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Abstract
Gene silencing via RNA interference (RNAi) is rapidly evolving as a personalized approach to cancer treatment. The effector
molecules—small interfering RNAs (siRNAs) and microRNAs (miRNAs)—can be used to silence or Bswitch off^ specific
cancer genes. Currently, the main barrier to implementing siRNA- and miRNA-based therapies in clinical practice is the lack
of an effective delivery system that can protect the RNA molecules from nuclease degradation, deliver to them to tumor tissue,
and release them into the cytoplasm of the target cancer cells, all without inducing adverse effects. Here, we review the
fundamentals of RNAi, cell membrane transport pathways, and factors that affect intracellular delivery. We discuss the advan-
tages and disadvantages of the various types of nanoparticle delivery systems, with a focus on those that have been investigated in
breast cancer in vivo.
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Introduction

Breast cancer represents the leading cause of cancer-related
deaths among women worldwide. Globally, breast cancer
accounted for the highest number of new cancer cases in 2015
(Jemal et al. 2011; Global Burden of Disease Cancer
Collaboration et al. 2017). It has been postulated that nearly
30% of newly diagnosed patients with early stage breast cancer
will develop adistantmetastasis despite receiving therapy (Redig
andMcAllister 2013;Morry et al. 2017). In routine clinical prac-
tice, breast cancer is traditionally classified as either non-invasive
or invasive, and then according to stage and grade. The classifi-
cation system isbasedon thehistological featuresof breast tissue,
location of abnormal tissues (e.g., milk ducts, lobules), and clin-
ical symptoms presented by the patient (Goljan 2011; Eliyatkın
et al. 2015).Non-invasive breast cancers remain localized and do
not invade surrounding tissues. The two main types of non-

invasive breast cancer are ductal carcinoma in situ and lobular
carcinoma in situ. Most breast cancers are invasive and include
infiltrating ductal carcinoma, Paget’s disease,medullary carcino-
ma,inflammatorycarcinoma,invasivelobularcarcinoma,tubular
carcinoma, and colloid (mucinous) carcinoma (Goljan 2011).
Breast cancers can become metastatic if the cancer cells spread
to other parts of the body through the bloodstream and lymph
nodes.

Breast cancers are further classified into four molecular sub-
types (luminal A, luminal B, HER2-enriched, and basal-like)
based on the level of expression of the estrogen receptor (ER),
progesterone receptor (PR), and the human epidermal growth
factor receptor 2 (HER2) (Mastoraki et al. 2014; Dai et al.
2016). Luminal A cancers overexpress the hormonal receptors
only (ER+ and/or PR+ andHER2−), whereas the luminal B type
overexpress all three receptors (ER+ and/or PR+ and HER2+).
LuminalAandluminalBcancersaredefinedby theexpressionof
genes in the luminal epithelial layer of the mammary gland.
Approximately 70% of breast cancers are hormone receptor-
positive and overexpress one or both ER and PR (Bae et al.
2015). Breast cancers that overexpress HER2 only (i.e.,
HER2+/ER−/PR−) are referred to as HER2-enriched or simply
as HER2, and represent around 20% of all cases (Kittaneh et al.
2013). Basal-like breast cancers are based on a distinct gene sig-
nature in the basal cells that line the breast ducts. They aremostly
triple-negativebreastcancers (TNBCs),whichdonotexpressany
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of the receptors (i.e., ER−, PR−, andHER−). TNBCs account for
about 10% of all breast cancers and are associated with high
mortality (Badve et al. 2011; Lü et al. 2017; Peng et al. 2017).
Approximately50–80%ofTNBCsarebasal-like(Boyle2012;Li
et al. 2017). Further subclassification of breast cancer usingmore
detailed molecular signatures has shown promise, but is yet to
reach routine clinical practice (Eliyatkın et al. 2015).

Current therapy options for breast cancer include surgery,
hormonal therapy, immunotherapy, chemotherapy, radiation
therapy, or a combination of these (Parvani and Jackson
2017). Breast cancers that express any hormone receptors
have targeted hormonal therapies available and have a more
favorable prognosis than breast cancers that do not show re-
ceptor expression (Cho 2016). Hormonal therapies are often
prescribed following surgery as an adjuvant treatment. Some
block the interaction between receptors and hormones (such
as tamoxifen), while others lower the level of hormones (such
as aromatase inhibitors). Tamoxifen has been used for more
than 30 years to treat hormone receptor-positive breast cancers
(ER+ and/or PR+). It works by stopping cells from responding
to estrogen (Chang 2012). Similarly, Herceptin (trastuzumab),
a humanized anti-HER2monoclonal antibody, works by bind-
ing to HER2 receptors on the surface of breast cancer cells and
blocking growth factor signals (Maximiano et al. 2016).
Tamoxifen and Herceptin can be administered alone or in
conjunction with radiation therapy or chemotherapy drugs
such as paclitaxel or doxorubicin (Ranftler and Strasser-
Weippl 2017). There are currently no effective targeted treat-
ments available for TNBC patients. The high genetic diversity
and absence of ER, PR, and HER2 receptors makes it unre-
sponsive to hormonal therapies. It is also frequently resistant
to chemotherapy; the platinum drugs epirubicin and paclitaxel
are currently prescribed for TNBC patients, but response rates
are poor (Liu et al. 2014; Jing et al. 2016; Parvani and Jackson
2017; Peng et al. 2017).

