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Abstract

Although there are several techniques to analyze diffusion-weighted imaging, any technique must 

be sufficiently sensitive to detect clinical abnormalities. This is especially critical in disorders like 

mild traumatic brain injury (mTBI), where pathology is likely to be subtle. mTBI represents a 

major public health concern, especially for youth under 15 years of age. However, the 

developmental period from birth to 18 years is also a time of tremendous brain changes. Therefore, 

it is important to establish the degree of age- and sex-related differences. Participants were 

children aged 8–15 years with mTBI or mild orthopedic injuries (OI). Imaging was obtained 

within 10 days of injury. We performed tract-based spatial statistics (TBSS), deterministic 

tractography using AFQ (Automated Fiber Quantification), and probabilistic tractography using 

TRACULA (TRActs Constrained by UnderLying Anatomy) to evaluate whether any method 

provided improved sensitivity at identifying group, developmental, and/or sex-related differences. 

Although, there were no group differences from any of the three analyses, many of the tracts, but 

not all, revealed increases of fractional anisotropy (FA) and decreases of axial, radial, and mean 

diffusivity (AD, RD, and MD, respectively) with age. TBSS analyses resulted in age-related 

changes across all white matter tracts. AFQ and TRACULA revealed age-related changes within 

the corpus callosum, cingulum cingulate, corticospinal tract, inferior and superior longitudinal 

fasciculus, and uncinate fasciculus. The results are in many ways consistent across all three 

methods. However, results from the tractography methods provided improved sensitivity and better 

tract-specific results for identifying developmental and sex-related differences within the brain.
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Graphical abstract

Although there are several techniques to analyze diffusion weighted imaging, any technique must 

be sufficiently sensitive to detect clinical abnormalities in children with mild traumatic brain 

injury. Results from tractography methods provide improved sensitivity and better tract-specific 

results for identifying developmental and sex-related differences within the brain.
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1. Introduction

There are several different quantitative imaging analysis techniques that can be applied to 

diffusion-weighted imaging as measures of white matter integrity. As with all techniques, 

the goal of any neuroimaging outcome study is to generate quantifiable measurement of 

brain development, disease, damage, or degeneration that is not only sensitive in detecting 

clinically significant differences but can also account for non-injury or disease variables 

such as age and sex. In order to achieve this goal, any technique must be sufficiently 

sensitive at detecting clinical abnormalities. This is especially critical in populations like 

mild traumatic brain injury (mTBI), where pathology, when present, is likely to be subtle 
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(Aoki and Inokuchi, 2016; Fink et al., 2016; Hulkower et al., 2013). mTBI represents a 

major public health concern, especially for youth under 15 years of age. However, the 

developmental period from birth to early adulthood is also a time period of tremendous 

developmental changes in the brain where diffusion tensor imaging (DTI) metrics reflect 

both dynamic age- (Drakesmith et al., 2016) and sex-dependent changes in the brain (van 

Hemmen et al., 2016; Schwehm et al., 2016; Kodiweera et al., 2016). Moderate to severe 

TBI alters age-typical developmental white matter (Johnson et al., 2015; Wu et al., 2010). 

Given potential developmental as well as injury-related DTI changes, a critical step in a 

pediatric mTBI study is to ascertain the role of age and sex differences in both injured 

children and controls and determine the quality of the DTI metrics to detect anticipated age 

and sex differences. Before embarking on a full examination of effects of injury on DTI 

metrics, it is important to establish age- and sex-related effects on imaging parameters and 

identify preferred approaches to DTI analysis.

Diffusion-weighted imaging measures the direction of water diffusion in brain tissue and is 

thought to be an indicator of the fiber tract integrity: reflecting coherence, organization 

and/or density of the fiber bundles. The most common standard diffusion measure is 

fractional anisotropy (FA). The value of FA, which ranges from 0 to 1, is highest in major 

white matter tracts (FA value approaches 1), lower in gray matter, and approaches 0 in 

cerebrospinal fluid. FA is considered a marker of white matter integrity, because variations 

reflect myelination, axon density, axonal membrane integrity, and axon diameter. Axial 

diffusivity (AD) represents diffusivity along the principal eigenvector. In contrast, radial 

diffusivity (RD) describes an average of the eigenvectors perpendicular to the principal 

direction. The interpretation of these DTI metrics is still being explored, but in general 

higher FA and lower MD values are interpreted as reflecting developmental increases in 

axon myelination and fiber organization in white matter pathways (Chen et al., 2016; Lebel 

et al., 2012; Westlye et al., 2010; Kochunov et al., 2012; Yeatman et al., 2012). Sex 

differences in DTI metrics are much less well understood (Herting et al., 2012; Wang et al., 

2012; Schmithorst et al., 2008). In the context of mTBI alterations in DTI metrics are 

thought to reflect directly on white matter integrity and presence of traumatic axonal injury 

(Toth et al. PMID: 28249729).

In the current study, we compared several automated methods for measuring white matter 

integrity from DTI data. One diffusion-weighted imaging method is a tract-based spatial 

statistic (TBSS) approach (Smith et al., 2006, 2007). TBSS is an automated method that 

combines the strengths of both voxel-based morphometry (VBM) and tract-based spatial 

statistic methods. In VBM analyses, each participant’s FA image is registered to a template 

and then voxelwise statistics are computed to find brain areas that differ between groups. 

One major limitation to VBM methods is that coregistration algorithms are not able to 

accurately align fiber tracts across participants (Bookstein, 2001). This has been a long-

standing issue with any VBM analysis. There is no way to ensure that a voxel in standard 

space contains data from the same portion of the brain across participants. Long projection 

white matter fiber tracts vary too much in size and shape and there is no method to be sure 

that registration of every participant’s FA image to a common space has been completely 

successful (Wassermann et al., 2011; Yeatman et al., 2011). TBSS aims to overcome these 

limitations of VBM but relies on registering participants to a common template space and 
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only provides a modest improvement over traditional VBM methods. TBSS techniques also 

cannot ensure that any voxel corresponds to the same tract across participants. 

Notwithstanding these limitations, TBSS analyses remain the most common approach to 

analyzing diffusion-weighted images.

Another method is a tractography-based approach and these methods have complementary 

strengths and weakness with TBSS. Tractography uses the principal water diffusion 

direction to reconstruct the trajectories of the fiber tracts. Tractography overcomes the 

alignment problems by estimating diffusion properties in native participant space. Brain 

shape is variable and measuring white matter integrity in native brain space preserves 

individual differences. Tractography is considered the most accurate method for identifying 

white matter tracts in humans, but tractography has the limitation that it does not allow the 

whole brain to be investigated and, in some cases, requires some level of user interaction. 

