
seeks to avoid through the development of CIs. In the
Bayesian set-up, the endpoints μL and μU are fixed num-
bers, while μ is random. To derive the CI endpoints as
functions of random data, L(x) ≤ μ ≤U(x), Neyman
instead proceeds by working with the probability of the
data x given the parameter value μ: Pr(x|μ). In contrast
with posterior intervals, the value μ is unknown but
constant and the interval endpoints L(x) and U(x) are
random.
Neyman describes unequivocally the operational usage

of CI's as “behavioral”: when a scientist consistently
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adheres to the rule of deciding to accept that μ is con-
tained in every interval computed based on the data x, the
scientist will be correct (1− α)% of the time in the long-
run. He writes that the use of the intervals in practice
would consist of collecting data x, calculating the end-
points, and “ stating that the true value of μ lies between
[the interval endpoints]”. He stresses that the word
‘‘stating’’ “is put in italics to emphasize that it is not
suggested that we can ‘‘conclude’’ that we can ‘‘conclude’’
that [the true value of μ= μ*] is L(x) ≤ μ* ≤ U(x) nor that
we should ‘‘'believe’' 'that μ* is actually between L(x) and U
(x)” and continues: “the probability statements refer to the
problems of estimation with which the statistician will be
concerned in the future”, but “once the sample is drawn
and the values of L(x), U(x) determined, the calculus of
probability adopted here is helpless to provide answer to
the question of what is the true value of μ”.
Neyman’s description excludes any probabilistic mean-

ing attached to the endpoints of a particular interval:
“after observing the values of the x’s […] we may decide to
behave as if we actually knew that the true value [of the
parameter μ] were between [L(x) and U(x)]. This is done as
a result of our decision and has nothing to do with ‘‘rea-
soning’' or ‘‘conclusion'’ […] The above process is also
devoid of any ‘'belief’' concerning the [true value of μ]”'.
An important point in the preceding discussion of

confidence and prediction intervals is that their coverage
property is defined as a long-run average of zeros and
ones, where “1” indicates an event that a random interval
covers the quantity of interest, i.e., a replication P-value in
the case of P-intervals, and “0” indicates that the replica-
tion P-value is outside that interval. Properly constructed
intervals applied repeatedly to independent data sets will
result in 1’s occurring with (1− α) frequency. Although it
is desirable to have the shortest possible intervals with this
property, there is generally no information provided by

the interval endpoints about a possible spread of repli-
cation P-values. However, interpretation of the classical
interval endpoints in a meaningful way is warranted from
a Bayesian viewpoint. A Bayesian derivation of a classical
interval may reveal the tacitly assumed data generating
mechanism. We will refer to that mechanism con-
ventionally as an implicit prior distribution. It allows one
to interpret the endpoints of a replication P-interval as (1
− α) probability of capturing the replication P-value. The
endpoints of a P-interval are typically interpreted in a
probabilistic fashion without specifying implicit prior
assumptions. The following quote from Cumming2 gets to
the heart of the matter succinctly: “This article shows that,
if an initial experiment results in two-tailed P= 0.05,
there is an 80% chance the one-tailed P-value from a
replication will fall in the interval (0.00008, 0.44) […]
Remarkably, the interval—termed a P interval—is this
wide however large the sample size.” An equivalent
statement appears in a Nature Methods letter by Halsey
and colleagues: “regardless of the statistical power of an
experiment, if a single replicate returns a P-value of 0.05,
there is an 80% chance that a repeat experiment would
return a P-value between 0 and 0.44.”4 Both statements
make use of a specific value, P = 0.05, for which the
interval is constructed and the endpoints of that interval
are described explicitly as probability bounds for possible
values of replication P-values.
To further illustrate possible issues with P-interval

coverage due to restrictions on the P-value range, con-
sider the following example. Suppose one performs a test
for the mean difference between two populations and
predicts variability of P-values in a replication study by
constructing the corresponding 80% P-interval. If multiple
samples are drawn from these populations and 80% P-
intervals are constructed each time regardless of whether
the observed P-value was significant or not, the results of

Fig. 1 Randomly simulated Z-statistics (dots) with the corresponding 80% prediction intervals (vertical error bars). Tests were performed based on
two samples (n1 = n2 = 50) from two different populations. The difference between population means was a random draw from the standard normal
distribution. Pink color highlights intervals that did not capture the value of the future test statistic
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these multiple experiments can be summarized graphi-
cally by Fig. 1. Each dot in Fig. 1 represents a value of the
test statistic from a replication study and error bars show

prediction intervals based on the observed P-value in the
original study. The underlying effect size and sample sizes
across studies are kept constant so replication values of
the test statistic ranges from about negative two to posi-
tive two across all simulated experiments. Pink color
highlights P-intervals that failed to capture the future
value of statistic. Given these results, one can calculate an
empirical binomial probability, i.e., the proportion of
times a parameter was captured by the interval, which
should be close to the stated nominal level. For instance,
in Fig. 1, the binomial probability is 84% (16 out of 100
intervals did not capture the future value)—very close to
80% nominal level, given a small number of repetitions.
Now, consider a bit different scenario, in which P-

intervals are constructed only if the experiment returns a
P-value close to 0.05, Pobt ≈ 0.05. That is, all experiments
with P-values that did not reach statistical significance are
discarded and a particular P-interval is constructed only if
the obtained P-value is close to 0.05. Would about 80% of
the P-intervals constructed around the respective Pobt still
capture the future value of statistic? An intuitive way to
think about this scenario is in connection to the pub-
lication bias phenomenon, where the actual relationships
tend to be weaker in reality than what was claimed in
publications, and we may suspect that P-intervals should
be similarly biased when constructed around non-ran-
dom, selected subsets of P-values.
Further, once a P-interval is constructed for a particular

Pobt, how can one interpret its bounds? If it is constructed
based on an 80% classical prediction interval for a normal
test statistic as originally suggested by Cumming2, with no
regard to prior distribution assumptions, by definition it
guarantees that 80% of P-intervals will capture a replica-
tion P-value. That is, the lower and the upper bounds of a
P-interval do not provide bounds on the range of possible
values of a replication P-value.
Our main goal in this work is to derive prediction

intervals for P-values based on the Mixture Bayes
approach whose endpoints have a clear probability
interpretation for any specific interval constructed based
on a given data set. Unlike the classical coverage property,
Bayesian intervals based on a posterior P-value distribu-
tion have the interval endpoints that are directly inter-
preted as defining a target range to contain a replication
P-value with probability (1− α).
P-values can be viewed as random variables, reflecting

variability due to random sampling. This notion goes back
to Fisher, whose method of aggregating information from
several independent P-values is based on recognizing the
fact that their product is itself a random variable (and
twice the negative logarithm of that product has a chi-
square distribution)9. The distribution of P-value and thus
its variability are easily characterized analytically for the
basic test statistics and depend on a measure of effect size,

