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Abstract

Introduction—Advances in the development of high-resolution metabolomics (HRM) have 

provided new opportunities for their use in characterizing exposures to environmental air 

pollutants and air pollution-related disease etiologies. Exposure assessment studies have 

considered blood, breath, and saliva as biological matrices suitable for measuring responses to air 

pollution exposures. The current study examines comparability among these three matrices using 

HRM and explored their potential for measuring mobile source air toxics.

Methods—Four participants provided saliva, exhaled breath concentrate (EBC), and plasma 

before and after a 2-hour road traffic exposure. Samples were analyzed on a Thermo Scientific 

QExactive MS system in positive electrospray ionization (ESI) mode and resolution of 70,000 

FHWM with C18 chromatography. Data were processed using apLCMS and xMSanalyzer on the 

R statistical platform.

Results—The analysis yielded 7,110, 6,019, and 7,747 reproducible features in plasma, EBC, 

and saliva, respectively. Correlations were moderate-to-strong (R = 0.41 – 0.80) across all pairwise 

comparisons of feature intensity within profiles, with the strongest between EBC and saliva. The 

associations of mean intensities between matrix pairs were positive and significant, controlling for 

subject and sampling time effects. Six out of 20 features shared in all three matrices putatively 

matched a list of known mobile-source air toxics.
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Conclusions—Plasma, saliva, and EBC have largely comparable metabolic profiles measurable 

through HRM. These matrices have the potential to be used in identification and measurement of 

exposures to mobile source air toxics, though further, targeted study is needed.
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Introduction

Identifying causal agents associated with traffic-related health effects is made challenging 

given the complex chemical composition of traffic pollution and numerous biological 

pathways elicited upon exposure. Recently, some have proposed the study of the ‘exposome’ 

(1, 2), a theoretical framework which seeks to broaden the scope and capacity within 

environmental exposure science that aims to measure lifetime exposures to external 

chemicals and internal endpoints. Moreover, this framework is based upon approaches that 

link exposure assessment to mechanistic insights linking both exposure and response (3–5). 

A key aim of the burgeoning field of environmental metabolomics is the development and 

validation of analytical platforms to support exposome-related research.

High-resolution metabolomics (HRM) allows for the identification and quantitation of small 

molecules via high-throughput, high-yield analytical chemistry and bioinformatics. HRM 

may serve as an ideal tool for conducting exposure assessment of complex external and 

internal stressors. The use of HRM within traditional environmental epidemiologic settings 

has been limited, but growing. Previous studies have used metabolomic approaches to 

characterize high and low exposure to polycyclic aromatic hydrocarbons (PAHs) or metals, 

as well as differential perturbations in metabolism, between high and low exposure cohorts 

(6–10).

Traditional exposure assessment methods have experienced difficulty in identifying the 

specific compounds, compound classes, or non-chemical exposures of traffic-related 

pollution (TRP) that are primarily driving human health response. However, the toxic effects 

of exposure to airborne total particulate matter (PM) from primary TRP have been 

demonstrated (11–14). These toxic effects range from increased short-term morbidity in 

individuals with preexisting respiratory and cardiovascular disease to excess mortality rates 

over life-long exposure durations (15, 16). Given the extreme chemical and physical 

heterogeneity of TRP, however, it is not clear which components or mixtures are most 

responsible for driving the observed adverse responses (17–20), nor which specific 

biological pathways contribute to PM-specific disease etiology (20–25). Metabolomics may 

provide much needed insight into these gaps that traditional exposure assessments conducted 

to date have been unable to address.

As an initial step, understanding how metabolomic profiles vary by biological matrices in 

the same individuals may inform future study designs in this exposure science subfield. 

Non-invasive sampling of exhaled breath (EBC) (12, 26) and saliva (27) may serve as viable 

alternatives to more invasive blood sampling. Comparative metabolomic profiling across the 
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plasma, EBC, and saliva matrices may assist with the identification of the most relevant 

components of PM exposure for health. To date, studies of HRM and human health have 

mainly considered human blood and urine. Relatively few studies have been conducted on 

saliva or EBC using HRM, with even fewer examining metabolomic profiles across multiple 

biological matrices simultaneously (28–33). Another question of longitudinal changes of 

profiles remains as few studies have examined daily changes in metabolomic profiles for 

humans (34–39). The paucity in the literature HRM profile comparability for these three 

matrices is an opportunity to examine their utility for air pollution epidemiology.