The heterogeneity of breast cancer remains a key barrier to
its accurate molecular classification and individualization of
treatment (Eccles et al. 2013). Not all patients who overex-
press the hormone receptors (ER+ and/or PR+) respond favor-
ably to tamoxifen. Similarly, not all patients who overexpress
HER2 respond to Herceptin alone (Liu et al. 2014; Jiang et al.
2015). The cut-offs to define luminal A and luminal B cancers
are currently set in an arbitrary manner rather than from gene
expression levels because of substantial ER+ tumor heteroge-
neity, which can add to the problems in selecting treatment
(Eccles et al. 2013; Yersal and Barutca 2014). Several authors
suggest that the Ki-67 index can help to differentiate luminal
A from luminal B (Dowsett et al. 2011; Eroles et al. 2012;
Guiu et al. 2012; Yersal and Barutca 2014; Cho 2016; Dai
et al. 2016; Hennigs et al. 2016; Hon et al. 2016; Yip et al.
2016). Ki-67 is a protein that serves as a cellular marker for
proliferation and has been used to suggest a fifth molecular
subtype, Bnormal-like^ breast cancer, which is similar to

luminal A but with the additional characteristic of having
low Ki-67, i.e., ER+/PR+/HER2−/Ki-67−. Luminal B can
be further subdivided into two groups: ER+/PR+/HER2
−/Ki-67+ and ER+/PR+/HER2+/Ki-67+ (Dai et al. 2016).
Although the Ki-67 index has gained wide support in the
literature as a prognostic and predictive biomarker, it is not
yet established for use in the clinical management of breast
cancer due to the lack of standardized procedures (Dowsett
et al. 2011; Penault-Llorca and Radosevic-Robin 2017).

Several studies have attempted to further subclassify breast
cancer based on gene mutations and/or gene expression sig-
natures; however, the prognostic value is not yet clear. Known
breast cancer susceptibility genes that make up 25–30% of the
heritability include BRCA1, BRCA2, CHEK2, ATM, PALB2,
BRIP1, TP53, PTEN, CDH1, and STK11 (Eccles et al. 2013).
BRCA1 and BRCA2 are the most commonly mutated genes
found in breast cancer, including in TNBC (Liang and Lam
2012; Gasparri et al. 2017). PLK1 expression has been report-
ed as a potential genetic marker for TNBC (Maire et al. 2013;
Morry et al. 2017), and BIRC5, MYBL2, IGFBP6, TP53,
GAPDH, CCND1, HRAS, and PCNA were reported as the
most significantly up- or downregulated differentially
expressed genes in TNBC compared with normal tissue
(Peng et al. 2017). Other studies have reported elevated ex-
pression of the AR and EGFR genes in TNBCs (Martin et al.
2012; Pietri et al. 2016).

A better understanding of the genetic mutations and gene
expression patterns in breast cancer has the potential to help
identify prognostic and predictive biomarkers. In addition, a
deeper molecular understanding will also provide new thera-
peutic targets and candidates for gene silencing. In order to
appreciate the potential therapeutic application of gene silenc-
ing, it is important to first understand the fundamentals of how
this process regulates cell biology.

Gene silencing: history and discovery
of microRNA and siRNA

Until recently, the role of non-coding RNAs in our DNAwas
unknown. The ability of RNA to inhibit gene expression was
first observed in plants in the 1990s by a number of indepen-
dent groups; however, the phenomenon was not fully under-
stood and, so, it was not explained or reported. Then, in 1993,
Ambros and coworkers discovered the first microRNA
(miRNA) gene, lin-4, in the nematode worm Caenorhabditis
elegans (Lee et al. 1993). They found that lin-4 physically
binds to lin-14 RNA and prevents its translation. Their dis-
covery was the first evidence that an miRNA can suppress
protein production by inhibiting messenger RNAs
(mRNAs). In normal cells, miRNAs play an important role
in regulating functions such as proliferation and cell
differentiation. In 2002, Calin et al. (2002) found that
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miRNAs are involved in cancer by showing that the miR-15a/
16-1 locus is deleted or downregulated in 68% of chronic
lymphocytic leukemias (Calin et al. 2002). Further research
into miRNAs found that they comprise of a broad class of
small RNA regulators with important functions in health and
disease. Aberrant miRNA expression is frequently observed
in various types of cancer, involving global upregulation and
downregulation of miRNA expression (Sioud 2015;
Mendelsohn et al. 2015).

In 1998, five years after the discovery of the first miRNA,
Andrew Fire and Craig Mello discovered the process of RNA
interference (RNAi) during their research on gene expressions
in the nematode worm C. elegans. They found that, when
worms were injected with double-stranded RNA coding for
specific proteins, genes carrying the same sequence were
switched off or silenced (Fire et al. 1998). Their findings re-
sulted in the advent of RNAi as a central tool in modern
molecular biology and were recognized by the Nobel Prize
in 2006. Soon after the discovery of RNAi, David
Baulcombe and AndrewHamilton discovered naturally occur-
ring small interfering RNAs (siRNAs) in plants (Hamilton and
Baulcombe 1999), described as novel small antisense RNAs
involved in gene silencing following transcription. Two years
later, Thomas Tuschl and colleagues produced the first syn-
thetic siRNAs able to silence genes in mammalian cells
(Elbashir et al. 2001; Mattick 2001). This achievement
heralded the widespread use of siRNAs to selectively knock
down the activity of a specific gene. Currently, miRNAs and
siRNAs are the two main classes of RNAs most widely
employed for gene silencing. They have similar physicochem-
ical properties but distinct functions and mechanisms of ac-
tion, making their design requirements and therapeutic appli-
cations different.

Process of gene silencing by siRNAs

The first step to employing siRNAs in therapeutic applications
is designing an siRNA sequence that is specific to the target
mRNA, for which multiple algorithms are available. Once
designed, siRNAs are produced by chemical synthesis or
through gene expression. The former are completely synthetic
RNAs that can be introduced into cells by various means, as
will be discussed in the later parts of this review. The latter are
transcribed inside the cell from expression constructs (such as
plasmids and viral vectors) that express the short-hairpin RNA
(shRNA) precursors of siRNAs (Siolas et al. 2005); these lie
outside the scope of this review. Chemical synthesis of siRNA
allows control over the amount and purity of siRNA and also
enables chemical modifications to improve stability, an impor-
tant aspect required for delivery. Chemically synthesized
siRNAs can also be labeled for analyzing siRNA uptake or
localization by fluorescence microscopy.

