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Abstract

We describe a new library generation method, Machine-based Identification of Molecules Inside 

Characterized Space (MIMICS), that generates sets of molecules inspired by a text-based input. 

MIMICS-generated libraries were found to preserve distributions of properties while 

simultaneously increasing structural diversity. Newly identified MIMICS-generated compounds 

were found to be bioactive as inhibitors of specific components of the unfolded protein response 

(UPR) and the VEGFR2 pathway in cell-based assays, thus confirming the applicability of this 

methodology toward drug design applications. Wider application of MIMICS could facilitate the 

efficient utilization of chemical space.
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Effective enumeration of unknown and novel compounds has the potential to change the way 

discovery of new molecular entities is pursued. In the regime of drug design, these types of 

compounds can be used to populate libraries, providing an effective starting point for the 

identification of new leads and motifs. In particular, Vishrup and Rupakheti1,2 described an 

iterative method to enumerate compounds over all of chemical space in a way that 

maximizes structural diversity and demonstrated the potential of this approach toward drug 

design applications.

We show that novel compounds can be generated in a facile manner with minimal a priori 

information and that compounds generated in this way can function in a bioactive manner. 

Our approach, called Machine-based Identification of Molecules Inside Characterized Space 

(MIMICS), considers the properties of a set of molecules rather than an individual molecule 

and generates an inspired set with both increased structural diversity and chemical novelty. 

The structures of the reference set are not needed for molecule generation, and instead only 

a partial text-based representation is used for reference. Additionally, the particular physical 

property for optimization does not need to be known: MIMICS can preserve multiple 

descriptors despite limited initial information.

GENERATION OF MOLECULAR LIBRARIES

The Simplified Molecular Input Line Entry System (SMILES) is used to encode molecules 

in a linear, text-based format for use in MIMICS. SMILES lacks implicit hydrogens, and 

interpretation of SMILES strings as complete structures requires the use of outside 

algorithms.3 Stereochemical information present in SMILES is retained, but not the 

information needed to interpret it. The starting input information available to MIMICS is 

thus necessarily incomplete.

The creation of a set of molecules requires only two steps: character generation and 

filtration. First, SMILES strings from an enumerated input set of molecules, whose physical 

properties inform the resultant properties of the MIMICS molecules generated, are used to 

generate a section of text. A randomly selected set of bioactive molecules from ChemBank4 

was used for this. This is done using the character-level Recurrent Neural Network5 (char-

RNN), freely available software that generates context-independent text based on analysis of 

character sequences from an input. Recurrent neural networks identify patterns from both 

the state of each input provided and the order in which it is provided. While the output 

produced is more dynamic than would be expected from an algorithmic approach, the 

method is inherently probabilistic, and the rationale behind a given output cannot be 

elucidated. The characters from the generated text take the form of SMILES-encoded 

molecules. Through identifying patterns both within and between sequences of characters 

that corresponded to molecules, we hypothesized that this method could produce chemically 

meaningful output.

Second, filtration of generated characters allows the population of a library of molecules. 

Strings filtered out include those with syntax errors, complete strings copied from the input 

set, identical strings generated more than once, and strings representing invalid molecules 

(as a result of invalid valences, aromaticity, or ring-strain errors).6,7 The threshold for 
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chemical correctness was set to avoid manual curation of structures. There is no property- or 

structure-based filtration; all valid and unique SMILES strings are retained. The populated 

library represents the final output of MIMICS.

MIMICS-GENERATED LIBRARIES ARE DESCRIPTIVELY CONSERVATIVE 

BUT INTERNALLY DIVERSE

An input set was created using 880 000 molecules from the ChemBank4 database. 

Molecules were randomly selected from a set that adhered to Lipinski’s rule of five, with the 

additional restriction that no input molecules would have a molecular weight greater than 

500 Da. From these molecules, 7.0 × 108 characters were generated and processed into a 

library of 1.09 × 106 molecules using MIMICS that was then compared with the input set. 

From the set of initially generated strings, 9.2% were filtered out as unusable because of 

repetition, syntax errors, or invalidity and removed during processing. However, the 

percentage removed for chemical invalidity was only 0.5%.

Generated molecules were first compared to the input set using Bemis–Murcko (BM)8 and 

nearest-neighbor analyses. We hypothesized that in order to be chemically and medicinally 

useful, the generated set of compounds must contain both novelty and structural diversity. 

