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Abstract

The Brain Extracellular Matrix (ECM) plays a crucial role in both the developing and adult brain 

by providing structural support and mediating cell-cell interactions. In this review, we focus on the 

major constituents of the ECM and how they function in both normal and injured brain, and 

summarize the changes in the composition of the ECM as well as how these changes either 

promote or inhibit recovery of function following Traumatic Brain Injury (TBI). Modulation of 

ECM composition to facilitates neuronal survival, regeneration and axonal outgrowth is a potential 

therapeutic target for TBI treatment.
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1. Introduction

The extracellular matrix (ECM) of the brain is essential for the maintenance of proper brain 

function, providing both structural support and modulating intercellular communication 

(Frischknecht and Gundelfinger 2012). Following TBI, the breakdown of the blood brain 

barrier leads to infiltration of neutrophils, monocytes and other plasma components into the 

brain which then initiates an innate inflammatory response that involves activation of 

microglia and astrocytes (Lozano et al. 2015; Schnell et al. 1999). Subsequently, the release 

of inflammatory molecules by infiltrating immune cells, resident glial cells, cerebrovascular 

endothelial cells and neurons serves to amplify the immune response (Sordillo et al. 2016; 

Ziebell and Morganti-Kossmann 2010). Activation of both resident astrocytes and microglial 

cells in response to these mediators results in increased synthesis of extracellular matrix 

(ECM) molecules as well as the release of and activation of proteases which further remodel 

the ECM (Hemphill et al. 2015). These changes in the ECM can have both positive and 

negative consequences for recovery of function. The goal in this review is to discuss the 

normal constituents and functions of the ECM, how they are modified by TBI, and how 
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these modifications may affect recovery of function. This review is based on a literature 

search for each of the extracellular matrix molecules and proteases discussed in combination 

with the term “injury”.

Each of the cells within the brain is involved in neurovascular dysfunction following TBI, 

mainly through their altered secretion of cytokines which act both in an autocrine and 

paracrine manner to stimulate cytokine production as well as the synthesis of matrix 

molecules and matrix metalloproteases. A summary of the alterations in brain cell 

phenotypes and how they are altered by the interactions of the cytokine network is provided 

in Figure 1. In this scheme, the initial breach in the blood brain barrier allowing 

macrophage, monocyte and platelet entry initiates a cytokine cascade, altering resident 

astrocytes and microglia into a reactive phenotype and promoting the proliferation of 

oligodendrocyte progenitor cells (OPCs). These reactive cells then increase their secretion of 

other cytokines (Fig. 1B) and extracellular matrix. The released cytokines then promote 

further changes in each of the cell types (Fig. 1C). A list of the cytokines, their cellular 

sources and cells which respond is provided in Table 1.

The composition of the normal brain ECM is unique, comprised of a hyaluronan backbone 

to which are attached chondroitin sulfate proteoglycans of the lectican family, along with 

tenascins (Rutka et al. 1988) (Figure 1A, Inset). These molecules are produced by all the cell 

types found in the brain – neurons, astrocytes, oligodendrocytes and microglia. Other matrix 

molecules, such as heparan sulfate proteoglycans, laminins, collagen, and fibronectin, are 

produced by neurons and glia as well as endothelial cells and found in the basement 

membrane and maintain the blood brain barrier (Almutairi et al. 2016). Each of these classes 

of molecules is altered in response to TBI, both in terms of levels and distribution (Fig. 1C, 

Inset). A list of ECM molecules which are changed following TBI, their cellular sources, 

and how TBI alters their level or distribution, is provided in Table 2. The following sections 

discuss these ECM molecules and changes in their level in distribution, as well as their 

functional consequences, in more detail.

