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Abstract

Psychrotroph microorganisms have developed cellular mechanisms to cope with cold

stress. Cell envelopes are key components for bacterial survival. Outer membrane is a con-

stituent of Gram negative bacterial envelopes, consisting of several components, such as

lipopolysaccharides (LPS). In this work we investigated the relevance of envelope charac-

teristics for cold adaptation in the Antarctic bacterium Pseudomonas extremaustralis by

analyzing a mini Tn5 wapH mutant strain, encoding a core LPS glycosyltransferase. Our

results showed that wapH strain is impaired to grow under low temperature but not for cold

survival. The mutation in wapH, provoked a strong aggregative phenotype and modifications

of envelope nanomechanical properties such as lower flexibility and higher turgor pressure,

cell permeability and surface area to volume ratio (S/V). Changes in these characteristics

were also observed in the wild type strain grown at different temperatures, showing higher

cell flexibility but lower turgor pressure under cold conditions. Cold shock experiments indi-

cated that an acclimation period in the wild type is necessary for cell flexibility and S/V ratio

adjustments. Alteration in cell-cell interaction capabilities was observed in wapH strain.

Mixed cells of wild type and wapH strains, as well as those of the wild type strain grown at

different temperatures, showed a mosaic pattern of aggregation. These results indicate that

wapH mutation provoked marked envelope alterations showing that LPS core conservation

appears as a novel essential feature for active growth under cold conditions.

Introduction

The 80% of earth surface, in terrestrial and aquatic environments, presents temperatures

around or below the 15˚C [1]. Temperature is a key factor for bacterial survival and growth.

Although most of microorganisms could suffer transient changes of temperature, psychro-

philes and psychrotolerant microorganisms have developed different adaptation strategies for
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growth under low temperatures[2]. Exposure to cold and ice provokes different effects in cellu-

lar components and some of the adaptation mechanisms have been studied in psychrotolerant

microorganisms particularly regarding oxidative stress resistance, cold shock protein expres-

sion and metabolic shift [3–5]. Cellular integrity depends of cell envelope, in Gram negative

bacteria the envelope consists of an inner membrane (IM) and the outer membrane (OM),

separated by the periplasmic space containing a thin peptidoglycan layer [6]. The OM of

Gram-negative bacteria is formed by phospholipids, proteins and lipopolysaccharides (LPS).

Outer membrane characteristics could be modified during different stress conditions such as

exposure to metal, hypersalinity and antibiotics [7–10]. LPS is the most important compound

of the OM and contains Lipid A and an oligosaccharide component [6]. The oligosaccharide

component is composed by a variable portion, the O-antigen and a core region (in which the

O-antigen is attached). The core is constituted by an internal portion containing 3-deoxy-D-

manno-oct-2-ulosonic acid (Kdo) and heptose residues and an external portion that includes

glucose (II) residue [6]. During OM biogenesis main components such as LPS and proteins

should be synthesized, exported and anchored actively and several enzymes are involved in the

biosynthesis of LPS, among them the glycosyltransferase wapH catalyzes the addition of the

glucose (II) residue to the external portion of LPS core [11]. This is a key residue for the forma-

tion of a short LPS glycoform 1 [12].

Pseudomonas extremaustralis is an Antarctic isolate able to grow under low temperatures,

that shows high stress resistance and high amounts of polyhydroxybutyrate (PHB) [13]. In this

bacterium, PHB accumulation is essential for cold growth and freezing survival, additionally

contributes to develop a planktonic life style at cold conditions [14,15]. In comparison with

other Pseudomonas species such as P. putida KT2440, P. aeruginosa PAO1 and P. protegens Pf-

5, P.extremaustralis grows faster and reaches higher biomass yields at low temperatures [16].

Additionally, its metabolism at cold conditions has been studied in RNA-seq experiments

describing an essential role of ethanol oxidation pathway [5].

The effect of low temperatures on bacterial envelope has been studied principally in Gram

positive species focused on changes in the lipid characteristics but there is little information

about LPS role on cold adaptation in psychrotolerant bacteria [1,17]. In this work, we analyzed

the impact of a mutation in the LPS glycosyltranferase, wapH gene on cold growth and survival

as well as the nanomechanical properties of the envelope using atomic force microscopy. We

also analyzed the changes occurred in envelope characteristics in P. extremaustralis at low tem-

peratures. We showed that LPS is a key component for low temperature adaptation in P.

extremaustralis.