To address these questions, a pilot commuter study was conducted in which plasma, EBC, 

and saliva were collected for a small set of participants. The overarching aims of this pilot 

study were to a) assess feasibility of conducting metabolomics analyses on these three 

matrices using a novel, powerful HRM platform; b) compare metabolomic profiles in plasma 

samples with those in the two, non-invasively collected matrices, saliva and EBC, and; c) 

assess whether the metabolomics platform we used, has the potential to identify features 

expected to be associated with exposure to TRP, specifically.

Methods

The current analysis used data collected as a pilot field study, nested within two larger panel 

studies of daily car commuters in Atlanta, GA (40–42). To conduct this pilot study, we 

recruited a convenience sample of four participants, who provided repeated samples of 

venous blood, EBC, and saliva over a multi-day period. These participants lived within 5-

miles of the study site, and refrained from highway traffic exposures over the weekend 

preceding sample collection. To mirror the larger commuter study designs, the pilot 

sampling was conducted before and after a 2-hr commute during morning rush hour over 

prescribed, predominantly highway routes. This study was approved by the Emory 

Institutional Review Board as part of the larger Atlanta Commuters Exposures Study.

The pilot study protocol comprised four repeated measures of biological samples for four 

participants. Two sample collections were conducted on the first day (Day 0), a Monday; 

one pre-commute session at 7AM, and one immediately following the commute at 10AM. 

The subsequent sampling times occurred at 11AM on both +1 and +2 days. The design 

permitted careful control of exposure and follow-up with a small panel of participants with 

the expectation of producing thousands of measurements of chemicals within samples at 

every time point.

Biological Sampling

For each subject, sampling sessions included whole blood collection, passive saliva and 

exhaled breath condensate collection (41). Briefly, venous blood was collected in 3mL, 

ethylenediaminetetraacetic acid-treated (EDTA) tubes (BD Vacutainer) from either the left 

or right median cubital vein and centrifuged immediately for plasma retrieval. Saliva was 

collected passively, meaning it was not spit or expectorated but allowed to pool, into sterile 

15mL conical centrifuge tubes (Falcon) held against the lips. Rtubes (Respiratory Research), 

disposable exhaled breath condensers, were used to collect roughly ~2mL of exhaled breath 

condensate. Biological samples from each matrix were aliquoted into microcentrifuge tubes 
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and stored at −80°C within 20 minutes of collection. Metabolomic analyses were conducted 

within four months of collection.

Metabolomics and Data Processing

Analytical chemistry was performed following procedures developed by Soltow et al. (2013) 

(43). For each sample, 65μL were diluted into 130μL of acetonitrile spiked with 14 stable 

isotopic standards (43). After a 30-minute equilibration on ice and protein precipitation, 

triplicate 10μL aliquots were placed into separate autoinjector vials and run across two 

batches through a C18 reverse phase liquid chromatography coupled with high resolution 

mass spectrometry (HR-MS) on a QExactive (Thermo Scientific) (43). The analytical 

platform allows both positive and negative electrospray ionization (ESI), providing two, 

distinct runs per replicate. For this analysis, we focused only on positive phase features from 

positive ESI, since a greater number of features for this phase have been validated and 

annotated using spectral information available in the Human Metabolome Database 

(HMDB).

Raw mass spectra output from the analytical platform are processed to extract features, 

which represent individual ions detected from the mass spectrometer. Each feature is 

indicated by a unique combination of its mass-to-charge ratio (m/z) and retention time (RT). 

The relative concentration of a given feature within a replicate is indicated by the integrated 

ion intensity. Notably, we use the term ‘feature’ as distinct from the term “metabolite,” 

which would be the amalgamation of isotope and adduct peaks that correspond to a single, 

identifiable compound.

Feature extraction was performed using two, integrated algorithms developed by the Emory 

University Clinical Biomarkers Laboratory (clinicalmetabolomics.org), a research center 

integrating expertise in metabolomics and informatics. The two algorithms were the adaptive 

processing of liquid chromatography mass spectrometry (apLCMS, v. 6.0.1) and the 

xMSanalyzer (v. 2.0.6.1) packages, which were developed for use in R (v. 3.0.1) (44, 45). 