Any method that is semi-automated can be a major hindrance for large-scale clinical 

research. Another potential limitation of tractography is the method of extracting diffusion 

measures from identified tracts. Standard tractography methods collapse tracts and allow for 

extraction of a single DTI mean value but are also a potential limitation. Due to anatomical 

factors like crossing fibers, nearness to cerebrospinal fluid and/or grey matter, or 

microstructural factors like axon density and/or diameter, diffusion measures can vary along 

tract trajectories (Xue et al., 1999). Averaging along the entire tract obscures potentially 

important information and may not be optimal for localization of group differences. If there 

is damage or change that occurs within a small portion of the tract, those differences may be 

missed when the whole tract is averaged. Given reports emphasizing the utility of analyzing 

diffusion properties along the tract in healthy brain anatomy (Gong et al., 2005; O’Donnell 

et al., 2009) and variations in relation to development (Geng et al., 2012), aging (Davis et 

al., 2009), and clinical conditions (Berman et al., 2005; Colby et al., 2012; Concha et al., 

2012; Lin et al., 2006; Myall et al., 2013), it is important to consider diffusion measures 

along the tract and not average across the entire tract. Fortunately, more recently developed 

methods are fully automated. These techniques rapidly and reliably identify and measure 

white matter fiber tracts and allow analysis of diffusion properties along the tract trajectory, 

thus avoiding the need for user intervention to define the tracts.

There are multiple tractography methods that can be used to determine the pathway between 

distant brain regions. When determining diffusion orientation at each voxel, there are two 

options: deterministic and probabilistic tractography. Deterministic (streamline) tractography 

models paths as a one-dimensional curve. Deterministic tractography uses the principal 

direction of diffusion to propagate trajectories from the defined anchor point until 

termination criterion are met (i.e., excessive angular deviation, minimum FA voxel 

threshold, and/or endpoint(s)). Probabilistic tractography generates a range of possible 

diffusion directions for each voxel instead of a single diffusion direction; therefore, 

probabilistic tractography actually models the uncertainty along the tract. Tractography, 

whether you are using deterministic or probabilistic methods, can be completed either 

locally or globally. Local tractography reconstructs the path step-by-step using only the local 

orientation at each voxel. Local tractography is best suited for exploratory studies of brain 

connectivity. Tracts are reconstructed starting from a single seed region and are not 

constrained to any given target region, therefore, endpoints can occur anywhere within the 
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brain. In contrast, global tractography fits the entire path at once, using diffusion orientation 

of all voxels along the path length. Global tractography is best suited for reconstructing 

known white-matter pathways. Tracts are constrained to connections of two specific end 

points and symmetric between beginning seed and end target regions.

To date, most published DTI studies contain relatively small samples sizes and limited age 

ranges that often exclude adolescents. Another limitation has been the use a single DTI 

method of voxelwise analyses, as opposed to a priori defined and anatomically validated 

white matter tracts. Therefore, these studies have been limited in their ability to detect subtle 

changes in white matter integrity. To overcome these challenges, the current investigation 

addresses these developmental issues within a pediatric mTBI study, the Mild Injury 

Outcome Study (MIOS) involving children 8 to 15 years of age who have sustained mTBI or 

orthopedic injury (OI). The aim of the current study was to establish which DTI analysis is 

preferable for assessing potential effects of mTBI since preliminary analyses show no gross 

differences between white matter integrity between the OI and mTBI groups. In the present 

study, we performed TBSS, global deterministic, and probabilistic tractography in children 

with mTBI and age-matched OI controls to compare methods in terms of sensitivity in 

identifying developmental and/or sex-related differences within the brain. As proof of 

concept, we demonstrate that automated tractography methods for reconstructing white 

matter fasciculi do not require user intervention and can provide a reliable way to investigate 

subtle changes in white matter integrity in mTBI populations.

2. Methods

2.1 Participants

Participants were recruited through a multi-site (Columbus, OH; Cleveland, OH) study of 

outcomes in children with mTBI. The study was conducted in accordance with established 

guidelines and received institutional ethics approval from the two data collection sites (The 

Research Institute at Nationwide Children’s Hospital in Columbus, OH and Rainbow Babies 

and Children’s Hospital in Cleveland, OH); written informed consent and/or assent was 

obtained from all participants. Participants were 153 children aged 8 to 17 years. The mTBI 

group consisted of 94 children (63 boys and 31 girls) who experienced head trauma resulting 

in hospitalization and who had a recorded day of injury post-resuscitation Glasgow Coma 

Scale (GCS) score of 12 or less. The OI group comprised 59 children (43 boys, 16 girls) 

with fractures not accompanied by symptoms of head injury and with GCS scores, if 

recorded, of 15. Descriptive statistics of scanner site, age, sex, and Wechsler Abbreviated 

Scale of Intelligence ® Second Edition Full Scale IQ scores are reported in Table 1.

2.2 MRI Acquisition

2.2.1 Columbus—Magnetic resonance images of the participants were obtained using a 

Siemens Trio 3T scanner with a 32-channel head coil at the Research Institute at Nationwide 

Children’s Hospital in Columbus. High-resolution T1-weighted images were acquired using 

a 3D magnetization-prepared rapid gradient echo (MPRAGE) pulse sequence. The 3D 

MPRAGE T1-weighted sequence parameters were as follows: 192 contiguous sagittal slices 

with TR (repetition time) = 2200 ms; TE (echo time) = 4.37 ms; in-plane resolution = 0.90 × 

Goodrich-Hunsaker et al. Page 5

J Neurosci Res. Author manuscript; available in PMC 2018 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



0.90 mm; slice thickness = 0.90 mm; flip angle = 7°; and a field of view of 230 mm and an 

acquisition matrix of 256 × 256 mm. Diffusion MRI images were acquired using a diffusion-

weighted spin-echo echo-planar imaging (EPI) pulse sequence with the following 

parameters: 64 interleaved axial slices with TR (repetition time) = 6600 ms; TE (echo time) 

= 72.4 ms; in-plane resolution = 1.8 × 1.8 mm; slice thickness = 1.8 mm; bandwidth = 1860 

Hz/Px; and a field of view of 230 mm and an acquisition matrix of 128 × 128 mm. Diffusion 

gradients were applied in 30 directions with b = 700 s/mm2.

2.2.2 Cleveland—Magnetic resonance images of the participants were obtained using a 

Philips 3.0T Achieva scanner with an 8-channel head coil at the University Hospitals Case 

Medical Center in Cleveland. High-resolution T1- weighted images were acquired using a 

3D magnetization-prepared rapid gradient echo (T1 3D TFE) pulse sequence. The 3D TFE 

T1-weighted sequence parameters were as follows: 170 contiguous sagittal slices with TR 

(repetition time) = 8.9 ms; TE (echo time) = 4.1 ms; in-plane resolution = 0.90 × 0.90 mm; 

slice thickness = 0.90 mm; flip angle = 8°; and a field of view of 240 mm and an acquisition 

matrix of 256 × 256 mm. Diffusion MRI images were acquired using a diffusion-weighted 

spin-echo echo-planar imaging (EPI) pulse sequence with the following parameters: 60 

interleaved axial slices with TR (repetition time) = 6634 ms; TE (echo time) = 76 ms; in-

plane resolution = 2 × 2 mm; slice thickness = 2 mm; bandwidth = 1786.9 Hz/Px in EPI freq 

direction; and a field of view of 224 mm and an acquisition matrix of 128 × 128 mm. 