Materials and methods

Strains and culture conditions

P. extremaustralis [13] its derivate wapH mutant and complemented strain were used through-

out the experiments. Cultures were grown in LB medium supplemented with 0.25% sodium

octanoate (for PHA accumulation [18]) and incubated under aerobic conditions (200 rpm) at

30˚C or 8˚C. The wapH mutant strain was identified during the construction of a transposon

mutant library of P. extremaustralis using pUTmini-Tn5 [OTc] and E. coli S17-1 as donor

strain in a conjugation assay [19]. This mutant strain, unable to grow under cold conditions,

was selected by plating transconjugants on LB agar supplemented with sodium octanoate and

tetracycline (10 μg/ ml) both at 8˚C and 30˚C. To identify interrupted genes, a two-step PCR

strategy was performed as described before using the followed oligonucleotidesARB1

(5’GGCCACGCGTCGACTAGTCAN NNNNGATAT 3’) and TN1 (5’GCCCGGCAGTACCGGC
ATAA 3’) for the first step and ARB2 (5’GGCCACGCGTCGACTAGTAC 3’) and TN2
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(5’GGGTGACGGTGCCGAGGATG3’) for the second step [20]. The final PCR product was

purified and sequenced (Macrogen, Korea). This strategy was used before to complement the

study of P.extremaustralis global transcriptome under cold conditions [5]. For complementa-

tion experiments, the wapH gene with 300 bp upstream from the ATG was obtained by PCR

using GlicUp (5’ TGATCAAGGTCGACCATCCC3’) and Gliclow (5’GGACAGACGCTCGA
TACC3’) oligonucleotides, was cloned into pBBR1MSC-5 [21] and introduced into the corre-

sponding mutant strain by conjugation.

Survival and growth experiments

For growth curves experiments pre-inoculum was prepared as described above and was used

to inoculate cultures of LB supplemented with sodium octanoate with an initial OD600nm =

0.05 and incubated at 8˚C for 72 h and at 30˚C for 30 h. OD600nm was measured through time.

In order to examine bacterial survival at 8˚C, exponentially growing cells (OD600 nm = 0.5) at

30˚C were downshifted to 8˚C and incubated for 16 h or 42 h. Viable bacterial number was

measured by colony counts on LB plates before and after incubation at 8˚C [14]. The number

of bacteria before cold exposure was considered as one hundred percent and survival percent-

age was calculated as (CFU/ml T16h or 42h/CFU/ml T0) �100.

LPS analysis

LPS samples were obtained from cultures using EDTA extraction [22]. Briefly cultures were

first diluted to an OD600nm=4 to equalize cell numbers. The cultures were centrifuged at 4˚C

during 10 m at 7000 rpm. Pellets resuspended in 250 mM EDTA and the suspension was vor-

texed vigorously for 5 s and incubated at 37˚C for 30 min. Proteinase K was added and samples

were incubated during 1 h at 60˚C. The supernatant was recovered for analysis after centrifu-

gation at 10 000 X g for 5 min. Kdo was measured in samples as described before [23] using

Kdo (Sigma) as standard. Same amount of Kdo was used for all samples to examine LPS using

12% polyacrylamide gel electrophoresis (PAGE) and silver staining [24].

Stress experiments

For oxidative and SDS stress experiments cultures were incubated overnight at 30˚C or for 72h

at 8˚C. Sensitivity to H2O2 in stationary cultures at 30˚C was evaluated as described previously

using sterile Whatman N˚. 1 filter discs (6 mm) impregnated with 8 μl of 30% v v-1 H2O2

(Merck) [14]. Inhibition growth zone was measured after incubation for 24 h at 30˚C. SDS

sensitivity test was performed as described in Spiers and Rainey [22].

Autoaggregation experiments

Autoaggregation and settling assays were performed as described before [25] with modifica-

tions. Briefly, overnight cultures were diluted with fresh media and the OD600nm was adjusted

to 3 to ensure the same number of cells of each strain. One ml aliquot was incubated at room

temperature without agitation during different times and 200 μl from the top of the culture

was taken (non- settled cells) while the rest of the culture was vigorously vortexed. The

OD600nm of both samples was determined. Aggregation (%) was determined for each time as

follows: (OD vortexed-OD non-settled)/ODvortexed� 100). Other approach for the evaluation

of cell-cell interactions was performed by analyzing mixed aggregates formation. One strain

carrying the pSEVA237R_Pem7 (mCherry) was mixed with the wild type strain, the wapH
mutant or the complemented strain followed by the procedure described above. In all cases

cell suspension was adjusted at OD600nm of 3 to ensure the same number of cells. After cell
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suspension was mixed in a 1:1 proportion in 1 ml as final volume. Fluoresce was measured

using a fluorimeter (Optima FluoroStar).

Confocal microscopy

Additionally, mixed aggregates were visualized using confocal microscopy. For aggregate visu-

alization, strains carrying pSEVA237R_Pem7 or pBBRR1MSC-2 GFP [26] under a constitutive

promoter were cultured overnight at 30˚C andOD600nm was adjusted to 0.8 for all strains.