Table 1 Binomial probabilities for 80% prediction
intervals, using a two-sample Z-test

Type of P-value

selection

Prior

variance,

σ20
� �

Conjugate

Bayes

Mixture

Bayes

P-interval

0≤ P-value≤ 1 0.25 80.1% 80.2% 80.2%

(no selection) 0.50 80.0% 80.0% 79.9%

1.00 80.0% 80.0% 80.0%

3.00 80.4% 80.4% 80.4%

5.00 80.2% 80.2% 80.3%

10.00 80.1% 80.1% 80.1%

0.045 ≤ P-value ≤
0.055

0.25 79.8% 79.8% 58.4%

0.50 80.1% 80.1% 66.7%

1.00 79.8% 79.8% 73.5%

3.00 80.0% 80.0% 80.2%

5.00 79.9% 79.9% 80.7%

10.00 80.1% 80.1% 80.8%

0 ≤ P-value ≤ 0.05 0.25 80.0% 80.0% 46.0%

0.50 80.1% 80.1% 55.4%

1.00 80.2% 80.2% 65.5%

3.00 79.8% 79.8% 75.7%

5.00 80.4% 80.4% 78.4%

10.00 80.3% 80.3% 79.5%

0 ≤ P-value ≤
0.001

0.25 80.1% 80.1% 17.0%

0.50 80.1% 80.1% 29.7%

1.00 80.0% 79.9% 47.6%

3.00 80.0% 80.0% 70.2%

5.00 79.9% 79.9% 75.4%

10.00 79.7% 79.8% 78.2%

5 × 10 − 8 ≤ P-

value ≤ 5 × 10 − 7

3.00 80.1% 80.1% 62.8%

5.00 79.5% 79.5% 72.6%

10.00 79.8% 79.8% 78.3%

5 × 10 − 9 ≤ P-

value ≤ 5 × 10 − 8

3.00 80.0% 80.0% 60.6%

5.00 79.9% 80.0% 71.8%

10.00 80.2% 80.2% 78.1%

The table illustrates the effect of thresholding, applied to observed P-values, e.g.,
selection of statistically significant P-values at 5% level, on binomial probabilities
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such as the value of odds ratio (OR) of disease given
exposure vs. nonexposure to a pollutant. The nature of P-
value randomness may be viewed from a number of
angles10-12, but the randomness of P-value reflects ran-
domness of the respective test statistic. When the effect
size is zero, P-value of a continuous test statistic is uni-
formly distributed between zero and one, and as the
departure from the null hypothesis increases, the shape of
the P-value distribution becomes increasingly skewed
toward zero (suppl. section S1.) Furthermore, effect sizes
can also be thought of as arising from a distribution, (e.g.,
Equation 11 in Kuo et al.13) in which case the P-value
distribution becomes a weighted average, i.e., a marginal
distribution over all possible values of the effect with their
respective probabilities as weights.
The idea behind the P-intervals is that without speci-

fying any prior knowledge on possible values of the effect
size, one can take at face value the magnitude of an
obtained P-value (Pobt). In other words, there is infor-
mation about the magnitude of the effect size contained in
the magnitude of Pobt, and that information alone can be
used to make predictions about a P-value obtained in a
replication study, denoted as Prep. As we illustrate with
quotes from Cumming2 and Hasley4, practical applica-
tions of P-intervals are often factually Bayesian, defaulting
to some interpretation about a possible spread of repli-
cation P-values. Our next goal is to explore relationships
between P-intervals and Bayesian intervals. These rela-
tions are important because not explicitly stating a prior
distribution amounts to sweeping a potentially unrealistic
prior under the rug. In this work, we give explicit
expressions for how the influence of the prior on the P-
interval diminishes as more data is collected. Eventually,
as the sample size increases, the P-interval endpoints
approach those of the Bayesian intervals, but the sample
size requirements depend on the variance of the prior

distribution. In observational research, and especially in
genetic association studies, where majority of tested
hypotheses are effectually false, we find that sample sizes
need to be very large.
Further, we show that P-intervals can be viewed as a

special case of the intervals that we develop: they corre-
spond to the assumption that the product of the sample
size N and the variance of the prior distribution s20 on the
standardized effect size (δ) is a “large” number, in the
sense that if we consider a normal random variable whose
variance is N ´ s20, we could think of its distribution as
approximately flat, rather than bell-shaped, in the range
that a standardized effect size could be taking (the stan-
dardized effect size is defined in units of the standard
deviation, e.g., δ= μ/σ). Flat priors are sometimes
described as “noninformative,” reflecting lack of
researcher’s knowledge or preference about a possible
effect size. Yet, far from being uninformative, the flat prior
places equal weighting on tiny as well as on large devia-
tions from the null hypothesis. For example, correlation
(being the standardized covariance) cannot be outside -1
to 1 interval, so simply acknowledging this range in a
prior is already an improvement over an unrestricted
prior. If part of the replicability problem lies with the
preponderance of tiny effects in reality, the a priori
assumption of a flat distribution for the effect size implicit
in P-intervals would tend to result in intervals with the left
endpoint that is unrealistically close to zero and thus
promote false findings.
How large can N ´ s20 be assumed to be realistically?

Genetic epidemiology and other observational studies
routinely test hypotheses that can be viewed conceptually
as a comparison of two-sample means. Exposure to an
environmental factor or genetic effect of a locus on sus-
ceptibility to disease are examples where the presence of
effect implies a difference in mean values between

Fig. 2 Selection bias influences the performance of prediction intervals. Eighty-percent prediction intervals constructed for Pobt � 0:05 have
noticeably poorer performance relative to the ones constructed for a random statistic
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subjects with and without disease. In these examples, the
effect size can be measured by the log of odds ratio, log
(OR). Expecting the majority of effect sizes to be small
and the direction of effect to be random, log(OR) can be
described by a zero-centered, bell-shaped distribution. It
can be shown (Methods section) that the value δ= (μ1−
μ2)/σ for a given value of log(OR) cannot exceed

logðORÞ= 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ ð1þ ORÞ= ffiffiffiffiffiffiffi

OR
pq� �

. This implies that the

distribution of the standardized effect size is bounded and
a considerable spread of δ values is unrealistic. To re-
iterate this point, the effect size, for example, as measured
by log(OR) can be quite large, but the standardized effect

size (e.g., δ ¼ logðORÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½OR�p