2. Proteoglycans

Proteoglycans are a heterogeneous class of glycoproteins characterized by a protein core 

with attached unbranched glycosaminoglycan (GAG) sugar chains (Fig. 2). These GAG 

chains are further modified by sulfation (Kjellen and Lindahl 1991). As major components 

of brain ECM, proteoglycans mediate cell-cell interactions and modulate growth factor and 

cytokine signaling during development as well as in response to various pathophysiological 

conditions in the adult (Cui et al. 2013). The signaling functions of proteoglycans in the 

brain are primarily due to their GAG chains (Miller and Hsieh-Wilson 2015), while the core 

proteins contain specific domains that determine localization and mediate interactions with 

cells and other matrix molecules. The major classification of proteoglycans is based on the 

composition of their associated GAG chains as either chondroitin sulfate proteoglycans 

(CSPGs), dermatan sulfate proteoglycans (DSPGs), heparan sulfate proteoglycans (HSPGs), 

or keratan sulfate proteoglycans (KSPGs), though some proteoglycans, such as aggrecan and 

agrin, can have GAG chains from more than one family (Iozzo and Schaefer 2015).
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2.1 Chondroitin sulfate proteoglycans (CSPGs)

CSPGs are the most studied proteoglycan in the nervous system. CSPG core proteins are 

classified as lecticans, phosphacan, and NG2. Lecticans (neurocan, brevican, versican, and 

aggrecan) have a common structure including a hyaluronan-binding domain at amino 

terminal and a tenascin-R binding lectin domain at the carboxy-terminal. Versican has four 

different splice variants, three of which (V0–V2) are decorated by GAG chains (Wight 

2002). Phosphacan is a splice variant of receptor protein tyrosine phosphatase-β (RPTP-β), 

which lacks its membrane spanning domain and is expressed by mature glial cells and 

neurons (Garwood et al. 1999; Hayashi et al. 2005). Unlike other CSPGs, NG2 (also known 

as CSPG4) has a transmembrane core protein with a large extracellular domain and a single 

GAG chain (Iozzo and Schaefer 2015). During development, the localized expression of 

CSPGs influences axonal pathfinding (Carulli et al. 2005; Wilson and Snow 2000). Once 

development is complete, CSPGs are mainly found in dense structures known as 

perineuronal nets, which serve to limit synaptic plasticity (Sorg et al. 2016).

Following experimental TBI, neurocan, aggrecan and NG2 are increased in glial scars 

around the injury core, while there is a simultaneous loss of CSPGs in the surrounding 

region, primarily a loss of PNNs (Harris et al. 2009; Yi et al. 2012). In rats, a unilateral knife 

cut in the cerebral cortex leads to increased versican-V2 immunoreactivity around the lesion 

at both 7 and 14 days post injury (dpi) (Asher et al. 2002). The loss of CSPGs from PNNs 

may help increase synaptic plasticity, while the increase found in the glial scar may serve to 

isolate the damaged region, much as it does in spinal cord injury (Anderson et al. 2016). In 

animals and humans, injury also causes a loss of mature oligodendrocytes, followed by 

proliferation of oligodendrocyte progenitor cells (OPCs) which produce the NG2 CSPG 

(Flygt et al. 2017; Levine 1994). NG2 is also found on melanoma cells, where it appears to 

promote migration (Burg et al. 1998), and it may have the same function for OPCs, which 

are highly migratory (Almad et al. 2011). NG2 may also be protective, as NG2-knockout 

mice had exacerbated damage as compared to wild-type mice (Huang et al. 2016)

In addition to increased expression of core proteins, there are also changes in the 

composition of CSPG GAG chains after TBI. Expression of chondroitin-4-sulfotransferase, 

chondroitin-6-sulfotransferase, and GalNAc4S-6 sulfotransferase are all upregulated at the 

injury site following cortical lesions in mice and rats (Bhattacharyya et al. 2015; 

Karumbaiah et al. 2011; Properzi et al. 2005). This results in an altered sulfation pattern of 

CSPGs that persists for months after injury (Harris et al. 2009; Jones et al. 2003; Yi et al. 

2012). Immunolabeling studies from our laboratory showed that in the controlled cortical 

impact injury model, there is an increase in 4-sulfated GAG at the injury core and in a tight 

band surrounding the core. These changes were observed from 7 to 28 dpi (Yi et al. 2012). 

These changes in GAG chain levels and composition are proposed to have functional 

consequences. Both 4-sulfated (Wang et al. 2008) and 4,6 sulfated GAGs (Karumbaiah et al. 