Diffusion gradients were applied in 32 directions with b = 800 s/mm2.

2.3 MRI Preprocessing

The detailed protocol is available in Supplemental Materials. Briefly, preprocessing and 

brain extraction procedures were completed on a remote Linux computing cluster. T1- and 

diffusion-weighted DICOM images were converted into NIfTI format using the dcm2niix 

tool in MRIcron, publicly available software (https://github.com/rordenlab/dcm2niix) and 

the bval and bvec files were automatically created from the raw diffusion-weighted DICOM 

headers. During conversion to NIfTI format, T1 images were automatically reoriented to 

canonical space and auto-cropped. Using the Automatic Registration Toolbox (ART) 

acpcdetect tool, freely downloadable here (https://www.nitrc.org/frs/?group_id=90), the T1 

images were put into standard alignment. Using the Convert3D Medical Image Processing 

Tool, freely downloadable here (http://www.itksnap.org/pmwiki/pmwiki.php?

n=Downloads.C3D), T1 images were resampled with an isotropic voxel resolution of 1-mm. 

Skull-stripped T1 images were acquired using the Advanced Normalization Tools version 

2.1.0 (ANTs; Avants et al., 2014) volume-based cortical thickness estimation pipeline 

(antsCorticalThickness.sh), freely downloadable here (https://github.com/stnava/ANTs/

releases/tag/v2.1.0).

2.4 Head Motion

Since diffusion-weighted imaging analyses are designed to detect the motion of water 

molecules, this makes diffusion MR images particularly sensitive to head motion. Head 

motion results in not only misalignment between consecutive diffusion-weighted images, but 

also intensity changes. Misalignment can be corrected by registering the diffusion-weighted 

images to each other; however, intensity alterations cannot be corrected. There are three 
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measures of head motion outputted from the TRACULA pipeline (see below): the average 

volume-by-volume translation and rotation, and the percent of slices with excessive intensity 

drop-out. We used the average volumeby- volume translation and rotation as covariates in 

our analyses.

2.5 Tract-Based Spatial Statistics (TBSS)

Diffusion-weighted images were preprocessed using FMRIB’s Diffusion Toolbox within 

FSL version 5.0.7 (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FslInstallation). Preprocessing 

included eddy current correction, motion correction, and brain masking. FDT (FMRIBs 

Diffusion Toolbox) was used to fit the tensor model to every voxel of the brain mask and 

compute the FA, MD, RD, and AD maps. Voxel-wise analysis was performed using TBSS 

toolbox of FSL (Smith et al., 2007, 2006). FA maps were aligned to FMRIB58 FA template 

and affine transformed into MNI standard space using the nonlinear registration tool FNIRT. 

The mean FA-image was created following registration and thinned to FA > 0.2 to represent 

the mean FA skeleton. Individual FA volumes were then projected onto this common 

skeleton. Similarly, the MD, RD, and AD maps were also projected onto the mean FA 

skeleton.

Analyses were carried out using FSL randomise program with 5000 permutations (Nichols 

and Holmes, 2002). Using a nonparametric permutation test, we performed voxelwise 

statistical analysis of individual FA, RD, MD, and AD skeleton images of OI and mTBI 

groups for both contrasts (OI > mTBI; OI < mTBI and boys and girls for both contrasts 

(boys > girls; boys < girls) with age and the average volume-by-volume translation and 

rotation as covariates. To avoid artifacts caused by inappropriate thresholds, the threshold-

free cluster enhancement method (Smith and Nichols, 2009) was used for all statistical 

analyses. The resulting statistical maps were superimposed on the MNI152 template 

supplied by FSL. FSLView and its atlas tools (ICBM-DTI-81 white-matter labels atlas; JHU 

white-matter tractography atlas) as well as general neuroanatomical handbooks were used to 

allocate FA changes detected by TBSS to the different anatomical structures in the MNI152 

space (Hua et al., 2008; Wakana et al., 2004).

2.6 Automated Fiber Quantification (AFQ)

Automated global deterministic tractography was performed according to standard 

protocols. First, diffusion-weighted images were preprocessed using the dtiInit 

preprocessing pipeline wrapper from Stanford open-source VISTASOFT package version 

1.0 (https://github.com/vistalab/vistasoft) running on MATLAB version R2015b (MATLAB, 

2015). The diffusion-weighted images were corrected for eddy currents and head motion, 

skull-stripped, and tensor fitted. White matter pathways were automatically identified using 

an open-source, freely available software package, Automated Fiber Quantification (AFQ) 

version 1.2 (https://github.com/yeatmanlab/AFQ). AFQ (Yeatman et al., 2012) identifies 

twenty major fiber tracts (see Figure 1) and additionally segments the corpus callosum into 

eight sections. The twenty major pathways include the corticospinal tract, inferior 

longitudinal fasciculus, inferior fronto-occipital fasciculus, uncinate fasciculus, anterior 

thalamic radiation, cingulum cingulate gyrus and hippocampal bundles, superior 

longitudinal fasciculus, arcuate fasciculus, and forceps major and forceps minor of the 
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corpus callosum. Furthermore, the corpus callosum was segmented into eight different 

sections (see Figure 2). The eight segments are roughly associated with the following 

regions: orbitofrontal, anterior frontal, superior frontal, motor, superior parietal, posterior 

parietal, occipital, and temporal.

For each identified pathway, FA, MD, RD, and AD were extracted along the tract. Statistical 

analyses were performed on the diffusion metrics across 100 segments of each tract. We 

performed two-way analyses of covariance (ANCOVAs) to examine differences between the 

OI and mTBI groups and between boys and girls on each diffusion metric at each location 

along each of the twenty tracts and each of the 8 corpus callosum segments using age and 

the average volume-by-volume translation and rotation as covariates. Significance levels for 

the F-statistic were controlled for by the false discovery rate for multiple comparisons.