The apLCMS program was run in ‘hybrid’ mode, which allowed us to input information 

related to known metabolite masses and, thus, improve extraction efficiency of those 

potential metabolites from chromatograms (46). The list of known metabolites was 

comprised of monoisotopic masses from HMDB (v. 3.6) and the US Environmental 

Protection Agency’s Master List of Compounds Emitted by Mobile Sources. The 

xMSanalyzer package then modifies the resulting data from apLCMS for quality and 

reproducibility, including cut-offs for triplicate coefficients of variation, triplicate 

correlations, prevalence across biological samples (Supplemental Table 1). Complete feature 

extraction and data processing was done separately for each biological matrix in order to 

reduce noise introduced by mixing sample types. This resulted in three distinct feature tables 

for each sample type: plasma, EBC, and saliva.

The feature tables were pre-processed following Soltow et al. (2013) (43). Briefly, the ion 

intensities in each of the feature tables were log2 transformed after the addition of 1 to all 

intensities, including zeroes. The zeros resulting from log2 transformation were set to 

missing for downstream analysis. Triplicate intensity values for a feature within a biological 

sample were averaged, with missing values ignored, to produce the final feature tables for 
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statistical analysis. Metabolite levels of select features were generated using reference 

standardization and compared to previously published ranges (47).

Statistical Analysis

Statistical analyses were conducted in R (v.3.1.3). To evaluate the overall associations 

among the biological matrices, three key data subsets were sequentially examined: 1) All 

features detected in a biological matrix (‘All’); 2) a subset of features measured with low 

triplicate variability in intensity (i.e., < 10% median coefficient of variation) (‘<10% CoV’); 

and 3) a subset of features with masses that matched compounds in the USEPA Master List 

of Compounds Emitted by Mobile Sources (‘EPA-matched’). Feature counts across matrices 

were compared, descriptively in Venn diagrams using functions provided in ‘xMSanalyzer.’

For this analysis, a shared feature across matrix pairs was defined as a feature with a m/z 

within 10 ppm and a retention time within 300 seconds of a feature in another matrix. Only 

shared features between matrix pairs were used for subsequent analyses, similar to the 

interbiofluid analysis performed by Pinto et al. (2015) (32).

Scatterplots of ‘All’ shared features across matrix pairs provided a visual assessment of the 

joint distributions of mean feature intensities across subjects at the pre-exposure sampling. 

Correlations between matrix pairs of mean feature intensities at each sampling time were 

examined using Spearman’s rank correlation analysis (rS), with confidence intervals 

estimated using the Fisher transformation (48).

To examine the impacts of subjects and sampling time on the association of average 

intensities across matrix pairs, linear regression was used on the EPA-matched subset. 

Bivariate analyses were conducted to assess the association between subject or sampling 

time variables and feature intensity in a given matrix. The analysis focused on this subset 

because its members were features potentially representing traffic-related pollution. The 

model constructed examined associations of a feature intensity in one biological matrix 

(Xijk) to the m/z and RT-matched feature intensity in another (Yijk). For subject, i, at 

sampling time, j, the association between features, k, can be expressed in the regression:

(1)

where .

The variables, Zi and Wj, were subject and sampling time identifiers. Here, L is the mean 

intensity of the referent group (subject 1 at pre-exposure) and εijk, the residual error, is 

normally distributed around 0. The association between the feature intensity in matrix Xijk 

and feature intensity in Yijk is denoted by α. The coefficients β and γ represent the offsets to 

μ of the referent group. The model was run separately for each pair of matrices: ‘EBC = 

plasma’, ‘saliva = plasma’, and ‘saliva = EBC’. Both the predictor and dependent variables 
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were log2-transformed. A secondary analysis was conducted to explore the range of 

intensities in the sample population. The variability of specific features in the EPA-matched 

subset may have differential influence on observed associations and were examined using 

scatterplots (Supplementary Figure 1).