Then 1 ml aliquot of single strain or strains carrying different fluorescent protein were mixed

in a 1:1 proportion and settled for 15 min. Aggregated cells were taken from the bottom of the

Eppendorf tube and mounted in a slide with a cover glass and immediately observed in a con-

focal microscope. Three independent experiments were carried out with three replicates each

one. Images were acquired in an Olympus FV300 confocal microscope (Olympus Latin Amer-

ica) with a 100x 1.44 N.A. oil immersion objective. For excitation, we used 488 and 546 nm

lasers for GFP and mCherry respectively. Emission filters were 510–530 nm for GFP and 660

long pass filter nm for mCherry. 1024x1024 images were acquired in slow sweeping mode

(9,75 seg/image) with a confocal aperture size of 3. Gaining, Offset and PMT were set to avoid

crosstalk of both channels. Image adjustments were performed using ImageJ software.

Bacteria sample preparation for atomic force microscopy (AFM)

measurements

Polyethylenimine (PEI) coated glass slides were used to immobilize bacteria [27]. Briefly, glass

pieces were prepared by exposing cleaned glasses for 30 min with PEI 20%. Then, glasses were

rigorously rinsed with Mili-Q water and dried with nitrogen. Bacteria were immobilized by

depositing a drop of bacterial culture suspension (DO600nm of 0.5) onto the PEI coated glasses

for 20 min at room temperature to allow cells to adhere to PEI. Then, bacteria-coated glasses

were rinsed with Mili-Q water and they were covered with a diluted LB drop of 30 μl.

Atomic force microscopy measurements

All AFM measurements on live bacteria were carried out in diluted LB at room temperature

using a MultiMode 8 with a Nanoscope V controler, Bruker. Silicon nitride cantilevers were

purchased from BrukerAFM Probes (MLCT, Santa Barbara, CA) with a nominal spring con-

stant of 0.03 N/m. Cantilever spring constants were calibrated using the thermal tune function

contained in Nanoscope 9.1 software. The photodetector sensitivity was calibrated on a PEI-

coated surface using, the slope of the constant compliance region of the force curves obtained

on the PEI-coated glasses. The slope was used to convert the cantilever deflection (D) in milli-

volts to nanometers. The cantilever deflection was then converted into a force (F) according to

F = k × D, where k is the force constant of the cantilever. Force measurements were made by

positioning the tip at different position along the apex of the surface of individual cells. Force

curves were acquired at a loading rate of 2 μm s-1 using a trigger of 6 nN. Measurements were

performed in contact mode, to ensure force profiles were representative of cell population,

force curves were taken on at least 10 different points along the apex of an individual cell. For

each cell type this was done for at least 10 cells from different separate sample preparations

thereby providing approximately 300–500 force profiles for each culture conditions. This

methodology allows obtaining information representative of bacteria nanomechanical proper-

ties. Cell surface, cell volume and cell length were determined from the images using Gwyd-

dion software [28]. Polynomial background, projected area and volume from zero were used.

LPS in cold adaptation
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Force curves analysis

The force-indentation curves were determined from the raw force curves using the methodol-

ogy described in Touhami et al. [29]. Briefly, the indentation was calculated by subtracting the

cantilever deflection on the bacterium from the cantilever deflection on the substrate. The

force-indentation profiles exhibited two regimes (S1A Fig): i) a nonlinear regime for small

applied loading forces (0 to 2 nN) and resulting small indentations, and ii) a linear regime

upon further increase in the loading force applied (2 to 4nN) by the AFM tip over bacterium

[30,31]. The slope of the linear regime of the force-indentation curve at high loading (2 to

6nN), it is well established that is related to the turgor pressure that counteracts the compres-

sion of the bacterium’s cytoplasm by the AFM tip[32]. This gradient is directly related to the

bacterial spring constant, Kbacterium, expressed by Hooke’s law as

F ¼ Kbacteriumd

Where F is the loading force and δ is the indentation force. Kbacterium was determined by each

force indentation curve and it was mentioned its value is a measure of bacteria cytoplasmic

turgor pressure, i.e. the pressure exerted by the cytoplasm on the plasma membrane [33]. The

force indentation curve region at low loading forces which present a nonlinear behavior was

fitting using the Hertz model [34]. A first approximation, the AFM tip can be considered as

conical indenter. For an indenter of this geometry applying a loading force, to a flat, deform-

able surface, the relationship between F and the resulting indentation, δ, is given by

F ¼
2

p
tana

E
ð1 � n2Þ

d
2

where ʋ is the Poisson’s ratio of the deformable sample (assumed to be 0.5 cells), α is the half-

opening angle of a conical tip using a value of 18˚, value given by the manufacturer. E is the

sample’s Young’s module and is used as a fitting parameter. Young´s module allows obtaining

a direct measure of the rigidity of the cell wall structure (capsule, inner and outer membrane

and peptidoglycan layer)[35]. Representative image of P.extremaustralis´cell used for AFM

measurement was shown in S1B Fig.