After the siRNA is introduced into the cell, the process of
gene silencing is initiated and carried out by the endogenous
RNAi machinery of the cell. Inside the cell, the duplex siRNA
enters the RNAi pathway. The antisense strand is loaded into a
protein complex called the RNA-induced silencing complex
(RISC), and serves as the guide for the recognition of com-
plementary mRNAs. After the target sequence is recognized,
the mRNA is cleaved byArgonaute 2 of the RISC, resulting in
reduced protein expression from the silenced gene (Finlay
et al. 2015b; Kim et al. 2016; Parvani and Jackson 2017).
Advantages of siRNAs over drug therapies include their high
degree of specificity and low toxicity. Nevertheless, off-target
effects do occur due to the miRNA-like activity of siRNAs
acting through the seed-like sequence at the 5′ end and
dsRNA-induced stimulation of the innate immune system,
both reviewed recently (Suter et al. 2016; Meng and Lu
2017). A schematic of the siRNA gene silencing process is
provided in Fig. 1.

Process of gene silencing by miRNA

There are two ways of employing miRNAs for therapeutic
applications: miRNA inhibition and miRNA replacement.
miRNA inhibition is used when the target miRNA is
overexpressed. It involves introducing synthetic single-
stranded RNAs acting as miRNA antagonists that inhibit the
action of the target miRNA. In this respect, miRNA inhibition
is analogous to antisense inhibition with similar design and
delivery considerations, and, as such, is outside the scope of
this review. On the other hand, miRNA replacement is
employed when the target miRNA is repressed or deactivated,
and this tends to be more common in cancer. It involves in-
troducing synthetic double-stranded miRNAs (called miRNA
mimics) to mimic the function of the target miRNAs and bind
to a target gene to initiate mRNA degradation and produce the
gene silencing effect (Rothschild 2014; Wang et al. 2016a).
The design of miRNA mimics is more straightforward than
that of siRNA, as the sequence should be almost, if not entire-
ly, identical to the endogenous miRNA. Synthetic miRNA
mimics and siRNAs enter the same RNAi pathway and both
are incorporated into RISC to create the final active complex.

Difference between siRNA and miRNA

While structurally and functionally similar, there are some
important differences between siRNAs and miRNAs
(Table 1). siRNAs are short double-stranded RNAs typically
composed of 21–23 base pairs, often with two nucleotide
overhangs at the 3′ ends, but multiple variations in length
and overhangs are tolerated (Kim et al. 2016). They consist
of an active (guide) strand and a complementary inactive
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(passenger) strand. siRNAs are regarded as exogenous RNAs
that enter the endogenous RNAi pathway. miRNAs, on the
other hand, are endogenous RNAs produced from within the
cells, expressed as long primary miRNA transcripts (pri-
miRs) from miRNA genes (Sioud 2015). After partial cleav-
age by the microprocessor complex in the nucleus, the stem-
loop pre-miRNA is exported to the cytoplasm, where it is
further processed by Dicer into a double-stranded RNA
consisting of the active, or mature, strand and the inactive

passenger strand. The mature miRNA is incorporated into
the RISC to initiate gene silencing. In contrast to the perfect
complementarity between an siRNA and its target mRNA, an
miRNA has imperfect complementarity, mostly within the
seed sequence at its 5′ end (Carthew and Sontheimer 2009).

In terms of silencing and potential clinical use, a key dif-
ference between siRNAs and miRNAs is that an siRNA is
specific for a single target site in a single mRNA, and, there-
fore, inhibits the expression of one target gene, whereas an

Table 1 Differences between siRNA and miRNA

siRNA miRNA

Occurrence Occurs naturally in plants and animals.
It is currently unknown whether or
not they occur naturally in mammals.

Occurs naturally in plants and animals.

Mean length Approx. 21–22 nt Approx. 19–25 nt

Complementarity t
o target mRNA

100% perfect match; therefore, siRNAs
knock down specific genes, with
minor off-target exceptions.

Not exact; therefore, a single miRNA
may target up to hundreds of mRNAs.

Biogenesis Regulate the same genes that express
them.

Expressed by genes whose purpose is
to make miRNAs, but they regulate
genes (mRNAs) other than the ones
that expressed them.

Action Cleave mRNA. Inhibit or replace translation of mRNA.

Function Act as gene silencing guardians in plants
and animals that do not have antibody-
or cell-mediated immunity.

Regulators (inhibitors) of genes (mRNAs)

Fig. 1 Gene silencing using siRNA or miRNA mimics. Once the siRNA
or miRNA mimic has been introduced into the cytoplasm of the cell, it is
unwound and the active antisense strand (green) is incorporated into the
RISC. This leads to gene silencing via two distinct mechanisms, depend-
ing on the extent of base pairing between the antisense strand and the

target mRNA. With siRNA on the left, the complete homology between
the antisense and target mRNA (yellow) leads to site-specific cleavage
and degradation of the mRNA. In contrast, the partial sequence identity
between the active miRNA strand and its mRNA target leads to inhibition
of translation, decapping, and subsequent mRNA degradation
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miRNA can have multiple targets and can regulate multiple
genes because mRNA recognition requires binding to the
much shorter seed sequence rather than the entire 21-
nucleotide sequence of an siRNA. To initiate RNAi, an
siRNA must be fully complimentary to its target mRNA,
whereas miRNA can be partially complimentary and bind to
multiple mRNAs to inhibit their expression, and their mecha-
nisms of action are different: siRNAs cleave mRNA, whereas
miRNAs inhibit translation of mRNA (Carthew and
Sontheimer 2009). To avoid repression of genes in normal
cells, it is important to develop methods that will enable cell
specificity, i.e., methods to deliver miRNA and siRNA to
tumor cells at the target site (Lam et al. 2015; Takahashi
et al. 2015).

In summary, in order to bring RNAi into clinical practice
for cancer treatment, three key steps must be taken: (1) the
target genes that are directly involved in cancer development
must be identified; (2) an siRNA specific to the target gene
must be designed and synthesized; (3) the synthetic siRNA
must be delivered into the cytoplasm of the target cell. While
methods for steps 1 and 2 are already effective, there are
several challenges to the delivery of siRNA into the target
cells. This last step is the major barrier to implementing
siRNA therapy in clinical practice and is the subject of this
review.