2.7 TRActs Constrained by UnderLying Anatomy (TRACULA)

Probabilistic tractography was performed according to standard protocols. Diffusion-

weighted images were analyzed with TRACULA package (Yendiki et al., 2011), 

implemented in FreeSurfer version 5.3.0 (http://surfer.nmr.mgh.harvard.edu/fswiki/

Download). TRACULA uses the prior anatomical information derived from the cortical 

parcellation and subcortical segmentation obtained from FreeSurfer. First, we performed the 

automated reconstruction and labeling of cortical and subcortical regions as performed by 

FreeSurfer on the T1-weighted images. The technical details of these procedures are 

described in prior publications (Dale et al., 1999; Fischl and Dale, 2000; Fischl et al., 2002; 

Fischl, 2004; Fischl et al., 2004, 2001, 1999; Han et al., 2006; Jovicich et al., 2006; Reuter 

et al., 2010, 2012; Ségonne et al., 2004). FreeSurfer cortical labels were visually inspected 

by a reliable rater (G.B.) prior to analyses.

The processing workflow of TRACULA is based on a standardized routine that utilizes tools 

available in the software library of FSL. Once diffusion-weighted images were preprocessed, 

TRACULA then uses the individual participant’s local diffusion orientations, as well as the 

participant’s cortical and subcortical segmentation labels, combined with prior information 

of each tract’s to estimate the probability distributions of each tract. Eighteen major 

pathways were reconstructed (see Figure 3). The eighteen major pathways include the 

corticospinal tract, inferior longitudinal fasciculus, uncinate fasciculus, anterior thalamic 

radiation, cingulum-cingulate gyrus bundle, cingulum-angular bundle, superior longitudinal 

fasciculus-parietal bundle, superior longitudinal fasciculus-temporal bundle, and forceps 

major and forceps minor of the corpus callosum.

For each identified pathway, FA, MD, RD, and AD were extracted along the tract. Statistical 

analyses were performed on each DTI metric along each fiber pathway. We performed two-

way analyses of covariance (ANCOVAs) to examine differences between the OI and mTBI 

groups and between boys and girls on each DTI metric at each location along each of the 

eighteen tracts using age and the average volume-by-volume translation and rotation as 

covariates. Significance levels for the F-statistic were controlled for by the false discovery 

rate for multiple comparisons.
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3. Results

Descriptive statistics of age and Wechsler Abbreviated Scale of Intelligence ® Second 

Addition Full Scale IQ scores are reported in Table 1. The OI and mTBI groups did not 

differ in age (t (151) = 0.49, p = 0.49) or Full-Scale IQ (t (149) = 1.48, p = 0.23). There were 

two participants who did not have a Full-Scale IQ score.

3.1 Head Motion

Shown in Figure 4 is the average volume-by-volume translation, rotation, and percent of 

slices with excessive intensity drop-out as related to age. We performed a two-way 

ANCOVA to determine if head motion was statistically different between mTBI and OI 

groups and boys and girls whilst controlling for age. There was no significant interaction 

between the effects of gender and group on translation (F (1, 148) = 0.14, p = 0.71). Simple 

main effects analysis showed that there were no differences between boys and girls (F (1, 

148) = 0.64, p = 0.42) or between OI and mTBI groups (F (1, 148) = 0.95, p = 0.33). The 

covariate, age, was significantly related to translation (F (1, 148) = 9.58, p = 0.002). There 

was no significant interaction between the effects of gender and group on rotation (F (1, 

148) = 0.15, p = 0.70). Simple main effects analysis showed that there were no differences 

between boys and girls (F (1, 148) = 0.57, p = 0.45) or between OI and mTBI groups (F (1, 

148) = 0.27, p = 0.60). The covariate, age, was significantly related to rotation (F (1, 148) = 

9.25, p = 0.003). There was no significant interaction between the effects of gender and 

group on percent of slices with excessive intensity drop-out (F (1, 148) = 0.68, p = 0.41). 

Simple main effects analysis showed that there were no differences between boys and girls 

(F (1, 148) = 1.32, p = 0.25) or between OI and mTBI groups (F (1, 148) = 0.68, p = 0.41). 

The covariate, age, was not significantly related to percent of slices with excessive intensity 

drop-out (F (1, 148) = 2.00, p = 0.41).

3.2 Tract-Based Spatial Statistics (TBSS)

There were no significant differences between the OI and mTBI groups or between boys and 

girls. However, age was significantly related to FA, MD, and RD. FA was positively 

correlated with age within every major white matter tract (see Figure 6), whereas RD (see 

Figure 7) and MD (see Figure 8) were negatively correlated. Age was not significantly 

correlated with AD.

3.3 Automated Fiber Quantification (AFQ)

We performed two-way ANCOVAs to examine differences between the OI and mTBI groups 

and between boys and girls on each diffusion metric (FA, RD, MD, and AD) at each location 

along each of the twenty fiber tracts using age and the average volume-by-volume 

translation and rotation as covariates. Significance levels for the F-statistic were controlled 

for by the false discovery rate for multiple comparisons. There was no significant interaction 

between the effects of gender and group. Simple main effects analysis showed that there 

were no differences between the OI and mTBI groups either. There were a few areas within 

the left and right cingulum cingulate and inferior fronto-occipital fasciculus, right inferior 

longitudinal fasciculus, right thalamic radiation, and left uncinate fasciculus in which there 

were significant differences between boys and girls. Figure 9 shows the summarized results 
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for each of the 20 identified fiber tracts. Results for full tract profiles can be found on 

FigShare (Goodrich-Hunsaker, 2017a).

Age was significantly related to diffusion metrics (see Figure 10). For visualization purposes 

only, we classified participants into young and old groups based upon the median age of 

13.0 years old to show age-related differences in tract profiles, p-values reported are from 

the two-way ANCOVA performed (see above). Results for full tract profiles can be found on 

FigShare (Goodrich-Hunsaker, 2017b). Compared to younger participants, older participants 

had higher FA and lower RD, AD, and MD within portions of the corpus callosum forceps 

major and minor; left and right cingulum cingulate, corticospinal tract, inferior fronto-

occipital fasciculus, thalamic radiation, and uncinate fasciculus; right arcuate fasciculus; left 

inferior longitudinal fasciculus; and right superior longitudinal fasciculus.

We performed two-way ANCOVAs to examine differences between the OI and mTBI groups 

and between boys and girls on each diffusion metric at each location along each of the eight 

segments of the corpus callosum using age and the average volume-by-volume translation 

and rotation as covariates. Significance levels for the F-statistic were controlled for by the 

false discovery rate for multiple comparisons. There was no significant interaction between 

the effects of gender and group. Simple main effect analysis showed that there were no 

differences between the OI and mTBI groups either. Girls and boys did not show differences 

in FA or AD within any of the eight corpus callosum segments (see Figure 11). However, 

compared to girls, boys had higher RD and MD within the superior parietal section of the 

corpus callosum. Results for full tract profiles can be found on FigShare (Goodrich-

Hunsaker, 2017c)

Figure 12 shows that FA was significantly higher in older participants within the superior 

frontal, motor, superior parietal, posterior parietal, occipital, and temporal segments of the 

corpus callosum. Older participants also had lower RD, AD, and MD within these corpus 

callosum segments. Results for full tract profiles can be found on FigShare (Goodrich-

Hunsaker, 2017d).