qPCR Real Time experiments

Total RNA of P. extremaustralis, wapH and pSEVAwapH strain was extracted from 24 h cul-

tures incubated at 30˚C using the RNAeasy Mini Extraction Kit (Quiagen) following the manu-

facturer’s instructions followed by DNaseI treatment for 2 h. The RNA was quantified using

NanoDrop 2000 (Thermo Fisher Scientific) and used for qPCR experiments. Expression was

detected using the Power Sybr RNA to Ct 1 step kit (Termo Fisher Scientific) following manu-

facturer’s instructions with the following oligonucleotides: cprX 50 CGGTGAGGGTGAATTCC
TGT 30 and 50 ATCCTCGGCCTTGAATTGGG 30, wapH. 50CAGTTCTGCCACGGCTATGA 03
and 50 GGATGGCCTTGGAGCTGAAT03; mig14 50GGCTCGGTGATTTTCCTCCA 03 and
050CCAACGGTCCTTGTACTCCC 03 and for PE143B_0104935 50AATGGCCTGCGTTACCT
CAA03 and 50ATGACCATCACCCGTTGCTT03. The 16S rRNA gene using primers 50GTAACTG
CCCTTCCTCCCAA03 and 50AGGTAATGGCTACCAAGGC03 was used as reference for normali-

zation of expression levels of target genes in each condition. The cycling conditions were as fol-

lows: cDNA production 48˚C during 30 min, for qPCR denaturation at 95˚C for 5 min, 40

cycles at 95˚C for 25 s, 60˚C for 15 s, and 72˚C for 15 s. Relative changes in the expression of

individual genes was obtained using ΔΔCt method [36]. At least three independent cultures

were analyzed for each condition. RT qPCR was performed using AriaMx3005 (Agilent).
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Results

Initial characterization of the wapH::mini Tn5 strain

A clone incapable to develop colonies at 8˚C was isolated during a transposon library screen-

ing of P.extremaustralis. The insertion site of mini Tn-5 was located within wapH gene

(PE143B_0104925), encoding for a glycosyltransferase. In P.aeruginosa PAO1 WapH adds a

glucose residue to the outer core of LPS that enables to form a short glycoform of LPS [12]. A

complemented strain carrying only the wapH gene was constructed. Colony development at

8˚C was observed for the complemented strain similarly to the wild type strain (S2A Fig), sug-

gesting that wapH mutation was mainly the cause of the defective cold growth phenotype

observed. The wapH::mini Tn5 was called wapH strain and the complemented strain was

named /pSEVA wapH and both strains were used for further experiments.

LPS analysis in polyacrylamide gel electrophoresis was performed for the wild type, the

wapH mutant and the pSEVAwapH strain grown at 30˚C. The wild-type strain resolved into a

typical heterogeneous LPS-banding pattern, with high-molecular weight O-antigen bands and

low molecular weight bands (S2B Fig). Differences between the LPS pattern from the wild type

and the mutant strain were found in both zones when the same amount LPS was loaded. In

the mutant strain higher abundance of high-molecular weight bands was observed in compari-

son with the wild type strain. These bands correspond to large O-antigen (S2B Fig). On the

other hand, low molecular weight zone was in lower abundance in the mutant strain that

could correspond to the core zone or to a low molecular weight glycoform (S2B Fig). Comple-

mentation with the wapH gene restored the LPS wild type pattern (S2B Fig). This pattern can

be explain due to the key role of WapH in the biosynthesis of low weight glycoforms described

in Pseudomonas species (S2B Fig) [37].

Cold growth is impaired in a wapH strain

P.extremaustralis and its mutant and complemented derivative strains were grown in sodium

octanoate supplemented LB cultures at 8˚C and 30˚C under aerobic conditions. At 30˚C all

the strains reached around OD600nm = 11.0 after 24 h culture (Fig 1A). Interestingly, only the

cultures of P.extremaustralis wapH showed a thick biomass ring attached to the surface of the

flask during early exponential growth phase which progressively unattached and integrated to

planktonic cells (S2C Fig). At 8˚C the wapH strain was unable to grow (and no evidence of

attached biomass was observed) while the wild type strain and the complemented strain

reached to 9.6±0.5 and 5.2±0.2 OD600nm respectively (Fig 1B). Cold survival was also analyzed;

the mutant strain was capable to survive after 16 and 42 h of low temperature exposure reach-

ing 78±5 and 83±9% of viable cells, respectively (Fig 1C). In contrast, the wild type and the

complemented strain could increase their cell number several times as was expected showing a

survival percentage higher than 100% (for the wild type 2415±1380% and 2540±871% after 16

and 42 hours respectively and for the complemented strain 1209±429 and 1450±560 after 16

and 42 hours respectively) (Fig 1C). Our results suggest that the mutation in wapH was essen-

tial for growth under cold conditions.