Current challenges of siRNA and microRNA
therapies

The challenges associated with cellular delivery of both
siRNA and miRNA are widely reported (Bouclier et al.
2008; Dahlman et al. 2014; Essex et al. 2015; Wang et al.
2016a; Arnold et al. 2017; Tatiparti et al. 2017; Parvani and
Jackson 2017). Despite differences in their mechanism of ac-
tion, siRNAs andmiRNAmimics have similar chemical struc-
ture and face similar challenges in delivery to target cells.
Therefore, the same delivery system can be employed to im-
prove their cellular uptake (Lam et al. 2015). To date, most
research on siRNAs and miRNAs as cancer therapies has fo-
cused on systemic delivery by intravenous injection. Other
routes described include local delivery by intraocular and
intratumoral injection, local delivery to the central nervous
system (CNS), or intranasal delivery to the airway (Gao and
Huang 2009).

When injected systemically, naked siRNAs and miRNAs
can be easily degraded by serum nucleases, removed by cells
of the immune system, and excreted through renal filtration.
At the cell membrane level, naked siRNA and miRNA are
negatively charged at normal pH, as is the cell membrane;
therefore, they are repelled. They are also water-soluble,
which makes it difficult for them to enter cells by passive
diffusion (Essex et al. 2015). Other challenges include poor

tissue penetration, instability, low efficiency of internalization,
and non-specific immune stimulation (Tatiparti et al. 2017).
The percentage actually taken up by cells is estimated to be
0.7% of the injected dose (Parvani and Jackson 2017). Naked
siRNAs and miRNAs are, therefore, either degraded or
entrapped before entering the target cell. There is a need for
a delivery system that will not only protect the siRNA and
miRNA molecules during systemic delivery, but also maxi-
mize delivery to the specific target tissues and promote entry
into the target cell.

Delivery methods

Principles of transporting oligonucleotides into cells

There are two key barriers a delivery system must overcome
to enable siRNA and miRNA molecules to enter the cell and
target mRNA: (1) transport across the cell membrane and (2)
escape from the endocytic pathway (Liang and Lam 2012). To
determine the ideal characteristics of a delivery system, it is
important to first understand the key processes taking place
during cellular transport. The cell membrane is a selectively
permeable phospholipid bilayer. Each phospholipid molecule
consists of a hydrophilic (polar) phosphate head on the outside
of the membrane and two hydrophobic (non-polar) fatty acid
tails inside the membrane. Generally, the smaller and more
hydrophobic a molecule is, the more rapidly it will diffuse
across the lipid bilayer (Alberts et al. 2002; Prokop 2011).

Transport across the cell membrane primarily occurs
through a process called endocytosis. There are two main
categories of endocytosis: phagocytosis (cell eating) and pi-
nocytosis (cell drinking), with particle size being one of the
key factors that governs the mode of uptake (Prokop 2011).
Phagocytosis involves the cell membrane extending outwards
and engulfing the particle into a membrane-bound vesicle
called a phagosome, which then fuses with lysosomes for
degradation. Phagocytosis is performed by specialized cells
such as neutrophils, macrophages, monocytes, and endothelial
cells, and plays a role in the clearance of particles that have
diameters generally greater than 0.5 μm, including larger par-
ticles of up to 10 μm (such as bacteria or cellular debris)
(Hirota and Terada 2012). An in vitro study in phagocytic cells
showed that macrophages can internalize IgG-coated polysty-
rene spherical particles that range from 200 nm to 2 μm
(Koval et al. 1998). For this reason, delivery systems in this
size range are considered undesirable for drug and RNA de-
livery (Hirota and Terada 2012; Bulbake et al. 2017; Tatiparti
et al. 2017). On the other hand, pinocytosis occurs in virtually
all cells, including cancer cells, and covers particle sizes rang-
ing from 50 nm up to 5 μm. Particles to be imported by
pinocytosis contact the exterior surface of the plasma mem-
brane, triggering the membrane to fold inward, enveloping
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them. The enveloped membrane pinches off into a vesicle
containing extracellular fluid and the imported particles.
There are three main mechanisms of pinocytosis: receptor-
mediated endocytosis, receptor-independent endocytosis,
and macropinocytosis. Receptor-mediated endocytosis occurs
when a particle interacts with a specific receptor and is selec-
tively internalized. There are two main subtypes: clathrin-
mediated endocytosis, which is initiated by the protein
clathrin on the cell membrane and typically occurs for parti-
cles around 120 nm in size, and caveolin-mediated endocyto-
sis, which is initiated by the cholesterol-binding protein cav-
eolin and typically occurs for particles that are around 80 nm
in size (Hirota and Terada 2012). Particles of 50 nm in size can
be endocytosed without the involvement of clathrin or caveo-
lin receptors (Hirota and Terada 2012). For particle sizes rang-
ing from 100 nm to 5 μm, entry to the cell is via
macropinocytosis, a process that involves non-selective up-
take of particles by macropinosomes (Prokop 2011; Hirota
and Terada 2012; Finlay et al. 2015b; Fan et al. 2016). In
addition to controlling size, delivery systems can be designed
to be active or passive. For active transport, the surface of the
vehicle can be decorated with targeting moieties such as pro-
teins, peptides, small molecules, or antibodies to trigger
receptor-mediated endocytosis. Delivery systems for passive
transport require the biophysical properties of the delivery
vehicle to be manipulated, including its size, shape, and zeta
potential (Dahlman et al. 2014).

Once a delivery vehicle passes the cell membrane via en-
docytosis, it is contained within an intracellular membrane-
bound compartment called an endosome, where it enters the
endocytic pathway and is recycled or degraded. The pH with-
in the endosome plays an important role as the cell exposes the
ingested substance to hydrolytic enzymes in a progressively
acidic environment in order to facilitate degradation. The pro-
cess occurs in stages as follows: (a) early endosomes are
sorting organelles and the first compartments of the pathway
located in the periphery of the cell, and receive most types of
particles coming from the cell surface. They have a mildly
acid pH from neutral to around pH 6. From here, many of
the molecules are either recycled to the surface by exocytosis
or sorted into late endosomes; (b) late endosomes receive the
endocytosed materials from the early endosomes through
transport carriers or by Rab conversion (Poteryaev et al.
2010). They are rapidly acidified to a pH of around 5.5 by
the action of ATPase proton pumpswhich span themembrane;
(c) lysosomes are the last compartment of the endocytic path-
way, and have the primary function of breaking down cellular
waste products, fats, carbohydrates, proteins, and other mac-
romolecules into their respective subunits (Liang and Lam
2012; Arnold et al. 2017).