Annotation of shared, EPA-matched compounds

Feature annotation is the process in which a putative identification of a feature can be made 

through the mass querying online chemical databases like the HMDB. In this pilot study, the 

EPA-matched subset provided an opportunity to compare identifications with HMDB and 

ChemSpider, a comprehensive, chemical structure database curated from roughly 500 

sources, to evaluate the feature annotation process and needs for use in environmental 

epidemiological applications.

Since full validation, using tandem MS approaches, was beyond the scope of this pilot 

analysis, we conducted a manual annotation of the metabolomics output, on those features 

from the ‘EPA-matched’ subset shared across all three matrices without multiple-matches 

(N=20) using HMDB and ChemSpider (49). First, the m/z ratios from the 20 features were 

used to calculate computed masses using only proton adducts and queried in HMDB. If a 

mass-match was successful, a comparison was made between the compound entry or entries 

in HMDB and compound identification provided in the USEPA Master List. The number of 

compound matches that overlapped, if any, was recorded. Secondly, entries from HMDB and 

the USEPA Master List were compared qualitatively. For example, if an entry in HMDB was 

detected, quantified, and validated as an endogenous metabolite, then this was determined to 

be a better identification than a dissimilar compound match with the Master List. However, 

if no match was found in HMDB, the putative identification using the Master List was used 

to search ChemSpider. The purpose of this step was to examine other potential sources for 

exposures. If the putative identification is for a compound shared in other potential 

exposures, such as consumer products or foods, it was no longer considered a putative TRP-

related feature.

Results

We successfully retrieved 14 of 16 plasma, 15 of 16 EBC, and 16 of 16 saliva samples across 

a three-day sampling period across all participants. Participant metabolic characteristics, 

derived from the metabolomics analysis of plasma, at baseline, were comparable to or within 

a range of previously reported values for selected features (Table 1) (50). In total, raw 

feature extractions yielded unique 9,377–10,583 features in both plasma and saliva, and 

7,688–8,565 features in EBC. After summarization and data cleaning, 7,110, 6,019, and 

7,747 features were measured in plasma, EBC, and saliva, respectively. The median 

coefficients of variation across triplicates of samples within each biological matrix was less 

than 15% (Plasma: 13.5%, EBC: 14.3%, and Saliva: 13.2%). Saliva had the largest number 

of unique features (N=4,227) that were not present in either EBC or plasma; compared to the 

number of unique features in both plasma (N = 3,718) and EBC (N = 2,381). Most identified 

features in EBC (60.5%) were also found in the other matrices (Figure 1). Generally, 
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associations between metabolomic profiles from matrix pairs were consistent across 

repeated measures and across subjects.

Between-matrix scatterplots among ‘All’ features showed positive linear relationships 

between paired matrices with at least one subject having measurable concentrations in both 

matrices (N = 1,862 – 2,039) (Figure 2). When examining ‘All’ shared features identified at 

each of the sampling periods, correlations between EBC and plasma ranged from 0.51 to 

0.58 across all four sampling time points (p-value < 0.0001, for all pairwise correlations) 

(Figure 3). EBC-plasma correlations were comparable, albeit slightly stronger (rS = 0.56 – 

0.65; p < 0.0001), for those features measured with greater confidence (i.e., ‘< 10% CoV’) 

(N = 674 – 861). EBC-plasma correlations involving the subset of features within the ‘EPA-

matched’ subset, ranged between 0.41 and 0.52 (p < 0.0001), across the various sampling 

time points. Saliva-plasma and saliva-EBC pairwise correlations were also positive and 

moderate-to-strong across all data subsets (rS = 0.51 – 0.69; p < 0.0001 and 0.60 – 0.80; p < 

0.0001, respectively). The estimates of the correlation for EBC vs. saliva were stronger 

across all subsets (‘All’: ρ=0.60–0.66; ‘<10% CoV’: 0.72–0.80; ‘EPA-matched’: 0.66–0.79).

Generally, correlation patterns across all repeated measure sampling time points were 

consistent within each pairwise matrix comparison and data subset and did not vary by more 

than 13%. In the examination of the features matching the USEPA Master List (‘EPA-

matched’), the correlations varied from 16% in saliva vs. EBC to 23% in plasma vs. saliva. 

The greater variation in correlation estimates may be explained by the relatively small 

number of features being compared (N = 36 – 54).