LPS core conservation is crucial for cell-cell interaction

Alteration in envelope could lead to changes in adhesion characteristics [38]. In contrast with

the wild type strain; the wapH strain presented a tight biomass ring in Erlenmeyer cultures sug-

gesting an aggregative phenotype. Settling capability (a common measure of cell to cell adhe-

sion) was measured at 30˚C. The wapH mutant strain presented 45 to 62% of autoaggregation

after 5–15 min while the wild type strain only reached similar values after 30 and 120 min

LPS in cold adaptation
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Fig 1. Impact of wapH mutation on cold growth and survival. Growth of the wild type, wapH and pSEVAwa pH
strains. A. Growth at 30˚C. B. Growth at 8˚C. C. Survival at low temperatures. Erlenmeyer were inoculated and

incubated at 30˚C until reached an OD600nm of 0.5 and then incubated at 8˚C. Samples were taken at 0, 16 and 42 h

and CFU/ ml was determined. Survival was calculated as (CFU/ml T = 16h or 42h/CFU/ml T = 0) �100. Values represent

mean ± SD of triplicate independent cultures.

https://doi.org/10.1371/journal.pone.0192559.g001
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respectively (Fig 2A). The complemented strain showed a partial restoration of the wild type

phenotype (Fig 2A). To analyze if the wapH strain could alter the wild type aggregation behav-

ior, we performed a mixed aggregation assay in which one strain was carrying mCherry fluo-

rescent protein while the other strain was unmarked. Strains were mixed in equal proportions

Fig 2. Aggregation assays. A. Aggregation assay at 30˚C of the wild type (wt), wapH and complemented strain (pSEVAwapH). Values

represent mean ± SD of 5 independent measurements. B. Aggregation assay with different strains expressing mCherry protein and mixed

with an unmarked strain. Values represent media ± SD of 5 independent measurements. C. Microscopic visualization of mixed aggregates

using cells grown at 30˚C or from cold shock experiments. Strains expressing fluorescent proteins were mixed and settled for15 min. An

aliquot from the bottom of the tube was taken and aggregates were observed in a confocal microscope using 1000X magnification.

Representative images from triplicate independent experiments are shown.

https://doi.org/10.1371/journal.pone.0192559.g002
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and fluorescence measurements after 15 min (time in which only the mutant strain aggregated)

(Fig 2A) were used to calculate the aggregation percentage. We showed that the wild type pre-

sented similar aggregation whether the added strain without mark was the mutant, the wild

type or the complemented strain (Fig 2B). The same pattern was observed in the mutant strain

since its aggregation behavior was the same in presence of all strains (Fig 2B).

A detailed study of aggregates using confocal microscopy was also performed using wapH,

wild type or complemented strain expressing GFP or mCherry proteins. When the wild type

and the mutant strain were mixed, aggregates with a mosaic pattern could be found (Fig 2C).

The same pattern could be observed when the mutant strain was mixed with the comple-

mented strain (Fig 2C). In contrast, mixed aggregates between the wild type and the comple-

mented strain presented an undifferentiated mixed pattern in which both strains form part of

the same aggregate (Fig 2C). In addition, cells exposed to a cold shock were used to perform

the same experiments described above. Aggregates between the wapH and the wild type strain

also presented a mosaic pattern, but the aggregates were bigger than those observed with cells

grown at 30˚C (Fig 2C), indicating that cold shock provokes an alteration in aggregation pat-

tern. Interestingly; when aggregates were prepared mixing the wild type strain grown at 30˚C

and the wild type strain from cold shock experiments again a mosaic pattern was observed

(Fig 2C), suggesting a change in the cell surface during cold shock.

The results showed that both the wapH mutation and the exposure to cold shock provoke

an alteration on cell to cell interaction capabilities.

Cell permeability is altered in the wapH strain

To figure out if growth defects at cold conditions were part of a wider stress resistance defects;

sensitivity to H2O2 and to gentamicin was measured by an inhibition growth assay. Similar val-

ues of the diameter of the zones of growth inhibition were obtained for all the strains, reaching

2.7±0.2 cm for the wild type; 3.1±0.4 for the wapH and 2.3±0.2cm for the complemented strain

in the case of H2O2 and 3.5±0.2cm for the wild type, 3.6±0.1 cm for the mutant and 3.6±0.2

cm for the complemented strain in the case of gentamicin. However, when cell permeability

was measured by SDS and polymixin B sensitivity assays differences were found. Cell count in

plates with SDS (and without as control) showed that the wapH mutant strain presented signif-

icant differences with the wild type strain at 30˚C (P<0.05Mann Whitney test, Fig 3A) while

the complemented strain showed a restoration of the wild type phenotype (Fig 3A). Both, the

wild type and the complemented strain at 8˚C presented a higher survival to SDS although this

difference was not significant (P>0.05 Mann Whitney test, Fig 3A). Sensitivity to polymixin B

was higher for the mutant strain than the wild type in line with SDS survival results (Mann

Whitney test P<0.05, Fig 3B). Interestingly, at 8˚C the wild type strain also presented higher

sensitivity to polymixin B than when grown at 30˚C (Mann Whitney test P<0.05, Fig 3B)

while the complemented strain presented a lower sensitivity at 8˚C than at 30˚C. The results

showed that cell permeability was affected by both temperature and LPS conservation.