Lysosomes contain degradative hydrolytic enzymes and
function in an acidic environment (further pH reduction to
approximately 4.5). An inability of the delivery system to

escape this compartment will lead to degradation of the parti-
cle and its cargo. Ideally, the delivery system should release its
contents from the acidic compartment of the endosome and
avoid exposure to the degrading enzymes contained within the
lysosomes. Thus, escaping the late endosomes and being sub-
jected to selective disassembly in cytoplasm are the key chal-
lenges to be addressed by successful siRNA and miRNA de-
livery systems within the cell.

Design considerations of delivery systems

As indicated above, size, shape, and surface charge are the key
design considerations for nanoparticle delivery systems
(Tatiparti et al. 2017). Delivery systems smaller than the renal
filtration cut-off of 50 kDa (or 5–6 nm) are expected to be
rapidly removed by renal filtration, whereas delivery systems
larger than 100 nm in diameter can be trapped in the mono-
nuclear phagocyte system (Wang et al. 2016a). According to
Bedi et al. (2013), the ideal systemic delivery vehicle should
be approximately 10–50 nm in size, whereas Wang et al.
(2016a) suggest an optimal size range between 10 nm and
100 nm. Other studies suggest that the size should be within
the range of 20–100 nm in diameter, with particles less than
100 nm showing higher tissue uptake and transfection effi-
ciency (Young et al. 2016; Tatiparti et al. 2017). There is
consensus among several authors that delivery systems should
be less than 200 nm for efficient tissue and cellular uptake
(Davis 1997; Govindarajan et al. 2012; Draz et al. 2014;
Dong et al. 2015; Ngamcherdtrakul et al. 2015), although
exceptions exist (Ahmad et al. 2016; Jing et al. 2016).
Hirota and Terada (2012) suggested that the optimal size of
particles for cellular uptake varies according to cell type,
where, for cancer cells, a particle size of around 50 nm is
favored (Hirota and Terada 2012).

Shape can also affect particle behavior and cellular uptake.
There have been conflicting reports on the effect of particle
shape on cellular uptake. Young et al. (2016) suggested that
spherical structures have increased rates of endocytosis com-
pared to rod-shaped structures because rods have a larger con-
tact area that can block neighboring receptor sites on cells.
Similarly, Li et al. (2015) suggested that spherical particles
have the highest uptake and fastest internalization rate because
they need to overcome a minimal membrane bending energy
barrier compared with non-spherical systems. In contrast, He
and Park (2016) showed that shapes with higher aspect ratio
and sharper angular features have a higher chance of adhering
to the cells and becoming internalized by cancer cells (He
et al. 2016). To explain the variations in the cellular internal-
ization of different shapes, Richards and Endres (2016) stud-
ied the effects of various shapes on receptor-mediated endo-
cytosis and phagocytosis using 1-dimensional and 2-
dimensional physical models. They showed that the orienta-
tion plays a critical role in the internalization rate, where non-
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spherical shapes can be internalized the fastest when the most
highly curved tip is engulfed first (Richards and Endres 2016).

Since positively charged particles are taken up more
readily than negatively charged particles, the surface charge
is one of the most important properties of a delivery system
that influences its uptake. The zeta potential has been used
as an indicator of the surface charge (Honary and Zahir
2013). When a material is placed in a liquid, the zeta poten-
tial provides a measure of the magnitude of electrostatic
repulsive interaction between particles, with a higher zeta
potential indicating greater stability. Delivery systems with
larger positive zeta potential bind strongly to the cell mem-
brane and show higher cellular uptake, facilitated by the
electrostatic interactions between the negatively charged
cell membrane and positively charged particle surface
(Honary and Zahir 2013; Dong et al. 2015).

Interestingly, negative zeta potentials have also been re-
ported for some delivery systems. Although cell membranes
should repel negatively charged particles, it has been reported
that cells may adsorb negatively charged particles at the pos-
itively charged sites via electrostatic interaction, leading to
localized neutralization and subsequent bending of the mem-
brane to initiate endocytosis. Nevertheless, delivery vehicles
with positive charge are preferentially taken up by tumors and
have higher cellular uptake than negatively charged or neutral
particles (Davis 1997; Honary and Zahir 2013; Young et al.
2016). It has been reported that cellular uptake is lowest for
particles that have no surface charge as determined by the zeta
potential (Hirota and Terada 2012). To improve specificity
and cell uptake via receptor-mediated endocytosis, some in-
vestigators have suggested attaching cationic polymers such
as poloxamers and polyethylene oxide (Draz et al. 2014; Dong
et al. 2015; Arnold et al. 2017; Sun et al. 2017b).

Once a delivery system successfully passes the cell mem-
brane and enters the cell, it must escape the endocytic path-
way. Nanocarrier delivery systems can be designed to incor-
porate characteristics that facilitate endosomal–lysosomal
escape. A commonly used approach is to make use of the
proton sponge effect (Behr 1997), which is based on the
hypothesis that pH buffering can facilitate escape from the
endocytic pathway by preventing the acidification of the
endosomes (Arnold et al. 2017; Dong et al. 2015; Gujrati
et al. 2016; Li et al. 2016). When the endosomes struggle to
become acidic, it is thought that the cell will continuously
pump more protons into the endosomes in an attempt to
lower the pH, followed by passive entry of chloride ions
and, due to the increase in the ionic concentration, water
influx. Eventually, this increase in osmotic pressure causes
swelling and rupture of the endosome, releasing its contents
into the cytosol (Liang and Lam 2012; Gujrati et al. 2016).
The proton sponge effect has been observed with certain
cationic polymers that have a high pH buffering capability
over a wide pH range, such as polyamidoamine (PAMAM)