The 880 000 molecule input set required 158 000 BM clusters for a complete description, 

while the generated set required more than 340 000 (Figure 1A). An additional 3 × 106 

MIMICS molecules were generated, and the required number of clusters was not observed to 

converge. MIMICS coverage of the input scaffolds was found to scale with molecule count, 

beginning at 14.1% with 10 000 molecules analyzed and rising to 31.5% with the entire 880 

000 molecule set considered. Nearest-neighbor analysis (Figure 1B–D) shows much higher 

density for input molecules on the higher-scoring end of the histogram. This implies that 

clusters that enumerate MIMICS molecules contain more structural diversity than input 

molecule clusters.

Nearest-neighbor analysis on samples of the molecules themselves (Figure 1C) supports this 

and reinforces the lack of a one-to-one correlation between the generated and input 

molecules. There were more than 19 times more MIMICS molecules than input molecules 

with nearest-neighbor distances higher than 0.50; 81% of the input molecules had distances 

below 0.10, compared with only 36% of MIMICS molecules. Overall, the generated set 

contains both novel structures and more structural diversity than the parent input set.

Generated molecules were compared to the input set both descriptively and structurally. It 

should be noted that character generation and thus molecule generation were informed only 

by the SMILES strings of the input molecules. No other information was available to the 

neural network, including atomic masses and identities, bond lengths, implicit hydrogen 

positions, ground-state three-dimensional conformations, or the metrics and descriptors that 

would later be used to generate the molecules in question. Out of the 1.09 × 106 compounds 

generated, only 37 000 independently generated input compounds (that is, a new SMILES 

that corresponded to an input molecule) were present (3.4%). Because MIMICS had no 

information regarding the existence or structure of compounds outside its input, the 

remainder of the generated molecules represent novel, independent creations.
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Figure 2 compares the distributions of properties of the MIMICS and input sets. Filtering of 

the generated molecules on the basis of chemical properties was not conducted, and 

therefore, the property distributions reflect creations of MIMICS rather than an artificial 

subset of molecules. A principal moment of inertia (PMI) ratio plot9 of each set (Figure 2A) 

shows that even having only the input SMILES to work with, MIMICS was able to generate 

sets of molecules exhibiting similar distributions of overall molecular shapes as their input 

(Figures 2A and S2). Distributions of descriptor properties (Figure 2B–I) show that the two 

sets are comparable. Distortion on the heavier side of the molecular weight histogram 

(Figure 2I) is attributed to the fact that no compounds with weight greater than 500 Da were 

present in the input set. The relative lack of compounds between 400 and 500 Da is offset by 

the population of compounds heavier than 500 Da.

MIMICS NEURONS DISPLAY ORGANIZATIONAL STRUCTURE

The ability of MIMICS to construct SMILES strings with high fidelity prompted an 

examination of the molecule generation process. Neuron activations, decimal values between 

−1 and 1, were recorded as a function of the component letters of a SMILES string. The 

resultant output formed a map of neuron activation patterns across a string (Figure 3).

Neuron 1285 was found to consistently activate negatively for letters corresponding to 

aromatic atoms, over four different molecules. Similarly, neuron 678 was found to 

consistently activate for letters corresponding to halogens, and neuron 1230 was found to 

consistently activate negatively on parentheses and equals signs, corresponding to control of 

branching and double bonds. Neuron 1285 appears to have erred on the fourth string, 

negatively activating on an aliphatic atom (capital letter “C”). This could alternately be 

conceptualized as the neuron expecting to see a six-membered aromat rather than the furan 

that is present. The second letter of two-letter halogens such as Br or Cl was found to 

activate neuron 678 much more strongly than the first letter. This suggests that the neuron in 

question has interpreted the defining feature of these atoms to be the second letter, which 

allows for the distinction between bromine and boron or chlorine and carbon.

A majority of neurons had no easily identifiable functionality (neuron 1169). The easily 

identified neurons are most likely counting or simply keeping track of useful information 

and feeding it along to other neurons. The typical neuron is likely a single intermediate step 

in a much larger computation.

MIMICS-GENERATED MOLECULES CAN ACT IN A BIOACTIVE MANNER

To demonstrate that MIMICS molecules have the capability of acting in a bioactive manner, 

we compared the MIMICS molecules with a group of small molecules that were previously 

identified as potential unfolded protein response (UPR) inhibitors from a previously 

completed high-throughput screen.11,12 From this subset of overlapping compounds, 23 

were commercially available. The UPR was chosen as an example of a previously validated 

screen based upon biological activity. In total, of the 23 MIMICS-generated molecules 

tested, 12 novel molecules with potent and specific inhibitory activity (as measured by 

biologically significant EC50 values and other off-target activity assays) against the UPR 
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were identified (Figure 4, two examples). None of the identified molecules were present in 

the input set. Furthermore, within the MIMICS set, there were 19 independently enumerated 

FDA-approved drugs.