LPS conservation is a key factor for elasticity of cell envelope structure and

turgor pressure during cold adaptation

Our results showed that wapH mutation impairs growth under low temperature conditions.

To figure out the causes of these observations, nanomechanical measurements using an atomic

force microscopy (AFM) were performed to determine the biophysical behavior of the enve-

lope and other cell characteristics. Cell surface and volume were determined analyzing AFM

images (S1 Fig) using Gwyddion software. Surface area to volume ratio (S/V) was calculated

for all strains. The wild type strain maintained this parameter in a similar value at both, 30˚C
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and 8˚C confirming an adaptation of this bacterium to low temperatures and the homeostasis

of this parameter (Fig 4A). In contrast, in cells belonging to cold shock experiments, the wild

type strain showed a higher ratio than cells at both 8˚ and 30˚C (P<0.05 Mann Whitney Test)

suggesting an impact of low temperatures in these characteristics and that an acclimation

period is necessary to reach a stable value (Fig 4A). At 30˚C the mutant strain presented a

higher S/V ratio than the wild type strain (P>0.05 Mann Whitney Test, Fig 4A), although both

strains showed a similar S/V ratio in the cold shock assays(P>0.05 Mann Whitney Test, Fig

4A). Nanomechanical measurements showed that the mutation of wapH affects elasticity of

cell envelope structure since the mutant strain presented a higher Young module (E) value in

comparison with the wild type strain, suggesting a more “rigid” state in the wapH (P<0.05

Mann Whitney Test, Fig 4B). The complemented strain showed a restoration of the wild type

phenotype (Fig 4B). Additionally, the wild type strain presented differences between tempera-

tures, showing a lower E value at 8˚C (P<0.05 Mann Whitney Test, Fig 4B). Cold shock

Fig 3. Cell permeability and polymyxin sensitivity assay. A. SDS sensitivity assay of the wild type (wt), wapH and

complemented strain (pSEVAwapH). Cells were cultured at 30˚C or 8˚C and CFU/ml was determined in LB plates

with and without SDS. B. Sensitivity to polymixin B of the wild type (wt), wapH and complemented strain

(pSEVAwapH) was performed by using disk inhibition assay with cells cultured at 30˚C or 8˚C. Values represent

media ± SD of triplicate independent measurements. � denotes significant differences (Mann Whitney Test).

https://doi.org/10.1371/journal.pone.0192559.g003
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experiments showed again an impact of temperature on the nanomechanical characteristics

since the wild type presented rigid envelope similar to the mutant strain and different to that

observed in the wild type grown at 30˚C and 8˚C. The Kbacterium values, a measure of bacteria

cytoplasmic turgor pressure [33], were determined. The mutant strains showed a lower Kbacter-

ium value than that observed for the wild type (P<0.05 Mann Whitney Test, Fig 4C) that could

be related with the higher permeability observed. At 8˚C a lower turgor pressure was observed

for the wild type in comparison with 30˚C (P<0.05 Mann Whitney Test, Fig 4C). Interestingly,

in cold shock experiments wild type cells presented higher turgor pressure than at 30˚C and

8˚C (P<0.05 Mann Whitney Test, Fig 4C). On the other hand, the wapH cells from cold shock

Fig 4. Nanomechanical determinations using atomic force microscopy (AFM) in live and hydrated cells. A Surface to Volume ratio (S/

V) was determined using Gwyddion software. B. Cell elasticity determination at different culture conditions. Force-distance curves were

obtained using MultiMode 8 with a Nanoscope V controller, Bruker in contact mode for at least 10 cells per condition in 10 different points

along the major axis per triplicate. Adjustment to the Sneedon model was performed between 0 and 2 nN and the Young module was

calculated. C. Kbacterium determinations as a measure of bacterial turgor pressure. Adjustment to the Hooke’s law was performed between 2

and 4 nN in the same curves Force-distance described above. Wild type (wt), wapH and complemented strain (pSEVAwapH).

https://doi.org/10.1371/journal.pone.0192559.g004
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experiments presented similar Kbacterium values from the wapH at 30˚C (P>0.05Mann Whit-

ney Test, Fig 4C). Our results suggested that a prolonged period was necessary to adjust key

cell parameters such as elasticity of cell envelope structures (inner and outer membrane and

peptidoglycan layer) for low temperature adaptability and that LPS characteristic were impor-

tant for flexibility adjustment necessary for development under cold conditions.