2011) inhibit axonal outgrowth in culture. Most recently, studies have demonstrated that the 

enzyme arylsulfatase-B, which regulates the 4-sulfation on the non-reducing end of the GAG 

chain (the end furthest from the protein core) can improve axonal growth in the spinal cord 

(Yoo et al. 2013). Studies directly investigating the role of chondroitin-4-sulfotransferases in 

brain injury are needed, but may be difficult because there are several different 4-
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sulfotransferases in brain. While 4-sulfated GAGs are inhibitory to growing axons, 6-

sulfated GAG is thought to be permissive (Lin et al. 2011). In vivo, chondroitin-6-

sulfotransferase-1 KO mice have fewer regenerating TH-positive axons following a lesion to 

the nigrostriatal tract as compared to WT mice (Lin et al. 2011).

The exact mechanism by which CSPGs affect axonal guidance is not known. CSPGs may 

affect neuronal growth and regeneration by inactivating neuronal integrins (Tan et al. 2011). 

CSPGs also interact with several transmembrane receptors, including the Class IIA receptor 

protein tyrosine phosphatases, RPTPσ and the leukocyte common antigen-related receptor 

(LAR), and the Nogo receptors 1 and 3 (NgR1 and NgR3) (Dickendesher et al. 2012; Fisher 

et al. 2011; Shen et al. 2009). These interactions are dependent upon the sulfation pattern of 

the CS GAG chains, as only oversulfated GAGs and DS interact with these receptors 

(Dickendesher et al. 2012). Interestingly, 4-sulfated GAG chains, which are strongly 

upregulated following injury, do not interact with these receptors, suggesting that additional 

receptors remain to be revealed. In addition to binding to these neuronal receptors, CSPGs 

modulate FGF-2 (Sirko et al. 2010) and Semaphorin 5A signaling (Kantor et al. 2004).

2.2 Dermatan Sulfate Proteoglycans (DSPGs)

Dermatan sulfate (DS) GAG chains are derived from the epimerization of D-glucuronic acid 

in chondroitin sulfate to L-iduronic acid (Thelin et al. 2013). Although most of the functions 

of DS are related to the development and homeostasis of peripheral tissue, DS GAGs, 

especially oversulfated GAGs, stimulate neuritogenesis (Hikino et al. 2003; Nandini et al. 

2005). In the rat brain, TBI-associated overexpression of DSPGs, including decorin and 

biglycan, is limited to the site of injury but lasts months (Stichel et al. 1995). DS was 

localized to fibrotic scar tissue following a stab-wound, and specific elimination with 

chondroitinase B promoted axonal growth across the scar (Li et al. 2013). Decorin is known 

to modulate the actions of TGF-β, and thus it may act to reduce scar formation (Logan et al. 

1999). DSPGs also bind to FGF-2 and promote cell proliferation and astrocyte reactivity 

around the fibrotic scar (Penc et al. 1998).

2.3 Heparan Sulfate Proteoglycans (HSPGs)

HSPGs have important roles as modulators of cell signaling in brain, mainly by acting as co-

receptors for many different cytokines and growth factors, such as FGFs (Qiao et al. 2003), 

GDNF (Barnett et al. 2002), sonic hedgehog (Rubin et al. 2002), semaphorin 5A (Kantor et 

al. 2004), and slit (Johnson et al. 2004). In addition, HSPGs bind to both the type IIA RPTPs 

and NgR1 and NgR3 receptors on neurons, again mediated through the HS GAG chains, 

rather than the core protein (Aricescu et al. 2002; Dickendesher et al. 2012). In contrast to 

the CSPGs, HSPGs binding to these receptors promotes axonal growth. To date, there is no 

clear explanation for this dichotomy of actions.

HSPG core proteins are classified into syndecans, glypicans, perlecan, and agrins (Fig. 2). 

Syndecan has four isoforms (1–4) that are transmembrane proteins consisting of an 

extracellular domain modified with HS chains, a single transmembrane domain and a short 

cytoplasmic domain (Afratis et al. 2017). Out of these isoforms, syndecan-3 is abundantly 

expressed in brain (Kim et al. 1994) and promotes neural migration (Hienola et al. 2006) and 
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neurite outgrowth (Raulo et al. 1994). Syndecan-2 is localized in synapses (Hsueh and 

Sheng 1999) and activates of protein kinase A and subsequent phosphorylation of Ena/VASP 

to promote filopodia and spine formation (Lin et al. 2007). Glypicans are GPI-anchored 

HSPGs with six isoforms (glypican1 to 6) all carrying two to five HS chains. Glypicans are 

expressed in early development (Luxardi et al. 2007), where they promote neuronal cell 

adhesion, neurite outgrowth and synapse formation (Allen et al. 2012; Kurosawa et al. 