) can be bounded within
a small range of possible values. For example, OR= 4 gives
the maximum possible value for δ to be about 1/3. Even a
very large value OR= 10 results in max(δ) ≈ 1/2. Such
large ORs are rarely encountered in observational stu-
dies14, suggesting that realistic variance values s20 cannot
be very large. Further, as detailed in Methods section, the
maximum possible value of δ for any OR, no matter how
large, cannot exceed ≈ 0.663. This bound places further
restrictions on realistic and maximum possible values of
the prior variance s20, because the prior distribution has to
vanish at that bound. Genetic epidemiology studies and
genome-wide association scans, in particular, routinely
involve massive testing. These studies have uncovered
many robustly replicating genetic variants that are pre-
dictors of susceptibility to complex diseases. It is also
apparent that the vast majority of genetic variants carry
effect sizes, such as measured by log(OR), that are very
close to zero, and there are commonly only a handful of
variants with ORs as large as 1.5. This implies tiny values
of s20. For example, a reported distribution of effect sizes
for the bipolar disorder (BP)15 and cancers16 translates
into the values of the order 10−6–10−5 for s20 (Methods
section).
In the next sections, we show how small values of s20

render P-intervals unfit as a prediction interval for a
replication value’s (Prep) variability and provide a gen-
eralization based on the Mixture Bayes approach, which is
not constrained to the conjugate model only and provides
researchers with the flexibility to specify any desired prior
effect size distribution. Our results reveal immunity of the
Mixture Bayes intervals to multiple-testing phenomena
and to selection bias. When an interval is constructed for

Table 3 The effect of the prior variance mis-specification
on the coverage of Bayesian-type prediction intervals

Number of tests Prior variance Bayesian Bayesian P-interval

σ20
� �

σ20=2
� �

2σ20
� �

L = 1 0.5 77.5% 81.7% 80.3%

1 76.5% 81.5% 79.7%

L = 10 0.25 77.6% 81.1% 63.8%

0.5 75.9% 80.8% 66.2%

L = 100 3 70.4% 77.8% 65.1%

1 72.1% 77.2% 51.1%

L = 1000 0.25 76.4% 78.2% 16.9%

0.5 72.9% 75.8% 23.9%

L = 10,000 3 62.0% 72.9% 46.2%

10 69.5% 77.1% 66.5%

Table 2 Binomial probabilities for 80% prediction
intervals, using a two-sample Z-test

Number of

tests

Prior

variance

σ20
� �

Conjugate

Bayes

Mixture

Bayes

P-interval

L = 10 0.25 80.4% 80.4% 63.8%

0.50 79.9% 79.9% 66.2%

1.00 80.6% 80.6% 70.4%

3.00 80.0% 80.0% 75.1%

5.00 80.1% 80.1% 76.7%

10.00 80.1% 80.1% 78.3%

L = 100 0.25 79.8% 79.8% 35.7%

0.50 80.2% 80.2% 42.3%

1.00 79.9% 79.9% 51.1%

3.00 79.6% 79.6% 65.1%

5.00 80.0% 80.0% 70.0%

10.00 79.8% 79.8% 74.5%

L = 1000 0.25 80.0% 80.1% 16.9%

0.50 79.9% 79.8% 23.9%

1.00 80.0% 79.9% 35.0%

3.00 80.0% 79.9% 55.5%

5.00 79.7% 79.6% 63.1%

10.00 80.2% 80.1% 70.7%

L = 10,000 0.25 80.1% 80.1% 07.2%

0.50 80.1% 80.0% 12.9%

1.00 79.8% 79.6% 23.1%

3.00 79.7% 79.1% 46.2%

5.00 80.2% 79.6% 56.5%

10.00 80.2% 79.5% 66.5%

The table illustrates the effect of selecting the most significant P-value (out of L
tests) on P-interval coverage
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a particular value of Prep, its endpoints can be interpreted
as a likely range of the Prep values. We contrast the per-
formance of the traditional P-intervals relative to the
Bayesian-based prediction intervals using results from the
Psychiatric Genomics Consortium (PGS)5 and conclude
with a discussion of the implications of our findings.

Methods
Prediction intervals
The P-interval can be obtained as a classical prediction

interval for the normally distributed test statistics, (Z-
statistics). The classical interval prediction problem is to
probabilistically predict possible values of a future ran-
dom observation, Xn+1, based on a sample of n values that
have been already obtained, X1,…,Xn. In the case of the Z-
statistic, the information about the effect (e.g., the popu-
lation mean) is summarized by the sample average, X .
Although on the surface, prediction of a future “replica-
tion” value, Zrep is based on a single obtained test statistic,
Zobt, that statistic, as well as its corresponding P-value,

Pobt, depend on all n sample observations. Moreover, in
cases such as this, X , being a sufficient statistic, contains
all information about the unknown mean (i.e., the effect
size) available from the data. Therefore, based on a P-
value as the only summary of data, it is possible, at least
for standardized effect sizes, to obtain the full Bayesian
posterior distribution and to characterize uncertainty
about the effect size values. This conversion of statistics or
P-values to posterior distributions requires one to aug-
ment information contained in P-values with a prior
distribution on the standardized effect size. This approach
is quite general, because while effect size may be mea-
sured by different types of statistics, such as the difference
of two-sample means, or the logarithm of the OR, the
summary of the effect present in the data is captured by
the same Z-statistic, and it is the type of the test statistic
that determines the interval properties, rather than a
particular measure of the effect size.
The prediction distribution for the statistic Zrep relates

to one-sided P-value as Prep= 1−Φ(Zrep) and has a

Table 4 Revised predictions based on recent results from the Psychiatric Genomics Consortium with the prior effect size
distribution estimated for the bipolar disorder susceptibility loci

SNP Disorder Cases Controls One-sided P-value Prediction intervals for Prep

Conjugate Bayesa Mixture Bayesa Mixture Bayesb Lazerroni et al.

rs2535629 ADHD 2787 2635 0.1005 (0.023, 0.977) (0.023, 0.977) (0.023, 0.977) (2.57e-5, 0.93)

ASD 4949 5314 0.098 (0.022, 0.977) (0.022, 0.977) (0.022, 0.977) (2.39e-5, 0.93)

BP 6990 4820 3.305e-06 (0.017, 0.977) (0.017, 0.977) (6.92e-7, 0.93) (1.69e-13, 0.04)

MDD 9227 7383 0.000108 (0.016, 0.977) (0.016, 0.977) (5.25e-6, 0.95) (4.89e-11, 0.18)

Schizophrenia 9379 7736 3.355e-05 (0.015, 0.977) (0.015, 0.977) (3.98e-7, 0.95) (6.92e-12, 0.11)

All 33,332 27,888 1.27e-12 (0.001, 0.871) (0.001, 0.871) (2.2e-18, 1.5e-5) (7.41e-23, 1.17e-5)

ADHD attention deficit-hyperactivity disorder, ASD autism spectrum disorder, BP bipolar disorder, MDD major depressive disorder
aThe prior effect size distribution using the conjugate model with the variance estimated based on the tabulated values of effect sizes reported in Chen et al.
bThe prior effect size distribution specified directly by the estimates reported in Chen et al.