Discussion

Low temperature affects several cellular processes and provokes physiological changes such as

a decrease in membrane fluidity, a reduced efficiency of RNA transcription, translation and

degradation as well as an increase in reactive oxygen species (ROS) [1,3]. Adequate cellular

responses to these and other possible constraints contribute to the adaptation of organisms to

cold conditions. Pseudomonas species are found in cold environments, are able to grow under

low temperature and global transcription analysis at cold has been performed [5,39,40].P.

extremaustralis, is an Antarctic psychrotolerant bacterium that presents a better behavior

under cold conditions than other Pseudomonas species and constitutes a good model to find

novel mechanisms to better understand bacterial development at low temperatures [5,16,18].

Cell envelopes integrity is essential for bacterial survival and modifications in this structure

have been described under stress conditions, for example changes in outer membrane proteins

have been found after exposure to metals or after hypersaline shock [7,9]. During cold growth

changes in lipid content or lipid characteristics are displayed in order to counter the mem-

brane stiffening [41–43]. LPS role was widely studied as toxin or in antibiotic resistance but

less information is available about its relevance in bacterial adaptability to environmental con-

ditions [43–45]. In this work we analyzed the impact of a mutation in the wapH gene encoding

a glycosyltransferase enzyme of LPS core. Experiments performed in P.syringae Lz4w a pys-

chrotolerant bacterium show that LPS is phosphorylated in two heptose residues in a tempera-

ture dependent way [46]; but its role in bacterial survival was not studied. We demonstrated,

using a mini Tn-5::wapH mutant strain, that a conserved LPS pattern was essential for growth

under low temperatures but was not essential for growth at 30˚C neither for survival to cold

shock. Modification in the LPS core has been reported in Escherichia coli, in which colanic

acid units are added to the LPS in response to environmental stimulus [47]. Interestingly, P.

extremaustralis presents a colanic acid gene cluster probably acquired by horizontal transfer

that could play a role during stress adaptation [16]. Moreover, P.aeruginosa PAO1 presents

two different glycoforms, glycoform 2 that present the O-antigen and the glycoform1 in which

the O-antigen is absent but a short lateral chain is present [12]. In glycoform 1 the lateral chain

is added in the glucose II residue (added in the inner core by WapH) in the outer core [12]. P.

extremaustralis’ genome lacks the genes related with the addition of rhamnose, among them

migA, showing differences with the widely studied P.aeruginosa PAO1 [38]. A different band

pattern with higher abundance in the zone corresponding to long capped LPS was observed in

the wapH strain in comparison with the wild type strain, suggesting that could be possible the

existence of a second short glycoform similar to P.aeruginosa but without rhamnose. The

mutation of wapH could lead to the absence of the low-weight glycoform and to the enrich-

ment with high-molecular weight glycoform. A similar pattern was observed in P.aeruginosa
PAO1 wapH strain, where a low molecular weight glycoform (glycoform 1) was affected and

the bacterium still produce (in lower amounts) O-antigen and high molecular weight glyco-

forms [31]. By contrast, in P.putida KT2240 a different pattern was observed since a wapH
mutant lacks of O-antigen [33]. These observations showed some differences in the balance of

different LPS forms although the main components are well conserved among Pseudomonas
species.
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Analysis of the genomic region of P. extremaustralis, suggests that the transposon location

may affects mig14, encoding a hypothetical protein (homologous to PA5002) and

PE143B_0104935 that were located downstream the wapH. Homologous to these genes are

also found in P. aeruginosa PAO1, but only a role in fluoroquinolone tolerance for PA5002

was described [31,32]. Expression experiment performed at 30˚C showed that wapH expres-

sion was not detected in the mutant strain as was expected. In the complemented strain wapH
gene was expressed in a lower amount than in the wild type (S2D Fig). However, the expres-

sion level was enough to complement the main observed phenotypes. Additionally, the expres-

sion of mig14 and PE143B_0104935 was detected in this strain although was lower than the

wild type (S2D Fig), while in the complemented strain the expression of these genes was

slightly higher than in the mutant strain. We cannot rule out effects of mig14 and

PE143B_0104935 genes on aggregation phenotype since aggregation experiments showed a

partial complementation. However, the pSEVAwapH strain carrying only wapH presented

LPS pattern similar to the wild type strain and developed colonies at cold conditions, rescue

grow in liquid cultures at 8˚C, SDS survival, cell flexibility and S/V phenotype indicating that

wapH is crucial for cold growth.