2001). Perlecan and agrins are HSPGs consisting of two or three HS chains attached to a 

multi-domain core protein. In brain, endothelial cells and astrocytes express perlecan, which 

is localized to the basement membrane and regulates growth factor signaling and blood brain 

barrier function (Roberts et al. 2012; Whitelock et al. 2008). Perlecan is a modular protein 

with 5 identified domains, each one interacting with different ECM proteins and growth 

factors (Gubbiotti et al. 2016; Whitelock et al. 2008). Agrin in basement membranes of the 

brain microvasculature plays a key role in maintaining blood brain barrier integrity (Steiner 

et al. 2014) while in neurons it promotes synaptogenesis and synaptic plasticity (Daniels 

2012).

The expression of several HSPGs are increased in the region surrounding experimental 

injuries. Following a localized stab wound, both syndecan-1 and HS 2-O-sulfotransferase are 

increased, with a corresponding increase in 2-O-sulfation of associated HS GAGs (Properzi 

et al. 2008). TGF-α and TGF-β, cytokines associated with the CNS injury response, elicited 

the same changes in cultured astrocytes in vitro (Properzi et al. 2008). This leads to a 

positive feedback loop, as HS potentiates the activity of TGF-β1 (Lee et al. 2015a) and 

TGF-β increases the synthesis of both HSPGs and CSPGs (Dodge et al. 1990; Sugimoto et 

al. 2014). Cryoinjury produces an upregulation of glypican mRNA (Hagino et al. 2003b), 

suggesting a role for glypican in the neuroimmune response, but there is no direct 

demonstration of a role for glypicans in TBI.

Perlecan and agrin are also significantly increased after TBI (Falo et al. 2008; Garcia de 

Yebenes et al. 1999). After secretion, perlecan is cleaved by metalloproteases, releasing 

fragments with biological activity (Gonzalez et al. 2005). Amongst these, domain V, also 

called endorepellin, displays specific integrins which are masked in intact perlecan and that 

alter the physiology of endothelial cells and inhibit angiogenesis (Mongiat et al. 2003). 

Agrin is also increased in synaptic terminals and reactive astrocytes after TBI, in areas of 

active spouting, implicating a role in synaptogenesis and plasticity (Falo et al. 2008); 

additional experiments directly addressing the role of perlecan and agrin in TBI would be 

important.

2.4 Keratan Sulfate Proteoglycans (KSPGs)

KSPGs also show upregulation after CNS injury and inhibit neuronal outgrowth and 

regeneration (Geisert and Bidanset 1993; Geisert et al. 1996). Several CNS proteoglycans 

contain KS chains, the most prominent being claustrin (Cole and McCabe 1991), 

phosphacan (Takeda-Uchimura et al. 2015) and aggrecan (Virgintino et al. 2009). Injury-

induced increased expression of KSPGs by infiltrating macrophages, microglia, and 

oligodendrocyte progenitor cells (OPCs) is partially responsible for the inhibition of neurite 

outgrowth and sprouting of neurons. KSPGs are also involved in glial scar formation by 
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activating microglia and OPCs (Jones and Tuszynski 2002). The effects of KSPGs are 

dependent on their GAG chains, as elimination of N-Acetylglucosamine 6-O-

sulfotransferase-1, which eliminates 6-sulfation on KS GAGs, reduced scar-forming activity 

(Zhang et al. 2006) and degradation of keratan sulfate GAGs using keratanase promoted 

axonal regeneration and functional recovery (Ishikawa et al. 2015).

3. Other ECM components

TBI induces the expression of additional ECM components that are mainly expressed by 

developing or diseased brain. Out of these, hyaluronan, fibronectin, tenascin, laminins and 

osteopontin are known to have roles in TBI pathophysiology.