Linear regression for the ‘EPA-matched’ subset demonstrated that the mean feature 

intensities did not vary by subject or sampling time when examining bivariate associations 

(Subject: β= −0.55 – 0.08, p < 0.07 – 0.92). This finding was also true across different 

sampling time points (Sampling Time: β= −0.37 – 0.15, p < 0.09 – 0.86). Multiple linear 

regression echoed this as well, with the exception of +1 Day sampling time in the EBC = 

plasma model. The feature intensities in EBC were significantly reduced (β(SE): −0.66 

(0.30)) at the +1 Day time point relative to the pre-exposure measurement holding plasma 

intensity and subject constant. Strengths of associations between matrix pairs across all three 

models were positive and statistically significant (p < 0.0001) (Table 2). For example, a 10% 

increase in the geometric mean of feature intensities in plasma corresponded to a 6.0% 

increase in the geometric mean intensities in EBC. The same increase (10%) in plasma or 

EBC was associated with a corresponding 7.7% and 7.4% increase in saliva for models 2 

and 3, respectively.

Highlighting the EPA-matched subset permitted an examination of feature annotation. Of 

features that were found in all three matrices (N = 20), only eight uniquely matched the 

curated Master List of Compounds Emitted from Mobile Sources and were not found in 

HMDB (Table 3). These features present new, putative identifications found in plasma, EBC, 

and saliva and are less likely features of endogenous metabolism. A ninth feature, matching 

the USEPA Master List as n-nitrosomorpholine, had two matches to drug metabolites in 

HMDB which are unlikely in our healthy population. Three of these features, putatively 

identified as n-nitrosodiethylamine, n-nitrosomorpholine, and C29H50 (i.e., 30-
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normoretane), had high relative concentrations across all matrices. Further examination of 

the usage of the eight compounds, using ChemSpider as the source, suggested that three of 

them may be from exposure to consumer hygiene or food products.

Discussion

Comparison of feature information across multiple, biological matrices is a critical initial 

step towards evaluating HRM’s usefulness as a sensitive, less invasive method for exposure 

assessment. A number of studies have previously compared metabolite features measured 

across matrices sampled from the same persons (30, 32, 33, 51–56). To our knowledge, 

however, the results from this pilot study are among the first to examine matrix 

comparability between plasma (relatively invasive) and saliva or EBC (non-invasive) using 

this measurement method. Our data showed moderate-to-strong associations among 

extracted features in each of the three matrices, with the strongest association between 

features in EBC and saliva. These results provide general support for the use of HRM to 

measure metabolic profiles in matrices collected non-invasively, specifically in EBC and 

saliva. The number of shared features as well as the between-matrix associations among 

these shared features suggest that either saliva or EBC may also be comparable to plasma.

Importantly, using our bioinformatics platform for metabolomics, we were able to extract a 

greater number of features than previous investigations (45). In addition, the use of 

xMSanalyzer and apLCMS yielded thousands of reproducible features in each matrix, with a 

majority of features shared across matrices. Although saliva had the greatest absolute 

number of individual features extracted, EBC shared a larger proportion of detected features 

than either plasma or saliva.

Generally, we observed strong associations between the mean feature intensities in plasma 

and corresponding intensities in both EBC and saliva. As indicated by the results from the 

linear models, these associations were not driven by individual subject effects nor sampling 

time points. The lack of significant subject effect is contrary to a previous repeated measures 

study of metabolomics (57). A possible alternative explanation may be that the sample size 

of our study does not reflect the true heterogeneity of metabolomes in larger populations. 

However, intensities of shared features between matrix pairs showed pronounced linearity in 

their relationships to each other in the scatterplots. Do et al. reported that 93.5% of total 

between-fluid correlations of plasma and saliva matched to the same biochemically-valid 

networks conferring confidence in annotation, but the average of the significant, partial 

correlations reported (N = 14 metabolites) was very weak between the same metabolites (r = 

0.06) (2015) (30). Our results, with respect to plasma and saliva, show a moderate 

correlation among feature intensities between the matrices. The difference in interpretation 

of the association, aside from differing statistical methods, is likely attributable to the 

authors exclusion of unknown, unannotated features.