Aggregation is a survival strategy against different types of stress agents and LPS modifica-

tions lead to different phenotypes regarding biofilm and aggregation capabilities in Pseudomo-
nas species [11,15,22,23,37,48–51]. In this work we demonstrated a key role of wapH in

cellular aggregation. Moreover, temperature also impacts cell to cell interactions since wild

type cells grown at 30˚C form a mosaic aggregate with cold shock wild type cells, probably due

to changes in cell envelope provoked by low temperatures. These results indicated the crucial

role of LPS component even within unique species.

Nanomechanical measures in living-hydrated bacteria showed a more rigid state for the

mutant strain and a lower turgor pressure, in line with higher cell permeability. Capsule lack-

ing mutant strains in Klebsiella pneumoniae [35] show similar nanomechanical behavior than

the wapH mutant of P.extremaustralis (which does not present capsule), suggesting that outer

cell surface is a key structure for the determination of these characteristics. Moreover, expo-

nential cultures of the wild type strain grown at 30˚C shifted then to lower temperatures pre-

sented a higher Young module (E) than cultures grown at 8˚C for 72 h, suggesting that a

prolonged time is necessary for acclimation to low temperatures.

The accumulation of LPS and OMPs during stress conditions trigger an interaction

between periplasmic LPS and the proteins RseB and RseA provoking the membrane stress

response mediated by σE in Escherichia coli [52]. In early exponential cultures of P.extremaus-
tralis at low temperature an overexpression of cprX gene was observed [5], this gene encoding

an envelope stress sensor could represent early steps for cold adaptation. The expression of the

cprX gene membrane stress sensor was tested in in this work in the wild type, wapH and pSE-

VAwapH strains at 30˚C showing a similar expression level (1.3 and 0.9 folds in comparison

with the wild type strain for the complemented and the wapH mutant strain respectively).

Both observations suggested that wapH mutation did not induce membrane stress at 30˚C or

at least was not mediated by cprX, but is overexpressed in cold cultures in comparison to 30˚C

[5]. Cold-shock response and the later adaptation to grow or acclimation can be considered as

distinct phases since imply different set of expressed genes [53]. Moreno and Rojo, 2014 [39]

suggested that bacteria in natural environments are more likely to experience prolonged peri-

ods at low temperatures than rapid cold shocks. For the surface to volume ratio (S/V) we also

observed different results for the wild type cells from cold shock in comparison with those

grown during 72h at 8˚C, since the wild type strain maintained a similar S/V when was cul-

tured at 30˚C or 8˚C but was higher in cells from cold shock experiments. Rod-shaped bacteria

alter their width and length to achieve a S/V homeostasis [54] and changes in this parameter
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are observed in response to stress conditions [55], our observations in the wild type were in

line with this idea and alteration in LPS or in different glycoforms balance lead to changes in

this parameter as well as a shift in culture features.

Our study present evidences that LPS conservation is essential for development of P.extre-
maustralis under cold conditions and result a key structure for the maintenance of cell flexibil-

ity, turgor pressure and cell permeability as well as for S/V homeostasis. The capability of cells

to modify physiological features is essential to reach an acclimation state (Fig 5). Our results

showed a complex phenotype and along with other studies reveal multiple physiological adap-

tations for bacterial active growth under low temperatures.

Supporting information

S1 Fig. AFM representative measurements. A. Representative Force-distance curves obtained

using MultiMode 8 with a Nanoscope V controller, Bruker in contact mode. B. Representative

Image obtained with atomic force microscopy of P.extremaustralis grown at 30˚C. Cells were

imbibed in PEI as was described in Material and Methods.

(TIF)

S2 Fig. Initial characterization of the wapH mutant strain. A. Growth at 8 in LB octanoate

supplemented plates. Plates were incubated at 30˚C during 24 h and at 8˚C for a 1 week. B.

Polyacrilamide analysis of LPS. Equal amount of Kdo was loaded and gel electrophoresis was

performed. Bands were visualized using silver stain. Schematic representation of the structure

of P.aeruginosa PAO1 LPS. Hexagonal forms represent hexose residues. Black arrows showed

different glycoforms that can be synthase within a cell and grey arrow represents a glucose resi-

due addition catalyzed by WapH. Long rectangle represents O-antigen. C. Attached biomass

in mutant strain cultures in LB media supplemented with sodium octanoate. Cultures were

Fig 5. Proposed model to explain the effect of low temperatures in P.extremaustralis envelope characteristics and the impact of

the wapH in cold adaptation.

https://doi.org/10.1371/journal.pone.0192559.g005
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incubated at 30˚C. D. Expression of wapH, mig14 and PE143B_0104935 measured by qPCR

Real Time in cultures grown at 30˚C. The results are expressed as fold change taking the wild

type expression as 1. Results are shown as Mean±SD of at least 3 independent cultures for

RNA extraction.

(TIF)
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