3.4 TRActs Constrained by UnderLying Anatomy (TRACULA)

We performed two-way ANCOVAs to examine differences between the OI and mTBI groups 

and between boys and girls on each diffusion metric at each location along each of the 

eighteen tracts using age and the average volume-by-volume translation and rotation as 

covariates. Significance levels for the F-statistic were controlled for by the false discovery 

rate for multiple comparisons. There was no significant interaction between the effects of 

gender and group. Simple main effects analysis showed that there were no differences 

between the OI and mTBI groups either. Compared to girls, boys had higher RD within the 

corpus callosum forceps major, higher RD and MD within the left inferior longitudinal 

fasciculus, and lower FA within the right and left thalamic radiation and left uncinate 

fasciculus. Figure 13 shows the summarized results for each of the 18 identified fiber tracts. 

Results for full tract profiles can be found on FigShare (Goodrich-Hunsaker, 2017e).

Age was significantly related to the diffusion metrics (see Figure 14). Results for full tract 

profiles can be found on FigShare (Goodrich-Hunsaker, 2017f). Compared to younger 
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participants, older participants had higher FA within the left cingulum cingulate, left inferior 

longitudinal fasciculus, left uncinate fasciculus, and corticospinal tract in both hemispheres. 

Older participants had lower RD, AD, and MD throughout the 18 fiber tracts.

4. Discussion

Diffusion-weighted images were collected as part of a project examining outcomes of 

pediatric mTBI and analyzed using three different automated methods. Our goal was to 

identify DTI analytic methods that would be useful in assessing white matter integrity in 

subsequent investigation of the effects on mTBI on brain structure since preliminary 

analyses show no differences between white matter integrity between the mild OI and mTBI 

groups. The current study focused on age- and sex-related effects, as justified by the need to 

take these sources of variation into account in examining injury effects and because the 

effects of mTBI on brain structure are likely to be subtle (Aoki and Inokuchi, 2016; Fink et 

al., 2016; Hulkower et al., 2013). The three automated methods included: TBSS, 

deterministic tractography using AFQ, and probabilistic tractography using TRACULA. 

Each of these methods have different strengths and weaknesses. The results were in many 

ways consistent across all three methods, although results from the TBSS method were less 

anatomically specific compared to those obtained from AFQ and TRACULA.

Only minor sex differences were evident. The results from the TBSS method suggest that 

boys and girls did not significantly differ in fractional anisotropy (FA), mean diffusivity 

(MD), radial diffusivity (RD), and axial diffusivity (AD). Previous studies have reported 

subtle sex differences but included additional covariates besides age in their statistical 

models (Herting et al., 2012), had small sample sizes, or examined a more limited age range 

(Wang et al., 2012). No previous study has examined sex differences in children 8 to 15 

years of age using tractography methods. Our findings indicating that tractography methods 

may be more sensitive to DTI integrity given some sex differences were found using AFQ 

and TRACULA, but not with TBSS methods.

Across all three methods, many of the tracts revealed increases of FA and decreases of RD 

and MD with age. TBSS analyses resulted in age-related changes across the all the white 

matter tracts to such a degree that no specific cluster could be delineated. AFQ and 

TRACULA provided more anatomically precise, tract-specific results. Consistent with 

previous studies (Walker et al., 2016; Uda et al., 2015), age-related changes occurred within 

the corpus callosum, cingulum cingulate, corticospinal tract, inferior and superior 

longitudinal fasciculus, and uncinate fasciculus. In a recent longitudinal study, changes in 

FA across time were related to age at onset of more severe traumatic brain injury. Younger 

children with mTBI sustained greater loss of FA because of their injury but also greater 

increase in FA across time from 3 to 24 months post injury, whereas older children with 

mTBI did not display as great of FA reduction, though there was limited FA increase post 

injury within the superior and inferior longitudinal fasciculi and the uncinate fasciculi 

(Ewing-Cobbs et al., 2016). Unfortunately, sex differences were not evaluated in these 

studies. In summary, future studies would be well-advised to consider age at time of injury 

and to use methods to detect subtle changes within specific fiber tracts not limited to 

voxelwise analyses.
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While this is the first study to investigate developmental and sex-related differences within 

the brain comparing three DTI methods, several limitations should be acknowledged. First, 

because sample sizes for boys and girls were unbalanced, our analyses may not have been 

adequately powered to detect statistically significant sex differences. Secondly, the scans 

come from multiple scanning sites, a difference that may alter DTI measurements. In the 

current study, we did not find any site differences and therefore combined data from both 

scanning sites. In future analyses, we will continue to explore various methods that reduce 

inter-site variability (Mirzaalian et al., 2016). For the current analyses, using data from 

multiple sites may make our results more generalizable to clinical settings in which DTI 

sequence parameters are not strictly controlled.

Despite these limitations the current findings highlight the usefulness of using tractography 

methods, as they provide improved sensitivity in accounting for developmental and sex-

related differences in brain structure and in controlling for these factors in examining injury 

effects in white matter integrity. Furthermore, tractography methods can be applied to larger 

datasets because they do not require user intervention. We will use tractography methods for 

future analyses because these methods provide maximal sensitivity in detecting subtle 

changes in white matter integrity. Future findings using these methods may serve as 

biomarkers for prediction of outcomes of pediatric mTBI.
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Appendix

Software Setup and Commands

Because most of the programs used for the current study offer a range of flexible options, 

the following commands can be used to replicate our analyses. Unless otherwise noted, all 

imaging procedures were completed on the Fulton Supercomputing Lab (FSL; https://

marylou.byu.edu/), a high performance computing resource at Brigham Young University. 

All compute nodes have Red Hat Enterprise Linux 6.6. T1- and diffusion-weighted DICOM 

images were converted into NIfTI format using the dcm2niix tool in MRIcron (hhttps://

github.com/rordenlab/dcm2niix). All T1 DICOM images were automatically reoriented to 

canonical space. The following terminal bash command was used to convert the T1 images:

The following terminal bash command was used to convert the diffusion weighted images:

Output NIfTI images were named, t1.nii and dwi.nii.gz, respectively. The bvec and bval files 

were automatically generated and files were renamed accordingly.