Table 5 Revised predictions based on recent results from the Psychiatric Genomics Consortium with the prior effect size
distribution estimated for cancer risk loci

SNP Disorder Cases Controls One-sided P-value Prediction intervals for Prep

Conjugate Bayesa Mixture Bayesa Mixture Bayesb Lazerroni et al.

rs2535629 ADHD 2787 2635 0.1005 (0.023, 0.977) (0.023, 0.977) (0.023, 0.977) (2.57e-5, 0.93)

ASD 4949 5314 0.098 (0.022, 0.977) (0.022, 0.977) (0.022, 0.977) (2.39e-5, 0.93)

BP 6990 4820 3.305e-06 (0.017, 0.977) (0.017, 0.977) (5.89e-9, 0.93) (1.69e-13, 0.04)

MDD 9227 7383 0.000108 (0.016, 0.977) (0.016, 0.977) (7.41e-5, 0.98) (4.89e-11, 0.18)

Schizophrenia 9379 7736 3.355e-05 (0.015, 0.977) (0.015, 0.977) (9.33e-7, 0.95) (6.92e-12, 0.11)

All 33,332 27,888 1.27e-12 (0.001, 0.871) (0.001, 0.871) (8.91e-20, 4.2e-5) (7.41e-23, 1.17e-5)

ADHD attention deficit-hyperactivity disorder, ASD autism spectrum disorder, BP bipolar disorder, MDD major depressive disorder
aThe prior effect size distribution using the conjugate model with the variance estimated based on the tabulated values of effect sizes reported in Park et al.
bThe prior effect size distribution specified directly by the estimates reported in Park et al.
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normal distribution, Φ(zobt,2), where Φ(⋅) is the standard
normal cumulative distribution function (CDF). Thus, the
classical P-interval is constructed as:

zobt ± zð1�α=2Þ
ffiffiffi
2

p
; ð1Þ

where z(1−α/2) is the 1−α/2 quantile of the standard
normal distribution. This distribution does not depend on
the actual mean of Z, which is

ffiffiffiffi
N

p
´ δ. The reason for that

becomes apparent when the P-interval is derived as a
Bayesian prediction interval. For a normally distributed Z-
statistic, Z � Nðμ; 1Þ, assume the conjugate model, that is,
μ � ffiffiffiffi

N
p

´Φðm0; s20Þ. Then, the posterior distribution for
the mean of Zobt is normal Φ(θ, s2), where

θ Zobtj ¼
m0ffiffiffi
N

p
s20
þ Zobt

s2
ð2Þ

s2 Zobtj ¼ 1
Ns20

þ 1

� ��1

; ð3Þ

and the prediction distribution for Zrep is Φ(θ,1+ s2).
Therefore, the P-interval based on the distribution Φ
(zobt,2) is a Bayesian interval that implicitly assumes that
N ´ s20 ! 1, which makes s2|Zobt= 1 and the prediction
distribution for Zrep equal to Φ(θ,2). We refer to the
resulting intervals as the Conjugate Bayes intervals. The
endpoints of these intervals are given by

θ± zð1�α=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ 1

p
ð4Þ

� Zobt
σ20

1þ σ2
0
þ m0

1þ σ20
± zð1�α=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ2

0

1þ σ20

s
; ð5Þ

σ2
0 ¼ Ns20

Derived as a Bayesian prediction interval through the
conjugate model, the endpoints of a P-interval in Eq. (5)
can now be interpreted as bounds of the supposed likely
range of replication P-values within a given probability
(e.g., 80%). However, the conjugate model is restrictive in
that a specific prior distribution has to be assumed, which
may not provide an adequate representation of external
knowledge about the effect size distribution. It also limits
construction of the intervals to P-values derived from
statistics for which there are known conjugate priors.
Here, we introduce a more flexible approach, the Mixture
Bayes, without these restrictions. The Mixture Bayes
intervals can be constructed for P-values derived from
statistics whose distribution is governed by a parameter γ
that captures deviation from the usual point null
hypothesis, H0, and has the form

ffiffiffiffi
N

p
´ δ or its square,

N× δ2. This includes normal, chi-squared, Student’s t and
F-statistics. We partition the prior distribution of γ into a
finite mixture of values δ1, δ2,…, δB with the corre-
sponding prior probabilities, Pr(δi). As an example, let P-
value be derived from an F-test for comparison of two-
sample means, with the corresponding sample sizes n1

and n2. Let N= 1/(1/n1+ 1/n2). For i-th prior value of
effect, a statistic based on sampling values of
T ¼ ðX1 � X2Þ2=σ̂2has a noncentral F-distribution, with
the noncentrality

γi ¼ N ðμ1 � μ2Þ=σ½ �2i¼ Nδ2i ; ð6Þ

and the degrees of freedom df1= 1, df2= n1+ n2− 2:

T � f T ¼ t γi; df 1; df 2jð Þ; ð7Þ

where f is the density of the noncentral F-distribution.
The posterior distribution is a mixture,

Pr δ2j Tj ¼ t
� �

¼
Prðδ2j Þf T ¼ t γj

			 ; df 1; df 2
� �

PB
i¼1 Prðδ2i Þf T ¼ t γij ; df 1; df 2ð Þ ;

ð8Þ
with the posterior mean

θ ¼
XB
i¼1

δ2i Pr δ2i
		P � value

� �
: ð9Þ

Next, we obtain the CDF of the prediction distribution
for the replication statistic, Trep, as

FpðxÞ ¼
PB
j
Pr δ2j Tobtj
� �R x

0f Trep γj

			 ; df 1; df 2
� �

dTrep

¼ PB
j
Pr δ2j Tobtj
� �

F Trep ¼ x γj

			 ; df 1; df 2
� �

:

ð10Þ
Then, the Mixture Bayes interval endpoints are derived

from the quantiles of this CDF that are given by F�1
p ðxÞ.

We have developed a user-friendly software tool for
implementation of our Mixture Bayes approach, available
at https://github.com/dmitri-zaykin/bayesian-PValue-
Prediction-Intervals. The software allows users to con-
struct a Mixture Bayes prediction interval for a P-value
from the standard normal, Student’s t, chi-square or an F-
statistic. For a P-value based on the standard normal or a t
distribution, users have a choice between the conjugate
normal model and the tabulated prior effect size dis-
tribution. For the F and the chi-squared test, no conjugate
model exists, but prior values can be specified in a tabu-
lated manner.