MIMICS GENERATES NOVEL VEGFR-2 INHIBITORS

A more targeted application of MIMICS involves the generation of a screening library for a 

single disease target and the identification of novel molecules against the target. VEGFR-2, 

a mediator of the VEGF angiogenesis pathway, was chosen as a model because of the 

number of training ligands available. A set of 25 000 SMILES strings representing various 

VEGFR-2 ligands from BindingDB13 formed the basis for the MIMICS input. Three sets of 

ligands were virtually docked against the VEGFR-2 protein: the MIMICS-generated set, an 

existing screening library (the Stanford High-Throughput Bioscience Center library), and a 

set of randomly selected bioactive molecules (Figure 5).

In terms of ligand affinity, the MIMICS-generated library was found to significantly 

outperform both the existing screening library and the set of randomly selected bioactive 

molecules. The 10 000 member MIMICS library contained 40 compounds with higher 

binding affinity than the single best performer in the existing 110 000-member screening 

library. Furthermore, the high-affinity compound density (< −9 kCal/mol) was 11 times 

higher in the MIMICS set compared with the existing set. A properly targeted MIMICS-

generated library thus provides a quantifiable benefit over existing screening libraries that is 

greater than what would be expected by chance.

Five molecules with extremely high affinity (< −11.5 kCal/mol) were chosen for synthesis 

on the basis of synthetic accessibility/stability, solubility, and similarity to known VEGFR-2 

inhibitors (Table 1). To ensure that the biological activity against VEGFR-2 was retained in 

these MIMICS-generated compounds, we chose to perform human umbilical vein 

endothelial cell (HUVEC) tube formation, a standard and widely used assay to assess the 

effect of drugs on angiogenesis in vitro.14,15 This assay was chosen to focus on the 

functional performance of the evaluated compounds. As shown in Figure 6, of the five 

compounds selected, three showed significant potency in inhibiting HUVEC tube formation. 

A known VEGFR2 inhibitor, vatalanib, was used as a positive control for comparison. Two 

compounds, SN38488 and SN38676, displayed greatly improved potency in inhibiting in 

vitro angiogenesis compared with vatalanib over two different dose ranges. Furthermore, 

neither compound displayed significant cytotoxicity on a normal human mammary epithelial 

cell line (MCF10A) within the dose range where tube formation inhibition occurred, 

suggesting that the inhibitory effect on tube formation was not due to nonspecific 

cytotoxicity of the compounds. These results demonstrate the ability of MIMICS to generate 

useful novelty when combined with a scoring method.

DISCUSSION

MIMICS thus represents a unique methodology for identifying drug-like molecules, 

particularly in terms of the way in which compounds are generated. Rather than 

manipulating input molecules directly, MIMICS generates molecules informed by the 
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properties of the whole input set. This results in the generation of similar sets of molecules 

rather than molecules informed by a single parent. While current approaches to enumerate 

“maximally diverse” libraries from a parent currently exist, doing so invariably changes the 

physical properties of the resultant library. Daughter libraries generated in such a manner are 

necessarily smaller than their parents: MIMICS allows the generation of much larger 

libraries. The ability to direct library generation toward a set of properties allows a middle 

ground between randomly screening whatever libraries may be available or committing to a 

set of scaffolds in a combinatorial approach. After a chemical space has been defined, 

MIMICS can be directed to generate novel, structurally diverse libraries within that space.

Comparisons of MIMICS-generated sets to others represents an open question. MIMICS 

output does not have a defined end point: strings can continue to be generated for as long the 

user wishes. As a result, computation of metrics such as percent overlap will scale and 

shrink depending on output size. Computation of overlap with the set of synthesizable 

molecules represents an interesting challenge, particularly given the challenge of defining 

“synthesizable”, but part of MIMICS’s intended purpose is that, when used with an 

appropriate scoring function, that resultant output molecules serve as targets for future 

synthetic advances.

A further contribution of MIMICS to the chemical regime of drug discovery is its ease of 

use. The core component, char-RNN, is freely available and was popularized by its ability to 

replicate Shakespearian prose and political speeches. Although the specific rationale behind 

the inclusion or construction of any given molecule cannot be enumerated, the ability to 

generate meaningful, chemically useful sets with minimal a priori information makes 

MIMICS a unique method for generating novel molecules.

The implementation of MIMICS allows it to be used as a general purpose analytics tool. If 

given a sample of a “chemical universe” and sufficient computing power, it could be used to 

populate areas around compounds of interest, analogues created not by the substitution of an 

R group or heteroatom but rather informed by the universe of bioactivity around it. 