T1-Weighted Imaging

The T1-weighted images were automatically aligned, resampled, and skull-stripped. Using 

the Automatic Registration Toolbox (ART) acpcdetect module (https://www.nitrc.org/frs/?

group_id=90), the scans were put into standard alignment so that the anterior commissure 

(AC) and posterior commissure (PC) were along a horizontal plane and the mid-sagittal 

plane passed through both landmarks. The acpcdetect module is a model-based program that 

locates and makes adjustments to the image based on those landmarks: (1) the anterior 

commissure (AC), (2) the posterior commissure (PC), and (3) the vertex of the superior 

pontine sulcus (VSPS). This initial alignment, often referred to as AC-PC alignment, is a 

rigid-body (i.e., three-translation and three-rotation) transformation. The input IMAGE was 

the T1-weighted NIfTI image from the previous step (e.g., t1.nii). The name for the 

OUTPUT file (e.g., acpc.nii) and the path to the default MODEL (e.g., $ARTHOME/

T1acpc.mdl) was set.

Using the Convert3D Medical Image Processing Tool (http://www.itksnap.org/pmwiki/

pmwiki.php?n=Downloads.C3D), images were cropped and resampled to an isotropic voxel 

resolution of 1-mm using the default linear algorithm. The input IMAGE was the AC-PC 

aligned, T1-weighted image from the previous step (e.g., acpc.nii). The name for the 

OUTPUT file was set (e.g., resampled.nii.gz):
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Skull-striped images were automatically acquired using the Advanced Normalization Tools 

(ANTs; Avants, Tustison, & Song, 2014) volume-based cortical thickness estimation 

pipeline, antsCorticalThickness.sh, downloadable here (https://github.com/stnava/ANTs/

releases/tag/v2.1.0). The shell script, antsCorticalThickness.sh, provides brain volume 

extraction, segmentation, and registration-based labeling. The workflow consisted of (1) 

correcting the signal intensity inhomogeneities using the N4 bias field algorithm, (2) initial 

template-based brain extraction, (3) prior-based 6-tissue (cerebrospinal fluid, cortical gray 

matter, white matter, deep gray matter, brain stem, and cerebellum) segmentation, (4) and 

DiReCT-based cortical thickness estimation. The input IMAGE was the resampled T1-

weighted image from the previous step (e.g., resampled.nii.gz) and the OUTPUT prefix was 

set (e.g., antsCorticalThickness/). For this step, we used an age-matched template, 

NKI10AndUnder template (Avants & Tustison, 2014), to improve brain extraction success. 

Ultimately, we will generate our own population template using either ANTs 

antsMultivariateTemplateConstruction.sh or buildtemplateparallel.sh scripts, but did not for 

the current study because we were only interested in acquiring a rough brain mask for each 

participant.

Although the pipeline outputs many files, the only file used in the current study was the 

brain extracted T1 image (e.g., ExtractedBrain0N4.nii.gz). We could have also used ANTs 

antsBrainExtraction.sh script to generate a brain extracted T1 image.

Tract-Based Spatial Statistics (TBSS)

Diffusion-weighted images were corrected for eddy current and head motion, skull-stripped, 

and tensor fitted. Using FMRIB’s Diffusion Toolbox within FSL version 5.0.7 (http://

fsl.fmrib.ox.ac.uk/fsl/fslwiki/FslInstallation), image distortions induced by eddy currents and 

head motion were corrected by aligning each image to the mean non-diffusion-weighted 

(b=0) using linear image registration. The eddy_correct module was run with the diffusion 

weighted IMAGE file (e.g., dwi.nii.gz) and the OUTPUT file was set (e.g., dti.nii.gz).

After correction, diffusion weighted images were skull-stripped in order to exclude non-

brain voxels from all analyses. The bet module was run with the corrected IMAGE file 

prefix (e.g. dti) and the OUTPUT prefix was set (e.g., dti_brain).

Once skull-stripped, a diffusion tensor model was fit at each voxel, generating fractional 

anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD) 
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maps. The DTIfit module was run with the corrected diffusion weighted IMAGE file (e.g., 

dti.nii.gz), brain MASK file (e.g., dti_brain_mask.nii.gz), BVECS file (e.g., dwi.bvec), and 

BVALS file (e.g., dwi.bval) and the OUTPUT file was set (e.g., dti).

Besides analyzing FA, we also wanted to compare the other diffusion measures: MD, AD, 

and RD. The output files from DTIfit are as follows: MD file (e.g., dti_MD.nii.gz), AD file 

(e.g., dti_L1.nii.gz), and RD file (e.g., mean of dti_L2.nii.gz and dti_L3.nii.gz). Since RD is 

not an output of DTIfit, this file must be calculated for each participant:

Next, all participants’ FA volumes were skeletonized and transformed into common space as 

employed in TBSS (Smith et al., 2006; Smith et al., 2007). Volumes were nonlinearly 

warped to the FMRIB58_FA template, which is supplied with FSL, by use of local 

deformation procedures performed by FNIRT (Andersson, Jenkinson, & Smith, 2007), a 

nonlinear registration toolkit using a b-spline representation of the registration warp field 

(Rueckert et al., 1999). All warped FA volumes were visually inspected for accuracy. Each 

participants’ FA image was moved into a single directory for the TBSS pipeline. Within the 

directory that contains all the FA images, the following was run:

Next tbss_3_postreg was run to generate a mean FA volume of all participants. This mean 

FA volume was thinned to create a mean FA skeleton representing the centers of all common 

tracts. We thresholded and binarized the mean skeleton at FA > 0.20 to reduce the likelihood 

of partial voluming along the borders between tissue classes (i.e., tbss_4_prestats). 

Participant FA images were then warped onto this mean skeleton mask. The resulting 

skeletons for each participant were fed into voxelwise permutation based cross-subject 

statistics. First the design matrix was created (i.e., design_ttest2) and finally the analysis was 

run (i.e., randomise).

Luckily there is a straightforward way to analyze other diffusion measures besides FA. After 

completing the full TBSS analyses with the FA images, we analyzed the other diffusion 

measures: MD, AD, and RD. Each participants’ MD, AD, and RD image was moved into a 

single directory, respectively, for the TBSS pipeline. In other words, we created three new 

directories called MD, AD, and RD in the TBSS analysis directory (the one that contains the 

existing origdata, FA and stats directories from the FA analysis). Each participant’s MD 

image was moved into the MD directory, making sure that the MD file was named exactly 

the same as the original FA image. Each participant’s AD image was moved into the AD 

directory and RD image moved into the RD directory, making sure that the AD and RD files 
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were named exactly the same as the original FA image. With the data organized, the original 

nonlinear registration was applied to the MD, AD, and RD data, mean MD, AD, and RD 

volume and skeleton was generated, and finally participant MD, RD, and AD images were 

then warped onto the mean MD, RD, and AD skeleton masks. The follow code was run 

within the top working TBSS directory (the one that contains FA, stats, etc.):

The resulting skeletons for each participant were fed into voxelwise permutation based 

cross-subject statistics.