Prior variance for the standardized logarithm of the OR
Genetic epidemiology and other observational studies

routinely test hypotheses conceptually related to a com-
parison of two-sample means. Effect size is often mea-
sured by the log of OR, which can be related to
the difference in means (that become frequencies, p1
and p2, in the case of binary variables) as
p1 � p2 � logðORÞ~pð1� ~pÞ, where ~p is the pooled fre-
quency. Distribution of P-values for commonly used test
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statistics depends on the product of the sample size, (N orffiffiffiffi
N

p
), and a measure of effect size, μ, scaled by the var-

iance σ2 (or σ), i.e. δ= μ/σ. For example, when the out-
come is a case/control classification and the predictor is
also binary, the standardized effect size can be expressed
in terms of the correlation (R) times the sample size as
follows:

γ ¼
ffiffiffiffi
N

p
´
μ

σ
¼

ffiffiffiffi
N

p
´ δ ¼

ffiffiffiffi
N

p
´R ð11Þ

¼
ffiffiffiffi
N

p
´

p1 � p2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~pð1� ~pÞ vð1� vÞ½ ��1

q ; ð12Þ

where v is the proportion of cases in the sample. In terms
of the logarithm of the odds ratio, OR,

γ ¼
ffiffiffiffi
N

p
´ δ ¼

ffiffiffiffi
N

p
´

logðORÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
v

1
p1ð1�p1Þ þ 1

1�v
1

p2ð1�p2Þ
q ð13Þ

�
ffiffiffiffi
N

p
´

logðORÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~pð1� ~pÞvð1� vÞ½ ��1

q : ð14Þ

For a given value of OR, the standardized effect size δ
cannot exceed the value δmax(OR) that we obtained by
maximizing the right hand side of Eq. (13) as:

δmaxðORÞ ¼ lnðORÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 1þORffiffiffiffiffi

OR
p

q : ð15Þ

Let F�1 � μ0j ; s20
� �

denote the inverse CDF of the con-
jugate prior distribution. Writing Pr(OR ≥ x)= β and
assuming a symmetric distribution of the effect size
around zero, i.e., m0= 0, we can relate the value δmax to
the prior variance of the conjugate model in the following

way:

δmaxðORÞ ¼
ffiffiffiffi
s20

q
F�1 1� β 0; 1jð Þ:

The maximum spread for the conjugate prior distribu-
tion is, therefore, obtained when its variance is equal to

s20 ¼
δmaxðORÞ

F�1ð1� β 0; 1j Þ
� �2

: ð16Þ

It should be noted that Eq. (15) gives the maximum δ
value for a given value of OR, however, it is not monotone
in OR. The maximum possible value of δmax(OR) can be
found to be at OR ≈ 121.35. Curiously, this value of OR
implies δmax(OR) value equal to the Laplace Limit con-
stant, 0.662743…
In Eq. (3), we showed that a classical P-interval is

equivalent to a Bayesian prediction interval if N ´ s20 ! 1.
Given a bounded nature of the standardized effect size
distribution, how large can prior variance N ´ s20 be
expected in reality? Park et al.16 reported distribution of
effect sizes for breast, prostate and colorectal (BPC)
cancers in terms of a table, giving the numbers of different
loci (Li) with the corresponding values of ORi. Using the
same approach, Chen et al.15 provided the effect size
distribution for the BP risk loci. Assuming the total
number of independent variants to be M= 300,000,
proportions of associated loci are wi= Li/M. We assumed
the average OR among non-associated loci to be 1.005 (or
its inverse for the negative part of the log(OR) distribu-
tion). The variance s20 was calculated asP

i wiðγi=
ffiffiffiffiffiffiffi
2N

p �mwÞ2, where mw ¼ P
i wiγi=

ffiffiffiffiffiffiffi
2N

p
, and

gave the value ≈ 5× 10−6 for both cancer and the BP

Fig. 3 Complex diseases have intrinsically weak genetic effects, as illustrated by a Manhattan plot with only a few significant P-values highlighted in
green color. The effect sizes corresponding to P-values in the Manhattan plot look “L-shaped,” reflecting the idea that the majority of signals are just
noise with very little effect sizes (e.g., as measured by log2ðORÞ so the bulk of the effect size distribution is around zero and it is increasingly less likely
to find a signal with a large effect size
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disorder risk loci. Thus, N needs to be about 50,000 for
s20 ´N to reach 1/2.
In the next section, we explore P-interval and Mixture

Bayes interval performance for the different values of
prior variance σ20 ¼ s20 ´N and under various forms of
selection. In experiments with multiple statistical tests, it
is a common practice to select most promising results:
tests that yielded the smallest P-values would be com-
monly selected. One may also select results with the lar-
gest effect sizes as tentatively most promising for a follow-
up. This selection induces a “selection bias”, for example,
the largest estimated effect size in the original study
would tend to be smaller once re-evaluated in a replica-
tion experiment, a phenomenon also known as the win-
ner’s curse17. This would reflect the fact that the actual
population effect size would tend to be over-estimated
due to selection of the best outcome from the original
study. An intuitive way of seeing why a selection bias
would be present is to imagine a multiple-testing
experiment where none of the tested predictors have
any relation to the outcome. When one selects a predictor
that showed the maximum estimated effect size, there will
obviously be a bias, because the true effect size is zero. But
this type of bias would also be present if the underlying
effect sizes are non-zero for some or all of the predictors.
Selection bias is difficult to correct for in the frequentist
setting, but Bayesian analysis can be robust to this bias18.
It is expected that the performance of frequentist-based
P-intervals may suffer under selection while Bayesian-
based intervals may not be affected by it. Thus, we
investigated several types of selection and the resulting
potential bias, measured by the proportion of times an
interval captures Prep relative to the stated nominal level
(e.g., 80%).

Results
Table 1 summarizes empirical binomial probabilities of

the 80% prediction intervals for a standardized effect sizeffiffiffiffi
N

p
´ δ under different types of P-value selection (simu-

lation study set-up is detailed in Supplementary Infor-
mation). The observed P-value was based on a two-
sample Z-test and was thresholded according to the fol-
lowing selection rules: (i) no selection, i.e., a prediction
interval is constructed for a randomly observed P-value;
(ii) selection of P-values around a value, e.g., P � 0:05,
i.e., prediction intervals are constructed only for P-values
that were close to the 5% significance level; (iii) selection
of P-values that are smaller than a threshold, e.g., P<0:05.
Empirical binomial probabilities were calculated based on
50,000 simulations, using three different methods: (a) a
conjugate Bayesian model assuming normal prior dis-
tribution for the observed value of a test statistic,
Zobt � Φð0; σ20Þ, where σ20 ¼ s20 ´N ; (b) our Mixture Bayes

approach with the same prior as for the conjugate model;
and (c) the original P-interval proposed by Cumming2.
Mixture Bayes intervals were included in these simula-

tions to check how well they approximate a continuous
prior distribution assumed by the conjugate intervals. We
used mixture components with the length σ0/8 for every
component and truncated the normal prior at 10−6 and 1
−10−6 quantiles. This provided us with sufficient accu-
racy and resulted in the number of mixture components,
B, equal to 76 for all values of σ2