Alternatively, gaps in chemical space that have already been shown to exist could be filled 

with MIMICS compounds that not only occupy the same space but also have desired 

physical or structural properties. The ability of MIMICS to mimic sets of molecules in an 

efficient, facile manner can make practical utilization of the vastness of chemical space 

possible.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

The authors acknowledge grant support from P01 CA67166 (Q.-T.L., A.C.K.) and the award of a Sarah and Nadine 
Pole Scholarship (W.Y.) as well as support from ChemAxon for providing an academic license.

Yuan et al. Page 6

J Chem Inf Model. Author manuscript; available in PMC 2018 February 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ABBREVIATIONS

MIMICS Machine-based Identification of Molecules Inside 

Controlled Space

UPR unfolded protein response

SMILES Simplified Molecular Input Line Entry System

char-RNN character-level Recurrent Neural Network

BM Bemis–Murcko

PMI principal moment of inertia

IRE1α/XBP1 inositol-requiring enzyme 1/X-box binding protein 1
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Figure 1. 
Structural novelty comparison. (A) Bemis–Murcko clustering8 was conducted on the 

MIMICS and input molecule sets to assess the diversity and novelty of central structural 

motifs. The number of unique scaffolds produced as a function of MIMICS molecules 

generated is displayed. (B) The Tanimoto distance between a particular structure and its 

nearest neighbor in the input set was computed using the Open Babel7 FP2 fingerprint for 

samples of MIMICS and input molecules. (C) Nearest-neighbor distance histogram for 

MIMICS molecules and input molecules relative to the input. (D) Nearest-neighbor distance 

histogram for MIMICS molecules and input molecules relative to themselves.
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Figure 2. 
Comparison with input. MIMICS (blue) and input (orange) molecules are compared 

structurally and descriptively. (A) Normalized PMI ratio plots for each set of compounds 

were computed. The points labeled Median and Mode correspond to the median and mode 

coordinates of all points. Descriptive properties computed using PaDEL-descriptor10 include 

(B, C) numbers of hydrogen-bond acceptors and donors, (D) ring count, (E) rotatable bond 

count, (F) fraction of sp3-hybridized carbons, (G) XLogP, (H) topological polar surface area, 

and (I) molecular weight (MW). For all of the computed descriptors, both the average values 

and overall distributions were preserved in going from the input set to the generated 

MIMICS set.
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Figure 3. 
(A) Neuron activations for four different neurons. Letter colors indicate neuron activation at 

those particular letters, with green corresponding to positive activation and red 

corresponding to negative activation. Activations of three neurons with well-defined 

behavior and one without (out of 1538 neurons total) are displayed. Neuron 678 has been 

recolored because of the low magnitude of raw activations. (B, C) Mapping of neuron 

activations from SMILES to the molecular structure for neurons 1285 (B) and 678 (C).
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Figure 4. 
Confirmation of bioactivity against the IRE1α/XBP1 pathway, a branch of the UPR. The 

HT1080 (human fibrosarcoma) cell line was stably transduced with an XBP1-luciferase 

reporter construct. (top) Generated SMILES expressions, (middle) structures, and (bottom) 

dose–response curves showing inhibitory action relative to CMV control toward IRE1α/

XBP1 are presented for the two identified inhibitors, (A) STF-021898 and (B) STF-046304.
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Figure 5. 
Frequency distributions of binding energies (in kCal/mol) for MIMICS and an existing 

screening library (Stanford High-Throughput Bioscience Center (HTBC) library). More 

negative values indicate more stable ligand–protein complexes and higher binding affinities.
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Figure 6. 
Novel VEGFR-2 inhibitors inhibit HUVEC tube formation with improved potency 

compared with a known VEGFR-2 inhibitor and minimal nonspecific cytotoxicity to normal 

cells. (A) Five novel VEGFR-2 inhibitors were tested on HUVEC tube formation at a higher 

dose range of 0–20 μM. DMSO (solvent) was used as the control treatment. A known 

VEGFR-2 inhibitor, vatalanib, was used as a positive control and for potency comparison. 

(B) Two inhibitors that displayed the highest potencies in inhibiting tube formation at the 

higher dose range were tested at a lower dose range (1–1000 nM). (C, D) Bright-field 

images of the effects of the two most potent compounds on HUVEC tube formation at the 

lower dose range. (E) Normal human mammary epithelial cell line (MCF10A) was treated 

with the two most potent compounds at the lower dose range, and cell viability was assessed 

by trypan blue staining after 24 h. Data represent means of triplicate experiments. Error bars 

represent standard errors of the mean.
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