3.1 Hyaluronan

Hyaluronan (also called hyaluronic acid: HA) is a unique GAG which is not attached to a 

core protein and whose sugars are not modified by sulfation or epimerization. Many of 

hyaluronan’s physiological properties, including providing biomechanical integrity, altering 

tissue hydration and facilitating tissue assembly, are dependent on its size, concentration, 

and localization. TBI is associated with the increased expression of the HA synthases 

(HAS1 and HAS2) (Xing et al. 2014).

TBI induced alterations in HA affect ECM integrity and signaling. HA is anchored to the 

ECM by forming highly stable complexes with hyaluronan-binding proteins (hyaladherins) 

which help to stabilizing the ECM. Hyaladherins can be either adhesion proteins or 

receptors, including CD44, RHAMM, Stabilin-2, TNFIP6, Brevican, SHAP, LYVE1, TLR-2 

and TLR-4 (Jiang et al. 2011). Brain link protein, a hyaladherin predominantly expressed in 

brain, stabilizes the interaction between lecticans and HA and thus maintains ECM assembly 

(Cicanic et al. 2012; Hirakawa et al. 2000), especially of PNNs (Bekku et al. 2003). TBI also 

leads to the increased expression of other hyaladherins including CD44 (Xing et al. 2014), 

brevican (Jaworski et al. 1999), and TLR-2/TLR-4 on macrophages/microglia (Zhang et al. 

2012), which further modulate the brain immune response. The increased expression of 

CD44 suggests a potential role in T-cell recruitment (DeGrendele et al. 1997) and astrocyte 

migration (Bourguignon et al. 2007) and may also help in the enhanced CD44-mediated 

internalization and degradation of HA fragments to inhibit the inflammatory response (Culty 

et al. 1992; Scheibner et al. 2006).

Another role of HA in TBI pathophysiology is through the degradation of HA into small 

fragments by injury-associated reactive oxygen species (Soltes et al. 2006) and activation of 

the HA degrading enzyme hyaluronidase (Xing et al. 2014). Hyaluronan fragments are 

biologically active, and can modulate the immune response and promote angiogenesis (Stern 

et al. 2006). Binding of HA fragments to TLR-2 activates proapoptotic signaling in neurons 

(Tang et al. 2007), increases astrocyte reactivity (Park et al. 2008), and promotes 

inflammatory cytokine release (Yu and Zha 2012). HA fragments may also have a positive 

effect on the neuroimmune response, as exogenous delivery of the tetrasaccharide HA4, a 

product of HA fragmentation, significantly improved functional recovery after spinal cord 

injury (Wakao et al. 2011). Additional experiments addressing this issue would be important.
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3.2 Fibronectin

Fibronectin is a large multidomain glycoprotein expressed as an ECM protein or as a soluble 

plasma protein. In the adult CNS, fibronectin is restricted to the vasculature and is not 

expressed by neurons and glia (Paetau et al. 1980). Breakdown of the blood brain barrier 

during TBI leads to entry of plasma-derived fibronectin (Tate et al. 2007a) and macrophages 

(Giulian et al. 1989) into the brain parenchyma. In turn, the fibronectin activates both 

resident microglia and the invading macrophages (Milner and Campbell 2003), which serve 

to clear debris following injury. TBI in conditional plasma fibronectin knockout mice 

showed an increase in lesion volume and apoptotic cell death at the site of lesion (Tate et al. 

2007a), suggesting that the TBI-associated increase in fibronectin has a protective role.

3.3 Tenascins

Tenascin-C and tenascin-R are oligomeric multi-domain anti-adhesive proteins expressed in 

the CNS and are known to have roles in cell adhesion, neuronal migration, migration and 

differentiation of oligodendrocytes and cellular responses to growth factors (Giblin and 

Midwood 2015; Pesheva and Probstmeier 2000). Tenascin-C is expressed by astrocytes, 

oligodendrocytes and some neuronal populations (Meiners et al. 1993; Zhang et al. 1995), 

while tenascin-R is expressed by oligodendrocytes and neurons (Pesheva and Probstmeier 

2000). They are predominantly expressed during embryonic development and then again in 

response to nervous system injuries in both animals and humans (Brodkey et al. 1995; 

Laywell et al. 1992). Tenascin-C production in astrocytes is increased by several growth 

factors, including FGF-2 (Meiners et al. 1993) and TGF-β (Smith and Hale 1997). The 

increase in tenascin-C following experimental brain injury is eliminated by suramin, a 

polysulfonated napthylurea that has been shown to inhibit the binding of many different 

cytokines to their cell surface receptors (Di Prospero et al. 1998), suggesting that the 

increase is due to the actions of cytokines and growth factors. Tenascin-C has several splice 

variants, due to the inclusion or exclusion of fibronectin III domains, and injury appears to 

specifically upregulate a variant that contains a neurite promoting domain (Dobbertin et al. 