0.
Table 1 clearly indicates that all three construction

methods have the correct coverage (~80%) if a prediction
interval is calculated for a randomly observed P-value
∈[0,1]. However, selection and small prior variance both
impair performance of P-intervals. For instance, if an
interval is constructed for a P-value < 0.001 and
σ2
0 ¼ 0:25, the coverage of the traditional non-Bayesian

P-interval may be as low as 17%. This poor coverage is
due to a combination of both the selection bias and the
implicit assumption that prior variance of σ2

0 ranges from
negative infinity to positive infinity, which leads to the
left-side P-interval endpoint being too close to zero.
However, even for large values of prior σ2

0, the P-interval
has poor coverage when constructed for P-values around
genome-wide significance levels (e.g., P-value <1.5×
10−7). On the other hand, for large P-values the coverage
of P-intervals becomes greater than the nominal (1− α)%
value. This is a consequence of the fact that P-interval’s
width depends on the magnitude of P-values and as P-
values become larger, the width of the interval increases
as well. For example, given the prior variance
N ´ s20 ¼ 0:5, the width of P-intervals and the Bayesian
intervals coincides at P-value= 0.446 (hence, the Bayesian
intervals are wider than P-intervals at values smaller than
0.446). The P-interval around P= 0.446 is: 0.147 ≤P ≤
0.995, while the Bayesian interval is 0.110 ≤ P ≤ 0.958.
To illustrate implications of decrease in P-interval

coverage for P-values less than 0.05, we replicated Fig. 1
under the assumption that a P-interval is constructed only
for P-values close to 0.05, P � 0:05. The results are
summarized in Fig. 2 and show how P-intervals are
becoming increasingly likely to miss Prep values alto-
gether. The underlying effect size was kept the same in
both figures and blue dots that represent values of zrep
have similar range. Restricting P-values to be close to 0.05
induces selection bias, causing overestimation of the
underlying effect size (that is, zobt will tend to be larger
than it should be, given the effect size magnitude) and a
vertical shift in P-intervals. Bias in coverage can be
potentially removed by extending the interval endpoints
by a correct amount, but the appropriate size of the
interval appears difficult to determine analytically in a
general way.
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Similar conclusions regarding coverage can be drawn if
a prediction interval is constructed for the most sig-
nificant P-value out of L tests (Table 2). That is, if a P-
interval is constructed for the smallest P-value out of L=
10, 100, or 1000 tests, both Bayesian methods have the
correct coverage and are immune to the selection bias.
The non-Bayesian P-interval approach, however, once
again performs poorly if the prior variance is small.
Additionally, as the number of tests increases, out of
which a minimum P-value is selected, the P-interval
coverage is becoming increasingly off the 80% mark.
P-intervals are a special case of our Mixture Bayes

intervals, and can be obtained by specifying the prior
distribution for δ as a zero-mean normal with the prior
variance s20 such that σ2

0 ¼ N ´ s20 is very large. When P-
values are selected based on a cutoff value or their mag-
nitude, P-intervals can still be a poor approximation to a
distribution with σ20 as large as 10. For example, the last
row of Table 2 demonstrates that P-intervals are still
biased for σ2

0 ¼ 10 in terms of the coverage when con-
structed for the minimum P-value taken from multiple-
testing experiments with 10,000 tests. Multiple-testing on
the scale of genome-wide studies would further degrade
the coverage of P-intervals. This places specific restric-
tions on how large s20 can be. For the zero-mean normal
prior, s0 = 0.66/3 is still unreasonably large, and in gen-
eral, even for prior distributions concentrated at these
bounds, s20 � ðU � LÞ2=4 by Popoviciu’s inequality.
We next explored the effect of prior variance mis-

specification on the coverage of the Bayesian-type pre-
diction interval when it is constructed for the most sig-
nificant result out of L tests. Two scenarios were
considered: under-specification (σ2

0=2) and over-
specification ð2σ2

0Þ of the prior variance σ20 ¼ Ns20. The
results are summarized in Table 3 and indicate that in
terms of the coverage it is safer to over-specify values of
the prior variance than to under-specify them. The con-
jugate model with m0= 0 gives the intervals in the fol-
lowing form

Zobt
σ2
0

1þ σ20
± zð1�α=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ2

0

1þ σ2
0

s
; ð17Þ

indicating that σ2
0 values that are too small pull the

interval mean excessively toward zero while at the same
time reducing its proper length.
Unlike the regular Bayesian model, our Mixture Bayes

approach is not limited to conjugate priors and prediction
intervals can be constructed for any P-value stemming
from statistics other than the normal Z-test. Additionally,
the Mixture Bayes approach allows the use of any prior
distribution and enjoys the same coverage properties as
the conjugate-Bayes prediction intervals, that is,

resistance to multiple testing and selection bias (Supple-
mentary Tables S1 and S2).
To illustrate the interpretation of the prediction inter-

vals and contrast the performance of the Bayesian-based
intervals to the classical P-intervals, we replicated part of
Table 1 in Lazzeroni et al.5, who considered recent find-
ings from the Psychiatric Genomics Consortium (PGC)
for attention deficit-hyperactivity disorder (ADHD), aut-
ism spectrum disorder (ASD), bipolar disorder (BPD),
major depressive disorder (MDD), and schizophrenia. The
consortium reported four single-nucleotide polymorph-
isms (SNPs) associated with these psychiatric disorders
but, for illustrative purposes, we constructed prediction
intervals only for a single SNP, rs2535629. We used four
different methods to calculate prediction intervals: (i) the
conjugate Bayesian model with the estimated prior var-
iance, s20, based on the results from Chen et al.15 (see
Methods section); (ii) Mixture Bayes approximation to
this continuous conjugate normal prior, using the same
variance, s20; (iii) Mixture Bayes approach with the BP
effect size distribution reported in Chen et al. as a prior
(without assuming the conjugate model); and (iv) pre-
diction intervals suggested by Lazzeroni et al. (which are
equivalent to Cumming’s P-intervals for one-sided P-
values). We note that prediction intervals given in Table 1
of Lazzeroni et al. are constructed for a two-sided
hypotheses test on the −log10(P-value) scale. However,
follow-up studies target replication of the directional
effects. For example, if a study reports a risk allele for a
phenotype of interest and a replicatioin study finds the
effect to be protective, one can not conclude that the
follow-up study replicated the original report. Thus, one-
sided tests would be more appropriate in follow-up stu-
dies and prediction intervals for one-sided P-values
should be of interest. To transform prediction intervals
for a two-sided P-value in Table 1 of Lazzeroni et al. into
prediction intervals for a one-sided P-value, one needs to
subtract logarithm based ten of two (log10ð2Þ) from both
prediction interval bounds. Further, to highlight differ-
ences in the performance of the Bayesian-based intervals
and P-intervals, we transformed prediction bounds in
Lazzeroni et al. from -log10(P-value) scale to P-value scale
by raising ten to the negative logarithm based ten of the
bounds power.
Table 4 summarizes the results. For all psychiatric dis-