dendrimers, lipopolyamines, and polyethylenimine (PEI).
These polymers usually have secondary or tertiary amine
groups with pKa close to the endosomal pH (Liang and
Lam 2012). These polymers can be protonated to decrease
the acidification of the endosomes. PEI is known for its
extensive pH buffering capacity, ability to compact
siRNAs into nano-scale complexes, and demonstrated abil-
ity to successfully transfect into a range of cells in vitro and
in vivo (Dong et al. 2015; Essex et al. 2015). However, the
clinical application of PEI has been limited due to reports of
its toxicity, which is influenced by its molecular weight. The
higher the molecular weight of PEI, the higher its transfec-
tion efficiency but also the higher its non-specific toxicity
(Essex et al. 2015). Conversely, low molecular weight PEI
displays low toxicity and low transfection efficiency (Essex
et al. 2015; Li et al. 2016). Essex et al. (2015) found that
chemical conjugation of low molecular weight PEI with
dioleoylphosphatidylethanolamine (DOPE) improved the
intracellular transfection efficiency of siRNA with low cy-
totoxicity levels.

Examples of polymers that do not have a pH buffering
capability include polypeptides such as chitosan and polyly-
sine. To improve the pH buffering capability of these poly-
peptides, molecules such as histidine can be added as a func-
tional group or incorporated into the peptide sequence, as can
pH-sensitive endosome-disruptive peptides such as GALA
(Liang and Lam 2012). Bilayer disruption is another escape
mechanism that involves destabilization of the cellular mem-
brane via fusion of cationic polymers, peptides, or cationic
lipids such as DOPE (Young et al. 2016).

In summary, multiple challenges must be overcome before
siRNAs and miRNAs can be implemented as therapeutic
agents (Table 2). An effective delivery system must be able
to: (a) protect nucleic acid molecules from degradation during
systemic delivery; (b) withstand prolonged circulation without
being cleared by renal filtration; (c) accumulate into the target
tissue from the circulation; (d) enter the target cells via a spe-
cific uptake mechanism; (e) initiate cellular uptake via endo-
cytosis; (e) escape from the endosomal compartment to avoid
being degraded in the lysosome; and (f) disassemble in the
cytoplasm to release its siRNA or miRNA cargo (Prokop
2011; Bedi et al. 2013; Pittella and Kataoka 2013; Gujrati et al.
2016; Arnold et al. 2017). An ideal delivery system should
also be biocompatible, biodegradable, non-toxic, and non-
immunogenic (Young et al. 2016).

siRNA and miRNA delivery vehicles in breast
cancer research

The most common chemical structures explored for gene si-
lencing therapy are cell-penetrating peptides, liposomes, mi-
celles, and polymeric nanoparticles, and all of them have been
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applied to experimental models of breast cancer (Fig. 2). To
date, there are no reported clinical trials for breast cancer in-
volving siRNA or miRNA therapies using non-viral chemical
delivery systems. We have, therefore, focused on in vivo stud-
ies in rodent models.

Cell-penetrating peptides

Cell-penetrating peptides are known for their ability to facili-
tate cellular uptake of various Bcargo^ into cells, such as nano-
size particles, chemical molecules, proteins, and large frag-
ments of DNA (28). They are biologically or artificially
manufactured short chains of amino acid monomers (up to
30 amino acids) that are linked by peptide bonds. They are
usually positively charged and can bind to negatively charged
siRNA to improve its stability in vivo (Jiang et al. 2015;

Raucher and Ryu 2015; Jing et al. 2016). From a review of
in vivo studies, we observed three design variations of deliv-
ery systems involving cell-penetrating peptides: cell-
penetrating peptides modified with chitosan and then used to
encapsulate the siRNA (Sun et al. 2017a); some studies
entrapped or loaded a cell-penetrating peptide onto another
primary delivery vehicle (such as liposomes or ultrasound-
sensitive nanobubbles) (Jing et al. 2016; Xie et al. 2016);
others conjugated a cell-penetrating peptide with other cation-
ic polymers (such as PEG) or micelles to form a nanocomplex
for siRNA encapsulation (Wang et al. 2015; Fang et al. 2016;
Yang et al. 2016). All in vivo studies demonstrated positive
outcomes by showing that tumor growth was inhibited by
siRNA.

Cell-penetrating peptides have also demonstrated
endosomal escape capabilities through the proton sponge

Fig. 2 Schematic representation of delivery vehicles. Liposomes and
micelles encapsulate siRNA/miRNA within an aqueous compartment,
whereas dendrimers condense RNAvia cationic interactions with positive
charges on the surface. For simplicity, the major differences between

liposomes, micelles, and dendrimers are depicted; as discussed in the text,
variations exist in the composition of all three, for example through
PEGylation and addition of targeting moieties

Table 2 Barriers to the transport of siRNAs and miRNAs to target cells

Level Barriers

Circulation Non-specific interactions with serum proteins, resulting in nanocarrier degradation, dissociation, or aggregation.
Clearance by the renal system for particles less than 6–10 nm in size. Nanocarrier toxicity and immune response

can be induced.

Tissue permeability Endothelium penetration.
Transport from the bloodstream to a desired tissue.

Extracellular Extracellular stability and diffusion.
Differences in the pH, enzymes, or ions of tissue microenvironment can damage the nanocarrier, causing dissociation

before cellular entry.

Internalization Cell specificity.
Cellular uptake via endocytosis.

Intracellular Escape from endosomal compartment.
Dissociation from the nanocarrier in the cytoplasm to release siRNA or miRNA cargo.
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effect (Sun et al. 2017a). Themain challenge in the use of cell-
penetrating peptides are the non-selective interactions of these
peptides in vivo and their ability to translocate through any
cell membrane, independent of receptors (Jing et al. 2016).
Despite promising outcomes from in vivo studies, other chal-
lenges facing the use of cell-penetrating peptides are that their
intracellular uptake and internalization pathways are not well
defined (Raucher and Ryu 2015; Arnold et al. 2017) and they
have short blood plasma half-life (Raucher and Ryu 2015). To
our knowledge, there are currently no cell-penetrating pep-
tide-based therapeutic delivery systems commercially
available.