2010). Tenascin-R is known to be growth repellant to axons (Becker et al. 2004), while 

tenascin-C has both growth-promoting (Meiners et al. 1999) and growth inhibiting 

(Probstmeier and Pesheva 1999) activities. How these activities affect the pathophysiology 

of TBI is an open question.

3.4 Laminins

Laminins are heterotrimeric glycoproteins composed of α-, β- and γ-subunits. To date, 14 

different laminins have been identified (Plantman 2013), of which only Laminin 111 has 

been identified in the CNS, while multiple forms have been found in the peripheral nervous 

system (PNS). While laminin expression has been detected during pathway development 

(Letourneau et al. 1988), the major function of astrocyte-derived laminin in the adult is to 

maintain the blood brain barrier through actions on pericyte differentiation (Yao et al. 2014). 

In culture, laminins universally promote neurite outgrowth (Edgar et al. 1984), and an 

integrin-binding peptide (IKVAV) derived from laminin has similar actions and has been 

used to promote regeneration in vivo (Wei et al. 2007). Laminin levels are significantly 

increased in traumatic brain tissues, which may help in restoring the integrity of the blood 
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brain barrier after injury (Tao et al. 2015). Increased laminin in the brain is also considered 

as an indicator of neovascularization by formation of new glio-vascular connections and 

angiogenesis (Wappler et al. 2011).

3.5 Osteopontin

Osteopontin (OPN) is classified as a matrikine because it is both an adhesive protein present 

in the ECM as well as a soluble cytokine. Both astrocytes and microglia produce OPN (Choi 

et al. 2007). Injury is associated with a marked increase in the expression of OPN RNA 

(Cernak et al. 2011; Israelsson et al. 2008), and osteopontin (Plantman 2012). OPN 

undergoes post-translational modification by phosphorylation, glycosylation, sulfation that 

promotes diversity in its biological function by modulating interactions with many different 

integrins and the CD44 receptor (Sodek et al. 2000). OPN is cleaved by thrombin (Kubota et 

al. 1989) and MMP-9 (Takafuji et al. 2007) which produce active OPN fragments with novel 

integrin binding sites that promote glial mobilization, axonal clearance, synaptogenesis and 

cognitive recovery (Chan et al. 2014). In culture, neurite growth is promoted on an OPN 

substrate (Plantman 2012). In vivo, OPN treatment prevented neurological impairment, brain 

edema, and restored the blood brain barrier disruption after hemorrhage (Gliem et al. 2015; 

Suzuki et al. 2010). The role of OPN under various pathophysiological conditions suggests 

that it might have a role in the therapy of TBI as well.

4. Matrix Metalloproteinases (MMPs)

The role of MMPs in the brain and after TBI has been recently reviewed (Abdul-Muneer et 

al. 2016; Rempe et al. 2016), and thus we will address the most significant actions of MMPs 

on the ECM. The major secreted MMPs in the brain are MMP-3 (stromelysin), and MMP-2 

and 9 (gelatinases) (Rempe et al. 2016). MMP-3 is at very low levels in the normal brain, but 

is increased 6h after contusion injury in the rat and reached the maximum at 5 days (Li et al. 

2009). A rapid increase in MMP-3 activity has also been observed following TBI in humans 

(Sashindranath et al. 2012). MMP-9 is expressed in normal adult brain and is also elevated 

in response to TBI (Hadass et al. 2013; Hayashi et al. 2009). In humans, TBI is also 

associated with rapid increase of increased MMP-9 in brain parenchyma (Guilfoyle et al. 

2015), cerebrospinal fluid (Liu et al. 2014), and plasma (Copin et al. 2012) and, which may 

be used for the prognosis of severity and outcome of injury (DeFazio et al. 2014; Vilalta et 

al. 2008).