In our results, the relative strength of association was similar regardless of the data subset 

analyzed, suggesting that the cross-matrix correlation patterns were not merely driven by 

features that were more reliably measured or identifiable (Figure 3). Our regression 

modeling results using the ‘EPA-matched’ subset supported these findings, indicating 
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positive and significant associations of mean intensities between matrices that did not vary 

by subject or time, appreciably. These associations echoed the patterns of correlations 

between biological matrices in the ‘All’ and ‘<10% CoV’ subsets. These results provide 

promising initial support for the use of our environmental metabolomics platform for the 

robust detection of compounds that may be associated with potential environmental sources.

Previous studies that have examined within- and between-person variability in metabolomic 

profiles across a variety of analytical platforms and matrices have found that the measured 

metabolites had much less within-person than between-person sources of variability (58–

60). In contrast, our profiling indicated negligible differences when comparing the mean 

feature intensities between persons. This finding is consistent with Crews et al. (2009), and 

suggests that a large set of features from metabolomic profiles with greater intensities do not 

exhibit substantial daily variability within a multi-day sampling protocol (61). It is worth 

emphasizing that, although metabolomic profiles overall may exhibit low between-person 

variability in healthy persons, certain features do have greater between-person variability. In 

Crews et al., features with high integrated intensities (>106) clustered with CoVs less than 

20% across biological samples in plasma. Our secondary analysis shows that some features 

within the EPA-matched subset have very little variation while others exhibit broad ranges of 

intensity values. Metabolomic analyses of low intensity features may be liable to greater 

inter-individual variability. This may be true, for example, in an assessment targeting 

features indicative of an exposure to an environmental contaminant, which would likely 

result in relatively low intensity values compared to endogenous metabolism (62).

The moderate correlations (rS ≈ 0.5 to 0.6) between EBC and saliva intensities from the 

‘All’ subset were somewhat unexpected. de Laurentiis et al. reported dissimilar spectral 

profiles between EBC and saliva in samples of healthy subjects and patients with airway 

disease, suggesting the composition of measurable compounds between the two matrices are 

different when using nuclear magnetic resonance spectrometer (NMR) (29). Our results, 

using mass spectrometry, may support this as many more features were found in saliva than 

in EBC. Also, our correlation findings show that EBC samples may reflect a large portion of 

features in both saliva and plasma, and that the metabolomic profiles of EBC were more 

strongly correlated with saliva. For this protocol, we collected unstimulated, passive saliva, 

known to mostly be generated from the submandibular glands, but still comprising a mixture 

of saliva produced from the parotid and sublingual glands (63). The marginally greater 

number of features measured in saliva may reflect unique microbial signatures. Previous 

literature on the salivary metabolome have reported the presence of both endogenous and 

microbial signatures within this matrix (64). This interpretation should be viewed cautiously, 

however, since we were not able to discern metabolites generated from human or microbial 

metabolism for lack of specificity in putative identification. While definitive validation 

methods, such as tandem MS approaches (MS/MS), were beyond the scope of this pilot 

analysis, future targeted analyses including formal feature validation may help discern 

specific contribution from microbial as well as other sources.

It is possible that the strength of the saliva-EBC association may be explained, in part, by 

salivary contamination of EBC. When examining immunological markers, however, 

previous studies have found a negligible influence of salivary concentrations on EBC 
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concentrations (65). Despite this, our metabolomic analysis captures a much larger chemical 

space than the more limited immunological markers examined previously. In two recent 

studies of oral and lung microbiota, the taxonomic composition of oral washes and 

broncheoalveolar lavage were reported to be mostly similar, though still different in specific, 

lower-abundance taxa by sampling location (66, 67). These samples, at least partially, were 

collected from similar physiological locations we sampled through our passive saliva and 

exhaled breath. The microbiota occupying these similar locations may produce shared 

metabolites contributing to the observed correlations between EBC and saliva, relative to 

correlations between either of these matrices with plasma.