Liposomes

Liposomes are small artificial vesicles that are made of mate-
rial similar to the cell membrane. They contain a lipid bilayer
with an internal aqueous core and are characterized by their
biocompatibility, biodegradability, low toxicity, and ability to
trap both hydrophilic and lipophilic drugs. Liposomes fuse
with other cell membranes so that their aqueous compartment
becomes adjacent to the cytosol of the target cell to deliver the
encapsulated material (Mikhaylova et al. 2009). They are
commercially used as carriers for delivery of chemotherapy
drugs such as doxorubicin and daunorubicin (Bulbake et al.
2017). It is noted that the majority of approved commercial
liposome formulations for clinical use are less than 200 nm in
size, with the exception of Myocet® (150–250 nm) and
Visudyne® (150–300 nm) (Bulbake et al. 2017). Liposomes
have been investigated as carriers of siRNAs primarily by
encapsulation of siRNA either on its own or co-delivered with
a drug. Cationic liposomes currently have the highest encap-
sulation efficiency (Young et al. 2016). On review of the
in vivo studies in Table 3, it is noted that most of the studies
used cationic lipid nanoparticles such as DOTAP (1,2-
bis(oleoyloxy)-3-(trimethylammonio)propane), DOPE
(dioleoylphosphatidylethanolamine), or DC-Chol (3β[N-(N
′,N′-dimethylaminoethane)-carbamoyl]cholesterol). Cationic
lipids mimic the chemical and physical attributes of biological
lipids and are able to protect siRNAs from degradation; how-
ever. their application in gene delivery is limited by variations
in their transfection efficiency and systemic toxicity when
injected (Piao et al. 2013). Modification of the liposomal sur-
face by coating with polyethylene glycol (PEG), through a
process called PEGylation, has been shown to protect the
positive charge, reduce immune response, and improve stabil-
ity in vivo; however, it may compromise cellular uptake,
endosomal escape, and resultant silencing efficacy (Ho et al.
2013; Ran et al. 2014; Essex et al. 2015; Gu et al. 2015; Li
et al. 2016).

All studies reported positive outcomes for their liposomal
delivery system and observed downregulation of the target
gene. Nourbakhsh et al. (2015) reported more than 80%

downregulation of the drug resistance gene MDR1 in MCF-
7/ADR breast cancer cells using a PEGylated DSPE/DOTAP/
DOPE liposome delivery system. It is important to note that
liposomes can present with high surface charge, which may
induce toxic effects (Li et al. 2016). Other challenges reported
for liposomes include their low solubility, high production
costs, challenges with manufacturing scalability, short half-
life (unless PEGylated), potential hypersensitivity reactions
in vivo, and potential to form aggregates with negatively
charged serum proteins that can accumulate in the lungs, liver,
and spleen (Balazs and Godbey 2011; Bedi et al. 2013;
Akbarzadeh et al. 2013; Sioud 2015). Whitehead et al.
(2014) studied PEGylated lipid nanoparticles for siRNA de-
livery in mice. They established four design criteria to predict
whether the delivery system will silence at least 95% of pro-
tein expression, which are that the scaffold has: (1) a
COOC13H27 tail, (2) three or more tails, (3) is synthesized
from an alkyl-amine precursor containing one or more tertiary
amides, and (4) a surface pKa of 5.5 or higher (Whitehead
et al. 2014).

Micelles

Micelles are closed spherical monolayers of phospholipids.
They differ from liposomes in that they do not have an aque-
ous core. Polymeric micelles (having diameters ranging from
10 to 100 nm) have attracted attention for their versatile prop-
erties and ease of preparation (Yousefpour Marzbali and Yari
Khosroushahi 2017). Reported benefits of micelles include
simple preparation, low toxicity, long half-life, and good tis-
sue penetration capabilities (Yousefpour Marzbali and Yari
Khosroushahi 2017). However, similar to liposomes, they
are subject to dilution following intravenous administration.
Micelles are either made to encapsulate siRNA and drugs or
chemically altered to form a nanocomplex (Falamarzian et al.
2012). They are typically modified at their core to improve
encapsulation efficiency and modified at their shell to improve
in vivo stability. For example, micelles have been coated with
PEG by direct conjugation of PEG to siRNA and condensa-
tion of PEG-siRNA to a micelle structure (Wakaskar 2017).

Examples of micelles containing complexed siRNA in-
clude PEGPnBA–PDMAEMA (Draz et al. 2014) and PEG–
PEI (Falamarzian et al. 2012). Yu et al. (2016) investigated a
triple-layered pH-responsive micelleplex formed from PEG-
b-PAGA-b-PDPA triblock copolymers. The micelleplex en-
capsulated a drug at its core and had siRNA loaded at the
interlayer. The micelleplexes were delivered in vivo to 4T1
xenografts and were able to inhibit tumor growth. Polymeric
micelles are advantageous in that their structure and the phys-
iochemical and biological properties can be changed and mul-
tiple molecules can be integrated onto one micelle platform;
however. the structure needs to be optimized to obtain a
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balance between the siRNA stability, cell uptake, and safety
in vivo (Falamarzian et al. 2012).

Nanoparticles

Nanoparticles are generally 10–1000 nm in diameter (Wang
et al. 2016a; Parvani and Jackson 2017). They possess several
advantages to other systems, including small size, high surface
area, stability in physiological media, and immunologically
inert surfaces that gives them good in vivo retention
(Bannunah et al. 2014; Draz et al. 2014; Young et al. 2016).
The two main types of nanoparticles investigated for siRNA
therapy in breast cancer are inorganic nanoparticles and poly-
meric nanoparticles (Young et al. 2016; Li et al. 2016; Wang
et al. 2016b). Inorganic nanoparticles that have been used for
delivery of siRNA include silica, calcium, gold, magnesium,
strontium, metal oxides, and carbon nanotubes. Finlay et al.
(2015a) delivered siRNA in PEI-coated mesoporous silica
nanoparticles and observed knockdown of TWIST1 expres-
sion in vivo. Metal oxides such as iron oxide nanoparticles
have magnetic resonance imaging properties, which enables
them to offer combined imaging and delivery of siRNA to
tumors (Kumar et al. 2010).