Automated Fiber Quantification (AFQ)

For the AFQ analyses, diffusion weighted images were preprocessed using the dtiInit 

preprocessing pipeline wrapper from Stanford open-source VISTASOFT package version 

1.0 (https://github.com/vistalab/vistasoft) running on MATLAB version R2015b (MATLAB, 

2015). First, the skull-stripped T1-weighted images were reformatted to be compatible with 

the current pipeline. In MATLAB, the final preprocessed T1-weighted IMAGE (e.g., 

brain.nii.gz) was reformatted. Finally, the OUTPUT file was set (e.g., afq.nii.gz).

Next, the qto on both the T1- and diffusion-weighted images were set:

Because the diffusion-weighted images were acquired on a Siemens Trio Tim scanner the 

following parameters had to be set for the dtiInit pipeline and the dtiInit pipeline was run for 

each participant using their T1- and diffusion-weighted file from the previous step. As part 

of the pipeline, the diffusion-weighted images were corrected for eddy currents and head 

motion, skull-stripped, and tensor fitted. Eddy current distortions and participant motion 

artifacts were removed using the algorithm described in Rohde, Barnett, Basser, Marenco, 

and Pierpaoli, 2004. The algorithm combines a rigid-body 3D motion correction (6-

parameters) with a constrained non-linear warping (8-parameters) based on the expected 

pattern of eddy-current distortions given the phase-encode direction of the acquired data. 
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Each diffusion-weighted image was registered to the non-diffusion-weighted (b=0) image 

using a two-stage coarse-to-fine approach that maximized the normalized mutual 

information. The mean of the non-diffusion-weighted images was automatically aligned to 

the skull-stripped T1 image using a rigid-body transformation. Next, diffusion-weighted 

images were resampled to 2-mm using a 7th-order b-spline algorithm. An eddy-current 

intensity correction was applied to the diffusion-weighted images at the resampling stage. 

The rotation component of the omnibus coordinate transform was applied to the diffusion-

weighting gradient directions to preserve their orientation with respect to the resampled 

diffusion images. The tensors were then fit using a robust least-squares algorithm designed 

to remove outliers from the tensor estimation step. We computed the eigenvalue 

decomposition of the diffusion tensor and the resulting eigenvalues were used to compute 

FA:

Once preprocessing was completed, white matter pathways were automatically identified 

using an open-source, freely available software package, Automated Fiber Quantification 

version 1.2 (https://github.com/yeatmanlab/AFQ). AFQ (Yeatman, Dougherty, Myall, 

Wandell, & Feldman, 2012) identifies twenty major fiber tracts in an individual’s brain. 

First, whole-brain tractography was estimated using a deterministic streamline tracking 

algorithm (STT). Individual fibers were assigned to a fiber tract if they passed through two 

waypoint ROIs that were used to define the trajectory of the pathway. ROIs were 

automatically placed in equivalent anatomical locations across each participant. Identified 

fiber tracts were validated by comparing each tract to a fiber tract probability map. Fibers 

within the identified fiber tract of low probability were discarded, because they did not 

conform to the shape of the fiber tract as defined by the fiber probability map. Finally, a mat 

file containing a list of the participant’s directories was created (e.g., sub_dirs.mat), as well 

as a file demarcating which group each participant belonged (e.g., sub_group.mat).

In addition to the default pathways, several additional tracts were identified, specifically the 

entire corpus callosum was segmented into 8 regions. The output mat file (e.g., afq.mat) was 

used as the input AFQ file:

Because the endpoints vary tremendously across participants, identified fiber pathways in 

each hemisphere were clipped at each waypoint ROI. With just the central portion of the 

fiber tracts, we further aligned and resampled individual fiber tracts into 100 equal segments, 

the default, then extracted the diffusion properties from each segment along the trajectory 

using a weighted-average approach.
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Statistical analyses were performed using R version 3.2.4. We performed one-way analyses 

of covariance (ANCOVAs) to examine group differences between males and females on 

each DTI metric at each location along each of the twenty tracts and each of the 8 corpus 

callosum segments using age and the average volume-by-volume translation and rotation as 

covariates. Significance levels for the F-statistic were controlled for by the false discovery 

rate (FDR) for multiple comparisons.

TRActs Constrained by UnderLying Anatomy (TRACULA)

Probabilistic tractography was performed according to standard protocols. Diffusion-

weighted images were analyzed with TRACULA package (Yendiki et al., 2011), 

implemented in FreeSurfer version 5.3.0 (http://surfer.nmr.mgh.harvard.edu/fswiki/

Download). TRACULA uses the prior anatomical information derived from the cortical 

parcellation and subcortical segmentation obtained for each subject by processing the 

individual T1-weighted images from FreeSurfer. First, we performed the automated 

reconstruction and labeling of cortical and subcortical regions as performed by FreeSurfer 

on the T1-weighted images. The technical details of these procedures are described in prior 

publications (Dale, Fischl, & Sereno, 1999; Fischl, 2004; Fischl & Dale, 2000; Fischl, Liu, 

& Dale, 2001; Fischl et al., 2002; Fischl et al., 2004; Fischl, Sereno, Tootell, & Dale, 1999; 

Han et al., 2006; Jovicich et al., 2006; Reuter, Rosas, & Fischl, 2010; Reuter, Schmansky, 

Rosas, & Fischl, 2012; Ségonne et al., 2004).

FreeSurfer cortical labels were visually inspected by a reliable rater (G.B.) prior to analysis. 

Next, a configuration file was generated using the DTI image (i.e., dwi.nii.gz), bvec (i.e., 

dwi.bvec) and bval (i.e., dwi.bval) files output from dcm2niix module. Default options were 

used for the rest of the configuration file. Preprocessing of the diffusion image data was 

automatically completed. The processing workflow of TRACULA is based on a 

standardized routine that utilizes tools available in the software library of FSL. The 

automatic preprocessing steps include: eddy-current compensation, computing measures of 

head motion, intra-subject registration of individual diffusion-weighted image to individual 

T1-weighted image, inter-subject registration of individual T1-weighted image to common 

space, creation of cortical and white-matter masks from FreeSufer reconstructions, tensor 

fitting, and computing anatomical priors for white-matter pathways from the TRACULA 

atlas. The argument of the -c command-line option is the configuration file, where 

preferences for these preprocessing steps can be specified.

FSL’s bedpostX (Behrens, Berg, Jbabdi, Rushworth, & Woolrich, 2007) was used to apply 

the ball-and-stick model of diffusion. TRACULA uses the ball-and-stick model of diffusion 

to reconstruct the pathways from the diffusion-weighted imaging data. The following 

command runs bedpostX on the preprocessed data of all the participants specified in the 

configuration file:
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The final step of TRACULA is to generate the probability distributions for each white-

matter bundles specified in the configuration file. This is done by simultaneously fitting the 

shape of each pathway to the results of the ball-and-stick model of diffusion from above and 

to the prior knowledge of the pathway anatomy given by the set of manually labeled training 

subjects in the TRACULA atlas. The following command reconstructs the probabilistic 

distribution of the pathways:

For each identified pathway, fractional anisotropy (FA), mean diffusivity (MD), radial 

diffusivity (RD), and axial diffusivity (AD) were extracted along the tract at the maximum 

position on the a posteriori path, as well averaged over all sample paths. Because tracts were 

reconstructed in each participant’s native diffusion space and not on a template, diffusion 

measures must be interpolated to corresponding positions along the tract for all participants. 