The increase in MMP-9 activity promotes blood brain barrier hyperpermeability which leads 

to microhemorrhage, edema, neuroinflammation, and neurodegeneration (Hadass et al. 

2013; Higashida et al. 2011). Furthermore, the ability of MMPs to proteolytically process 

inactive precursors of TNF-α (Gearing et al. 1994), IL-1β (Amantea et al. 2016) and OPN 

(Takafuji et al. 2007) into biologically active forms can further modulate neuroinflammation. 

In brain microvascular endothelial cells, TNF-α (Wiggins-Dohlvik et al. 2014) and IL-1β 
(Alluri et al. 2016) induced MMP-9 activation leads to the degradation of tight junctions and 

blood brain barrier hyperpermeability. Similarly, brain pericytes respond to TGF-β by 

increasing their production of MMP-9 (Takahashi et al. 2014). Pharmacological inhibition of 

MMP-9 attenuates the secondary phase of TBI through reduction of lesion volume, neuronal 
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loss, dendritic degeneration and glial activation along with improved neurobehavioral 

outcomes (Hadass et al. 2013; Lee et al. 2015b). Mice with a deletion of MMP-9 showed 

fewer motor deficits and a smaller lesion volume after TBI than wild type mice (Wang et al. 

2000). Similarly, reduction of MMP-9 activity by inhibition of poly(ADP-ribose) 

polymerase with 3-aminobenzamide reduced disruption of the blood brain barrier and 

improved neurologic function as compared to untreated rats (Lescot et al. 2010).

MMPs also may have positive effects in promoting neuronal regeneration after TBI by 

degrading inhibitory CSPGs accumulated by reactive astrocytes. MMP-3 degrades CSPGs 

including brevican, NG2, neurocan, phosphacan, and versican-V1 and versican-V2 (Muir et 

al. 2002). In culture, treatment of astrocyte-derived ECM with MMP-3, -7 and -8 degrades 

the core proteins of CSPGs and reduce their inhibitory effect on neurite outgrowth (Cua et 

al. 2013). MMPs have also been reported to promote neuronal survival (Wetzel et al. 2003), 

neurite invasiveness (Nordstrom et al. 1995), nerve cell migration (Mao et al. 2016) and 

remyelination (Larsen et al. 2006). However, while MMP activity may help in promoting 

neural regeneration after TBI, inhibition of MMP activity has provided more functional 

improvement.

5. ECM modulation as a potential therapy for TBI

There is currently no FDA-approved therapeutic strategy to promote recovery of function 

following TBI. PNNs, comprised of CSPGs, are greatly reduced in the pericontusional area, 

probably through the action of MMPs (Yi et al. 2012). As PNNs are thought to restrict 

synaptic plasticity, the reduction in PNNs may be a pro-regenerative response to stimulate 

plasticity following TBI. Because this loss is very limited, one approach may be to further 

stimulate plasticity by reducing PNNs with the bacterial enzyme chondroitinase ABC 

(chABC), which degrades CS GAG side chains from core proteins (Harris et al. 2010; 

Pizzorusso et al. 2002). chABC has been shown to promote recovery of function from spinal 

cord injury (Bradbury et al. 2002), at least in part by increasing plasticity and sprouting 

(Barritt et al. 2006), but primarily by reducing CSPGs in the glial scar. Chondroitinase has 

also been reported to reduce brain edema following TBI (Finan et al. 2016), and improve the 

outcome in chronic stroke (Hill et al. 2012). However, the use of chondroitinase ABC in 
vivo is restricted by its lack of stability and potential immunogenicity. Because 4-S GAGs 

are increased following injury, ARSB, which is approved for use in the treatment of 

mucopolysaccharoidosis VI in humans, could be an alternative approach. Alternately, 

plasticity has been promoted by activation of the MMP ADAMTS-4 (type 4 disintegrin and 

metalloproteinase with thrombospondin motifs), which degrades CSPGs and promoted 

axonal regeneration/collateral sprouting (Lemarchant et al. 2014). Inhibition of MMPs has 

also shown to be effective in reducing the volume of a brain lesion (Lee et al. 2015b).