Another key finding from this analysis was the consistent strength of association of the four 

sampling time points over the span of three consecutive sampling days. This finding 

suggests observed associations between the metabolomic profiles in this pilot study were 

generally not time-varying over this duration. The striking consistency in the strengths of 

associations across time, also support our conclusion that these results were not spurious and 

driven by artifacts in the data analysis plan. However, the result should not be interpreted to 

mean that the profiles themselves are time-invariant. Ang et al. (2012) found both time-

invariant and time-variant metabolites in pooled samples (57). Their study suggests that the 

selection of metabolites from a total metabolic profile may warrant special considerations 

depending on their respective temporal characteristics. Our study had repeated samples at 

nearly the same time of day from healthy individuals, which may explain the robustness of 

the associations over time.

Although correlations were typically strong among a broad suite of metabolites, without 

conducting intensive validation, it is unclear whether these were primarily abundant 

metabolites associated with common metabolic processes, which would not be expected to 

exhibit daily fluctuation or variability. In a secondary analysis, we examined the range of 

intensities across all subjects and sampling times of the EPA-matched features. Some 

metabolites had consistent measures across the study period, while others were far more 

variable. From our feature annotation, we found that the 20 metabolites identified from the 

EPA-matched subset were more likely to be features associated with endogenous 

metabolism, a food chemical, or consumer product exposure. However, six features, detected 

in all samples and matrices, were exclusively identified using the USEPA mobile source 

metabolite list. This may indicate an environmental origin and suggested, albeit non-

validated, that the current metabolomics platform detected features that are potentially from 

exposure to TRP. This conclusion should be viewed cautiously as the utility of mass-

matching of high-resolution masses is limited by the comprehensive capture of the 

annotation databases used. It may be possible that these features are truly unrelated to TRP 

exposures, and that HMDB has yet to identify these with as great reliability as other 

compounds. Our comparative approach for identifying metabolites of interest does not 

replace formal validation procedures, such as tandem MS; it does provide a relatively quick 

and inexpensive means of leveraging available information about the identity and sources of 

several thousand features.

One limitation of the analysis is that the matches were identified strictly through a search of 

proton adducts to a parent compound ion. For example, our putative annotation of tin as a 
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feature in all three matrices is an unlikely candidate using our LC ESI+ chemical analysis. 

As our samples were diluted in acetonitrile, there is a high likelihood of acetonitrile, sodium, 

and potassium adducts, which complicate database annotation by providing many more 

matches to a single mass-to-charge ratio. Until tools are available to utilize data structure, 

correlations, and expectations of presence in various biological matrices, simple mass 

matching will continue to be a challenge for environmental metabolomics when 

environmental data is still poorly represented in available public datasets.

There are numerous caveats in interpreting the findings from this analysis. Most notably is 

the sample size, which was conducted on a non-random convenience sample of four 

subjects. Similar sample sizes, however, are not unprecedented in metabolomics analyses 

(61). To offset noise and potential confounding from uncontrolled factors associated with 

field-based observational designs involving multiple subjects, we elected to enroll four 

subjects, who were carefully monitored and followed during their participation in the study 

protocol. This degree of monitoring would not have been possible given a larger number of 

participants in a pilot study. Additionally, the purpose of the pilot study was to compare the 

metabolomic profiling of three distinct matrices, which requires, primarily, a sufficient 

number of features measured in the participants. The use of apLCMS and xMSanalyzer 

produced measurements of 6,000 – 8,000 features from HRM, providing more than adequate 

power to detect differences among the matrices. Despite this, although the model results 

showed that the strength of the associations did not vary by subject, given the limited 

number of observations, it is not possible to generalize these findings to a broader 

population.

Relatedly, although not a traditional limitation, there may be a concern of noise retained 

from untargeted metabolomics approaches. Standard, targeted metabolomics practices often 

subtract signals from laboratory blanks to remove background signals. This approach is a 

gold standard when the targets of the analysis, the research question, are known and 

quantifiable. In untargeted or hybrid metabolomics approaches, such as those used in this 

study, a blank correction is inappropriate, especially when measuring low intensity features 

representing ubiquitous environmental exposures. This is compensated for through the use 

of advanced bioinformatics methods, quality controls, isotopic standards, and a high-

resolution metabolomics platform in tandem (3, 68). Thus, noise is dramatically reduced in 

the final feature tables used in the analyses here without the explicit and overly conservative 

removal of signals.