orders, lower bounds of the 95% prediction intervals for
P-values based on the approach suggested by Lazzeroni
et al.5 are smaller than the ones from the Bayesian-based
methods. For instance, Lazzeroni and colleagues con-
cluded that in a similarly powered replication of the ori-
ginal PGC design, a P-value for an association between
rs2535629 and ADHD could be as low as 2:57 ´ 10�5,
given the observed one-sided P-value of 0.1005. Our
interval results portray a less optimistic picture with the
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P-value lower bound for ADHD equal to 0.023. Similar
observations hold for psychiatric disorders with sig-
nificant observed P-values. For example, in Lazzeroni
et al. the BP is concluded to be likely to yield a P-value
between 1.69× 10−13 and 0.04 and thus could reach
genome-wide significance (P-value <10−8) at a replication
study. Mixture Bayes prediction interval based on the
reported effect size distribution15 suggests a higher lower
bound for BP replication P-value of 6.92× 10−7, con-
cluding that a second, identical implementation of the
original PGC design would be unlikely to yield any
P-values <10−8. This difference in the spread of possible
replication P-values highlights the implicit prior
assumption built into the P-intervals that large effect sizes
are as likely to be observed as small ones.
Nonetheless, similar to conclusions in Lazzeroni et al.,

the association of rs2535629 with BP appears to be a
promising signal. Also, similar to the conclusions in
Lazzeroni et al., the combined study of all psychiatric
disorders is predicted to perform better than replication
studies of individual phenotypes (95% Mixture Bayes
prediction interval: (2:2 ´ 10�18; 1:5 ´ 10�5); 95% P-inter-
val: (7:4 ´ 10�23; 1:2´ 10�5)).
While it is expected that different diseases would have

different effect size distributions, we wanted to check the
robustness of our results to prior mis-specification and
utilized available effect size distribution given in Park
et al.16 for cancers. This assumes that the effect size dis-
tribution in terms of ORs has common main features for
different complex diseases, namely, that it is L-shaped
with the majority of effect sizes that can be attributed to
individual SNPs being very small, and that the frequency
of relatively common variants with increasingly large
values of OR quickly dropping to zero for OR as large as
about 3. The modified intervals are reported in Table 5.
While Mixture Bayes intervals become somewhat differ-
ent from those derived using the effect size distribution
for BP, their bounds are much more similar to each other
than to the bounds of P-intervals.

Discussion
It can be argued that regardless of the degree of their

variability, P-values are poorly suited for what they are
used for in practice. Researchers want to know whether a
statistic used for summarizing their data supports their
scientific hypothesis and to what degree. P-values in
general do not reflect uncertainty about a hypothesis. This
point and other misconceptions have been recently
reviewed in a statement on statistical significance and
P-values by the American Statistical Association19.
When using classical intervals, researchers, collectively,

may have some assurance that errors would be made at a
controlled rate, across the totality of similar studies, but
the goal of any individual researcher to quantify statistical

support for their hypothesis would be at odds with this
long-run coverage property supplied by P-intervals. In
this regard, P-intervals behave statistically in the same
way as P-values themselves. P-values provide long-run
error rates control, which is similar to quality control in
production. A robot in a production line has a rule for
declaring that a part is defective, which allows manu-
facturers to manage the rate of defective parts that go
through undetected. However, the robot is not concerned
about whether any particular part that goes through the
assembly conveyor is defective. In science, on the other
hand, an individual researcher has a specific hypothesis at
stake. The researcher is naturally more concerned about
statistical support for a specific hypothesis of their study
than about the average proportion of spurious findings in
a journal they are submitting their findings to. I.J. Good
made an apt analogy about a statistician that rejects the
null hypothesis based on a significant P-value that he
computed for his client20. By doing so, the statistician is
protecting his reputation via assurance that after aver-
aging over many clients he will have consulted throughout
his career, there will be about α% of erroneous rejections
of the null hypotheses. On the other hand, the client is at a
disadvantage, having no meaningful way of relating that
specific P-value to the likelihood of being wrong in
rejecting the hypothesis. For that, the statistician would
have to tell the client the conditional error rate: the
fraction of hypotheses that are rejected incorrectly among
only those hypotheses that were rejected, but that error
rate can only be obtained via a Bayesian approach. The
client wants to know whether a statistic used for sum-
marizing the data supports the scientific hypothesis and to
what degree, but P-values in general do not reflect
uncertainty about a hypothesis. In a similar way, end-
points of a specific P-interval constructed around a P-
value obtained in a particular experiment do not generally
reflect uncertainty about what a replication P-value may
be.
Despite their pitfalls, we believe that P-values carry

useful information that can be supplemented by prior
effect size distribution to assess credibility of a summary
statistic in a given study. In this article, we focused spe-
cifically on variability of P-values in replication studies to
develop a better appreciation of their potential range, in
light of profusion of scientific results that fail to reproduce
upon replication. We examined implicit prior assump-
tions of previously suggested methods and detailed how
these assumptions can be explicitly stated in terms of the
distribution of the effect size. As an intermediate step of
our approach, fully Bayesian posterior distributions for
standardized parameters, such as (μ1−μ2)/σ, are readily
extractable from P-values that originate from many basic
and widely used test statistics, including the normal
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Z-statistics, Student’s t-test statistics, chi-square and
F-statistics.
Here, we focus on one of many aspects of statistical