As discussed above, the ECM is a complex structure with many different components, each 

of which may have actions to either promote or inhibit regeneration. Several different 

biomaterials which incorporate ECM components demonstrate efficacy in injury models. 

Laminin, which provides a positive cue for both neuroblast migration and process 

outgrowth, has been incorporated into several different biomaterials that were used as 

implants. After a cryoinjury, a laminin-soaked sponge was inserted into the lesion cavity and 
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induced the migration of neuroblasts into the sponge(Ajioka et al. 2015). Others showed that 

a self-assembling peptide gel which contained the neurite-promoting IKVAV sequence from 

laminin could support the survival and differentiation of encapsulated neural stem cells after 

injection into a cerebral cortical wound Cheng (Cheng et al. 2013). Injection of the HSPG 

glypican improved recovery in a stroke model (Hill et al. 2012). A collagen-based scaffold 

that incorporated the soluble Nogo receptor improved recovery in a model of penetrating 

brain injury (Elias and Spector 2015). Based on these results, a promising area is the 

potential uses of ECM and ECM-derived peptides that improve neuronal regeneration and 

functional recovery (Estrada et al. 2014).

6. Summary

Alterations in the ECM following TBI play a significant role in TBI pathophysiology by 

controlling inflammation, blood brain barrier function and regeneration. Proteoglycans play 

a significant role in this response, as evidenced by their increased expression and alterations 

in their sulfation patterns. Brain injury also induces the expression of other developmentally 

restricted ECM components which contribute to the repair and regeneration of the damaged 

area, such as laminin and tenascins. MMPs actively participate in the dynamic modulation of 

brain ECM after injury by degrading matrix components. Efforts have been made to make a 

more permissive environment by manipulating the ECM composition around the lesion to 

minimize secondary damage and to promote axonal outgrowth and synaptic plasticity. Given 

the prominent role of the ECM in the pathophysiology of TBI, therapeutic interventions to 

target the ECM may enhance neuroregeneration and functional recovery after TBI.
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Significance Statement

Traumatic brain injuries are a leading cause of death and are associated with long-term 

consequences for physical health and cognition. Despite the prevalence and associated 

complications, there is no effective treatment for TBI. Brain ECM plays a major role in 

TBI pathophysiology by modulating the inflammatory response, cell signaling and post-

traumatic circuit remodeling. ECM components also limit functional recovery by 

inhibiting neuronal regeneration through the damaged region. Strategies to modulate 

brain ECM to reduce inflammation and facilitate neuroregeneration have therapeutic 

potential.
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Figure 1. 
Neurovascular unit changes following traumatic brain injury. A. Normal brain. Tight 

junctions between endothelial cells along with pericytes astrocytic end feet constitute the 

blood brain barrier. Processes of resting astrocytes and myelinating oligodendrocytes 

promote synaptic stability and neurotransmission. Inset: The extracellular matrix of normal 

brain contains CSPGs, HSPG and hyaluronan. Fibrous proteins, which are the major 

component of ECM in most tissues, are limited to the brain vasculature. B and C) 

Alterations in cellular activation soon after TBI. Injury leads to disruption of the blood brain 

barrier, followed by infiltration of blood components and macrophages into the brain, 

leading to the activation of resident glial cells. Reactive astrocytes and microglia as well as 

damaged neurons show morphological changes, increased metabolism, hypertrophy and 

release an array of cytokines. C. TBI-induced response. Cytokines released by resident and 

infiltrating cells affect brain inflammation and ECM remodulation. Inset: TBI leads to the 

degradation of hyaluronan along with the increased expression of CSPGs and HSPGs, as 

well as fibrous ECM proteins including fibronectin, tenascin-C and laminin.
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Figure 2. 
Major brain proteoglycans. Proteoglycans consists of a protein core decorated with 

unbranched sulfated glycosaminoglycan sugar chains. CSPG core proteins are decorated 

with one or more chondroitin sulfate sugar chains. Based on the core protein they are 

classified into lecticans (which includes neurocan, brevican, versican, and aggrecan), 

phosphacan, and NG2. HSPGs are decorated with HS chains. Syndecans are transmembrane 

proteins, while glypicans are anchored to the cell membrane with a GPI linkage. Decorin is a 

secreted proteoglycan with dermatan sulfate side chains.
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