To further address the issues of sample size and generalizability to other study populations, 

we repeated a similar analysis, using an identical sample collection and metabolic analysis 

protocol, examining linear correlations between plasma and saliva metabolites in a cohort of 

54 college-aged students. EBC was not collected as part of this specific protocol. In this 

analysis (results not shown), we found comparable correlations in the subset of highly-

reproducible features (<10% CoV) (rS = 0.59 vs. 0.64). While our results are still limited in 

generalizability to the participants in the study, the general concordance of the current pilot 

results to those shown in this larger cohort provides some external validation that the pilot 

study findings were not spurious.
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Future work should contribute to the capture of spectral data of those compounds in the 

Master List of Mobile Source Air Toxics to public annotation databases. The degree of 

curation in resources such as the Human Metabolome Database provide an invaluable 

resource for metabolomic analysis, but still lack in compounds associated with or direct 

metabolites from environmental exposures. Nevertheless, the access to monoisotopic masses 

of the mobile source air toxics list enabled putative matching using a curated list of 

compounds known to be emitted from mobile sources. The detection of EPA-matched 

features in all matrices is encouraging for air pollution exposure science, but cannot be 

determined with computation alone. Only after definitive identification, through targeted 

MS/MS analysis, of compounds associated with traffic pollution exposure in each matrix can 

a determination be made on which of plasma, EBC, or saliva is best suited for exposure 

assessment while minimizing participant burden.

Conclusions

Collectively, we believe this pilot analysis efficiently demonstrated matrix comparability 

between plasma, saliva, and EBC and the putative detection of several features that may be 

associated with TRP. Our methodology was successful in retrieving thousands of features 

and was able to characterize robust, consistent metabolomic profiles across plasma, saliva 

and exhaled breath condensate. As metabolomic databases become better curated for 

environmental health applications, analyses in studies such as this will presumably improve. 

Today, there is much ambiguity in putative matching by accurate mass with respect to 

mobile source air toxics. Detection and validation of these compounds in all three matrices 

will help towards understanding exposure and relevant biological pathways associated with 

traffic pollution toxicity.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Venn Diagram of Feature Counts. Counts are from features detected at any sampling time. 

Features in one matrix were matched to features in another if they were within 10ppm of 

their respective m/z and within 30s of retention time. The numbers in the parentheses 

indicate the counts of features from the USEPA Master List of Mobile Source Air Toxics.
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Figure 2. 
Scatterplots of Mean Intensities of Shared Features across Subjects between Matrix Pairs at 

the Pre-Exposure Sampling Time. Red dots indicate those features that also match the 

Master List of Mobile Source Air Toxics. Sample sizes (from top to bottom) range from 

1,862, 2,039, and 1,875 features for Plasma vs. EBC, Plasma vs. Saliva, and EBC vs. Saliva, 

respectively.
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Figure 3. 
Estimates of the Spearman’s Rank Correlations between Matrices Stratified by Time. Three 

sets of the data were considered in turn. The All set (far left) is the complete list of shared, 

reproducible features. The <10% CoV set (middle) is a subset of All with a very high 

standard for chemical measurement. The EPA-matched (far right) is the subset of features 

that match the Master List of Mobile Source Air Toxics. All feature matching here was 

within m/z of 10ppm and RT of 300s.
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Table 1

Participant Characteristics and Metabolite Levels* from Plasma Metabolomics

Pre-Exp Comb. Post-Exp Accardi et al. HMDB

Female (%) 25 – – –

Age (Range) 29 – 46 – – –

Health Indicators

 Glucose (mM) 2.6 ± 0.02 2.5 ± 0.06 6.3 ± 3 3.9 – 6.1

 Creatinine 76 ± 0.8 76 ± 0.8 85 ± 15 56 – 108.8

Amino Acids

 Phenylalanine 81 ± 0.6 78 ± 0.6 142 ± 22 48 – 189

 Methionine 30 ± 0.5 30 ± 0.4 21 ± 10 22 – 46

Exogenous Chemical

 Benzoic acid 18 ± 0.3 19 ± 0.4 4 ± 0.6 8.1 – 145.3

*
Metabolite matching from reference standardization. Values are presented as mean ± SD or ranges. All metabolite levels are in μM concentrations, 

unless noted otherwise.
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