assessment of replicability; moreover, there are limitations
to our approach. While we believe that due to the limited
range of possible values for standardized effect size, it is
difficult to do worse in terms of mis-specification of the
prior distribution than to assume the prior implicit in P-
intervals, a careful construction of the prior distribution
may be difficult—a common issue in Bayesian analysis
that is not unique to our particular method. Among other
problems are assumptions of the model used to compute
P-values themselves and including possibilities of con-
founding unaccounted for by the model. Keeping these
limitations in mind, our results show that while classical
P-intervals are derived without the explicit assumption
that all effect sizes are equally likely, such a “flat” prior is
assumed implicitly, whenever the endpoints of any given
interval are interpreted as related to the range of repli-
cation P-values, which may lead to bias. For instance, bias
will be present if a P-interval is constructed for a parti-
cular value, such as Pobt= 0.05. It should be recognized
that in some experimental fields, statistical comparisons
can be carefully targeted to investigate only those effects
that are very likely to be real. A large probability of nearly
zero effect size in the prior is inappropriate in this case.
Still, one can argue that the prior should reflect some
degree of skepticism toward a proposed hypothesis. On
the other hand, under the flat prior assumption, all pos-
sible effect sizes are equally likely and hence a classical P-
interval neither contemplates “a degree of doubt and
caution and modesty”21 toward the hypothesis that the
effect is present and substantial, nor acknowledges
implausibility for the standardized effect size to take large
values. When the effect size distribution is modeled in
such a way that allows a proportionally small chance to
encounter a large effect size and assumes that the majority
of effect sizes would be close to zero, the Mixture Bayes
approach would explicitly incorporate higher chances of
what may be deemed “a false positive result” and it would
adjust prediction interval bounds accordingly. Similarly,
the flat prior assumption will lead to an invalid P-interval
if it is constructed for a range of P-values (e.g., 0.049 <
Pobt < 0.051). The (1− α)% nominal coverage of
P-intervals can be Bonferroni-adjusted5 for L tests as
(1− α/L)%. While that procedure can restore the long-
run coverage property, i.e., (1− α/L)% empirical binomial
probabilities for P-intervals presented in Table 2, the
endpoints of such intervals would still lack interpretation
as probability bounds for a replication P-value. Further,
we showed that a flat prior effect size distribution may be
incompatible with the bounded nature of the standardized
effect size distribution and once again may lead to biased
P-intervals. For example, many observational studies are

seeking for associations between health outcomes and
environmental exposures and can be viewed conceptually
as a comparison of two-sample means, δ= μ1−μ2. Pre-
sence of a true association in such studies implies a cer-
tain difference in mean values of exposure between
subjects with and without disease. In such examples, the
prior variance reflects the prior spread of the mean of a
test statistic, which usually can be related to the spread of
the standardized mean difference. The prior spread in
units of standard deviation cannot be very large, especially
in the fields of observational sciences, that are currently at
the focus of the replicability crisis. For example, assuming
that effect sizes with the OR greater than three are rela-
tively rare (1% occurrence rate), the prior variance for
lnðORÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðlnðORÞÞp
is about 0.01 at its largest possible

value (Eq. (15)) and would typically be smaller. Moreover,
using the commonly used asymptotically normal statistic
for OR as an example, we emphasize that the standardized
values δ can not exceed approximately −0.66 < δ < 0.66
for any value of OR.
Bayesian prediction intervals that acknowledge the

actual variability in the possible values of the effect size do
depend on the sample size and have correct coverage
regardless of whether a selection of P-values is present.
Reanalysis of the intervals reported by Lazzeroni and
colleagues5 shows that P-intervals can be substantially
different from Bayesian prediction intervals, even when
sample sizes are very large (Table 4). These results also
reflect discrepancies obtained with the direct, “as is” usage
of the estimated prior distribution in the Mixture Bayes
approach and an attempt to approximate this distribution
by the conjugate prior with the same variance. Endpoints
of the conjugate intervals on the log scale are compara-
tively shorter and highlight lack of flexibility inherent in
the conjugate approximation to the prior: allowance for a
large fraction of effect sizes to be close to zero makes the
tails of the conjugate distribution too thin. The estimated
prior distribution used by the Mixture Bayes approach is
more fat-tailed and is also asymmetric due to a high
proportion of minor alleles that carry effects of the posi-
tive sign.
Bayesian prediction intervals require informed input

about various values of the effect size and their respective
frequencies. This is not impossible. We know, for exam-
ple, that in genetic association studies the majority of
genetic effects across the genome are tiny and only few
are large. This idea can be illustrated by a Manhattan plot
in Fig. 3, where the majority of P-values are below the
significance threshold and only a few hits (highlighted in
green color) are deemed to be statistically significant
(details about how this Manhattan plot was constructed
can be found in the Supplemental section S4). The dis-
tribution of the squared effect size (i.e., log2ðORÞ corre-
sponding to those P-values is going to be L-shaped22,23, as
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illustrated by the density plot in Fig. 3. We should con-
trast such an L-shaped prior distribution, even if specified
only approximately, with a largely unrealistic assumption
implicit in P-intervals. When the assumed prior dis-
tribution does follow reality, Bayesian prediction intervals
enjoy the property of being resistant to selection bias. One
can select P-values in any range and obtain unbiased
intervals or select the minimum P-value from an experi-
ment with, however, many tests: the resulting interval
would still be unbiased without the need of a multiple-
testing adjustment to its coverage level.
It is notable that a major part of P-value critique has

been revolving around their usage in testing the null
hypothesis of the precisely zero effect size, such as μ= 0.
On the other hand, P-intervals of Cumming and Lazzer-
oni et al. are designed and applied primarily to signed Z-
statistics for testing one-sided hypotheses, such as μ < 0.
Indeed, in the context of replication studies, one-sided
hypotheses are appropriate, consistent with the goal of
replicating the effect direction found in an original study.
In fact, one-sided P-values can often be related to Baye-
sian probabilities of hypothesis. Casella and Berger give
asymptotic results and bounds for certain statistics24. It is
also possible to give direct relations in some cases, for
example, when testing the mean or mean difference with a
Z-statistic, the main statistic considered by Cumming and
by Lazzeroni and colleagues, and assuming that a priori,
the mean follows a normal distribution (Suppl. Section S2,
Equations S2, S3). One-sided P-value for the mean dif-
ference between two samples of sizes n1 and n2, respec-
tively, is P−value= 1− F(Z), where F(Z) is the tail area of
the normal curve from—∞ to Z. The probability of the
null hypothesis given the P-value takes a very similar

form, PrðH0jP � valueÞ ¼ 1� FðZ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1= Nϑ2
 �q

Þ,
where N is the half of the harmonic mean of the sample
sizes n1, n2, and ϑ is the variance of a zero-centered prior
distribution for the standardized mean. Clearly, the one-
sided P-value approaches this posterior probability as N
increases.
Overall, we share the viewpoint of Lazzeroni et al. that

P-values, or some modifications of them can be useful.
Rather than adopting the view that P-values should be
abandoned because they are poorly suited for what they
are used for in practice, we advocate development of
statistical methods for extracting information from them
in such a way that when augmented with the external
(prior) information about the effect size distribution, P-
value can be transformed into a complete posterior dis-
tribution for a standardized effect size. How small a par-
ticular P-value is (its magnitude) does not inform us what
to expect in a replication study25. Nevertheless, P-values,
as transformations of statistics (such as the Z-statistic)
contain summary information about the standardized

effect size. Conditional on that information, one can
predict a possible spread of future P-values and the
respective statistics in replication studies. As part of
addressing the multifaceted replicability crisis, researchers
would benefit from availability of tools for prediction of
variability inherent in commonly used statistics and P-
values. In particular, prediction intervals equip research-
ers with quantitative assessment of what they may expect
if they would have repeated their statistical analysis using
an independent confirmatory sample.
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