Once interpolated, some participants’ endpoints contained NA values. Because the endpoints 

vary tremendously across participants, fiber tracts were clipped; the NA values were 

removed.

Statistical analyses were performed using R version 3.2.4. We performed one-way analyses 

of covariance (ANCOVAs) to examine group differences between males and females on 

each DTI metric at each location along each of the eighteen tracts using age and the average 

volume-by-volume translation and rotation as covariates. Significance levels for the F-

statistic were controlled for by the false discovery rate (FDR) for multiple comparisons.
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Significance

The results reported in this manuscript provide the first direct comparison between 

voxelwise and deterministic and probabilistic tractography methods to evaluate diffusion-

weighted MR properties in mild traumatic brain injury (mTBI). These converging 

methods both identified previously characterized age-related changes in fractional 

anisotropy and diffusivity measures; however, the tractography methods were able to 

provide anatomically precise localizations of these age-related changes. The anatomical 

localization of effects identified by both tractography methods provide valuable data 

points that can be used to train algorithms to detect potential neuroanatomic biomarkers 

within white matter in mild TBI.
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Figure 1. 
(A) Automated Fiber Quantification (AFQ) pipeline identifies 20 major fiber tracts 

including: corticospinal tract, uncinate fasciculus, anterior thalamic radiation, cingulum 

cingulate gyrus and hippocampal bundles, corpus callosum forceps major and forceps minor, 

inferior longitudinal fasciculus, inferior fronto-occipital fasciculus, arcuate fasciculus, and 

superior longitudinal fasciculus. (B) AFQ pipeline also segments the corpus callosum 

(anterior to posterior): orbital frontal (red), anterior frontal (orange), superior frontal 

(yellow), motor (green), superior parietal (blue), posterior parietal (purple), occipital (pink), 

and temporal (cyan). (C) TRActs Constrained by UnderLying Anatomy (TRACULA) 

identifies the probability distribution of 18 major tracts including: corticospinal tract, 

inferior longitudinal fasciculus, uncinate fasciculus, anterior thalamic radiation, cingulum 

cingulate gyrus and hippocampal bundles, superior longitudinal fasciculus, arcuate 

fasciculus, and corpus callosum’s forceps major and forceps minor. The tracts are displayed 

at 20% of their maximum threshold.
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Figure 2. 
We used three measures to evaluate head motion: the average volume-by-volume translation 

and rotation and the percent of slices with excessive intensity drop-out. There was no 

significant interaction between the effects of gender and group across the three measures. 

Moreover, there was no significant difference between boys and girls or between mild 

orthopedic injury and mild traumatic brain injury groups. However, compared to older 

participants, younger participants had greater average volume-to-volume translation and 

rotation, but no difference in slices removed because of intensity drop-out.
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Figure 3. 
Shown are the summarized results from the Tract-Based Spatial Statistics (TBSS) analysis. 

The p-value, FWE-corrected, shown in red-yellow is overlaid onto the MNI152 template. 

(A) Fractional anisotropy increases with age within every major white matter tract. (B) 

Radial diffusivity decreases with age within every major white matter tract. (C) Mean 

diffusivity decreases with age within every major white matter tract. Age did not relate axial 

diffusivity.
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Figure 4. 
Shown are the Automated Fiber Quantification (AFQ) summarized results for each of the 20 

identified fiber tracts comparing the girl and boy participants. Plotted is significant p-values 

(FDR-corrected) for fractional anisotropy and radial, axial, and mean diffusivity (y-axis) 

along the length of the fiber tract (x-axis). Blue regions represent girls > boys. Red regions 

represent boys > girls.
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Figure 5. 
Shown are the Automated Fiber Quantification (AFQ) summarized results for each of the 20 

identified fiber tracts related to age. For visualization purposes only, age was collapsed into 

two groups, young (age <= 13.0 years) and old (age > 13 years). Plotted is significant p-

values (FDR-corrected) for fractional anisotropy and radial, axial, and mean diffusivity (y-

axis) along the length of the fiber tract (x-axis). Blue regions represent negative correlation 

with age. Red regions represent positive correlation with age.

Goodrich-Hunsaker et al. Page 29

J Neurosci Res. Author manuscript; available in PMC 2018 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Shown are the Automated Fiber Quantification (AFQ) summarized results from the 8 corpus 

callosum segments comparing the girl and boy participants. Plotted is significant p-values 

(FDR-corrected) for fractional anisotropy and radial, axial, and mean diffusivity (y-axis) 

along the length of the fiber tract (x-axis). Blue regions represent girls > boys. Red regions 

represent boys > girls.
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Figure 7. 
Shown are the Automated Fiber Quantification (AFQ) summarized results from the 8 corpus 

callosum segments related to age. For visualization purposes only, age was collapsed into 

two groups, young (age <= 13.0 years) and old (age > 13 years). Plotted is significant p-

values (FDR-corrected) for fractional anisotropy and radial, axial, and mean diffusivity (y-

axis) along the length of the fiber tract (x-axis). Blue regions represent negative correlation 

with age. Red regions represent positive correlation with age.
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Figure 8. 
Shown are the TRACULA results for each of the 18 identified fiber tracts comparing the girl 

and boy participants. Plotted is significant p-values (FDR-corrected) for fractional 

anisotropy and radial, axial, and mean diffusivity (y-axis) along the length of the fiber tract 

(x-axis). Blue regions represent girls > boys. Red regions represent boys > girls.
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Figure 9. 
Shown are the TRACULA results for each of the 18 identified fiber tracts related to age. For 

visualization purposes only, age was collapsed into two groups, young (age <= 13.0 years) 

and old (age > 13 years). Plotted is significant p-values (FDR-corrected) for fractional 

anisotropy and radial, axial, and mean diffusivity (y-axis) along the length of the fiber tract 

(x-axis). Blue regions represent negative correlation with age. Red regions represent positive 

correlation with age.
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Table 1

Participant descriptive statistics.

Columbus Cleveland

OI TBI OI TBI

n (male : female) 42 (30:12) 63 (40:23) 17 (13:4) 31 (23:8)

Age (± SE) 12.59±0.40 12.81±0.33 12.14±0.57 12.42±0.53

FSIQ (± SE) 99.24±2.27 99.44±1.81 98.12±3.76 95.59±2.55
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