Cationic polymer-based nanoparticles are the dominant
material used for delivery, owing to their strong electrostatic
interactions with negatively charged siRNA and because they
can be synthesized relatively easily compared to other types of
nanoparticles (Sun et al. 2017b). The most common cationic
polymer used for siRNA delivery systems is low molecular
weight PEI due to its superior transfection efficiency (Arnold
et al. 2017; Sun et al. 2017b). However, clinical application of
unmodified PEI is hampered by its cytotoxic effects. Other
common polymers include polylysine (PLL), poly(lactic-co-
glycolic acid), and chitosan (Navarro et al. 2015).

Dendrimers are a relatively new class of cationic polymers.
Dendrimers are hyper-branched globular structures composed
of repeating units. They are typically uniform with a high de-
gree of symmetry. Dendrimers have a large number of cavities
as well as a large number of functional groups on the surface.
The typical structure of a dendrimer consists of three parts: a
central core, which defines the interior size and the quantity and
direction of the branches; the repetitive branch units, which
determine the molecular size and flexibility; and the terminal
groups, which determine the chemical property and ability to
interact (Fig. 2) (Wu et al. 2013). Dendrimers have positively
charged amine functionalities at the surface that enable conden-
sation of negatively charged siRNA molecules through electro-
static interactions. They also have tertiary amine groups in the
interior that can be protonated in acidic endosomes to initiate
the proton sponge effect (Liu et al. 2016). The most common
dendr imer used for s iRNA del ive ry sys tems is
poly(amidoamine) (PAMAM) (Gu et al. 2015; Sun et al.
2017b), a cationic polymer that has good pH bufferingT
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capability. Limited in vivo studies were found for dendrimer-
based delivery systems for breast cancer. Finlay et al. (2015b)
investigated PAMAM-siRNA complexes in SUM1315 TNBC
cells and found that the dendrimer–siRNA complexes were
taken up by the cells and led to knockdown of TWIST1 expres-
sion in vivo. Dendrimers offer flexibility in being able to mod-
ify their structure and properties, as with liposomes and mi-
celles. However, there are concerns with non-specific cytotox-
icity, rapid clearance in vivo, and poor delivery efficiency
(Biswas and Torchilin 2013; Wu et al. 2013; Finlay et al.
2015b).

The following types of designs were observed in nanopar-
ticle delivery systems for breast cancer in vivo: the majority of
delivery systems were composed of multiple polymers mixed
or conjugated to form a nanocomplex; siRNAs loaded onto
the surface of a nanocomplex (Lin et al. 2014); and layer-by-
layer nanoparticles (Deng et al. 2013). It is noted that PEG and
PEI are incorporated in the majority of the siRNA
nanocomplexes, providing strong support for cationic poly-
meric nanoparticles as part of a delivery system.
Furthermore, almost all delivery systems were less than
200 nm. Although to our knowledge none have progressed
to clinical trials for breast cancer, some such as the commer-
cially available jet PEI have been trialed for other indications
(Walther et al. 2008).

A critical consideration in the design of delivery vehicles
for breast cancer is a specific targeting capability. In vivo
studies have shown that specific gene silencing of breast tu-
mors can be achieved by combining siRNAs with cell type-
specific ligands such as antibody fragments or chemokine
receptors, which are known to affect protein kinase pathways
that control key signaling steps involved in the invasion and
growth of the breast tumor cells. These ligands help the deliv-
ery vehicles enter target breast cells through receptor-
mediated endocytosis. Examples of ligands that have been
shown to facilitate specific targeting of breast tumors in
in vivo xenograft models include fusion protein containing
single-chain antibody fragment (scFv) (Jiang et al. 2015), stro-
mal cell-derived factor (SDF-1α), CXC chemokine receptor 4
(CXCR4) (Jiang et al. 2015), neuropilin-1 (NRP-1), heat
shock protein 90 (Hsp90) (Ahmad et al. 2016), c-raf (Chien
et al. 2005), and tissue transglutaminase (TG2) (Han et al.
2011). In general, antibody fragments with well-defined cell-
type specificity and favorable pharmacokinetics and
biodistributions are desired.

Conclusion

RNA interference (RNAi) using small interfering RNA
(siRNA) and microRNA (miRNA) is an evolving field for can-
cer treatment, particularly for cancers that display highly het-
erogeneous characteristics such as breast cancer. A better

understanding of the genetic basis of the molecular subtypes
of breast cancer is required to identify the target genes for si-
lencing. There has been considerable progress in employing
siRNA in breast cancer through various delivery systems. On
review of delivery systems using studies in vivo, we noted that
there has been considerable effort directed towards optimizing
the design by modifying the core and surface of the delivery
vehicles to address the various challenges encountered in circu-
lation and at the tissue and cellular levels. We observed that the
surface of the delivery vehicle is primarily where ligands have
been attached for cell-specific recognition in breast tumors. The
majority of studies employed PEGylation of the surface to pro-
tect the delivery system from nuclease degradation. The core of
the delivery system has been mainly modified to enhance its
ability to escape the endosome, normally through incorporating
polymers with proton-sponge effect capabilities such as
polyethylenimine (PEI). We also observed that the size of al-
most all nanoparticle delivery vehicles was less than 200 nm.
Concerning translation to the clinic, large-scale production of
nanoparticles can be labor-intensive and, therefore, costly. The
delivery system must consider careful selection of materials,
solvents, and procedures for nanoparticle development, batch-
to-batch consistency, reproducibility, and acceptability of the
final product during scale-up. Despite these hurdles, gene si-
lencing through RNAi has significant clinical implications for
cancer treatment and continued research into the design of an
effective delivery vehicle for siRNAs and miRNAs will accel-
erate the trend towards precision medicine.
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