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Abstract

Prune belly syndrome (PBS), also known as Eagle-Barrett syndrome, is a rare congenital disorder 

characterized by absence or hypoplasia of the abdominal wall musculature, urinary tract 

anomalies, and cryptorchidism in males. The etiology of PBS is largely unresolved, but genetic 

factors are implicated given its recurrence in families. We examined cases of PBS to identify novel 

pathogenic copy number variants (CNVs). A total of 34 cases (30 males and 4 females) with PBS 

identified from all live births in New York State (1998–2005) were genotyped using Illumina 

HumanOmni2.5 microarrays. CNVs were prioritized if they were absent from in-house controls, 

encompassed ≥10 consecutive probes, were ≥20 Kb in size, had ≤20% overlap with common 

variants in population reference controls, and had ≤20% overlap with any variant previously 

detected in other birth defect phenotypes screened in our laboratory. We identified 17 candidate 

autosomal CNVs; 10 cases each had one CNV and four cases each had two CNVs. The CNVs 

included a 158 Kb duplication at 4q22 that overlaps the BMPR1B gene; duplications of different 

sizes carried by two cases in the intron of STIM1 gene; a 67 Kb duplication 202 Kb downstream 

of the NOG gene, and a 1.34 Mb deletion including the MYOCD gene. The identified rare CNVs 

spanned genes involved in mesodermal, muscle, and urinary tract development and differentiation, 
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which might help in elucidating the genetic contribution to PBS. We did not have parental DNA 

and cannot identify whether these CNVs were de novo or inherited. Further research on these 

CNVs, particularly BMP signaling is warranted to elucidate the pathogenesis of PBS.
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INTRODUCTION

Prune belly syndrome (PBS) is a rare congenital disorder characterized by absence or 

hypoplasia of the abdominal wall musculature, urinary tract anomalies, and cryptorchidism 

in males (Lloyd et al., 2013; Seidel et al., 2015). A wide variability in disease severity exists 

with some patients also experiencing other associated defects including pulmonary 

hypoplasia, renal hypoplasia, cardiac defects, imperforate anus, and intestinal malrotation 

(Jennings, 2000). PBS profoundly affects a child’s physical, emotional, social, and school 

functioning (Arlen et al., 2016). The estimated prevalence of PBS in the United States is 3.8 

per 100,000 live-births (Routh et al., 2010) with a higher occurrence in males than in 

females (5:1 ratio) (Druschel, 1995).

The etiology of PBS remains largely unresolved. Mesenchymal developmental defects have 

been suggested as the underlying defect in PBS (Stephens and Gupta, 1994; Straub and 

Spranger, 1981). Although PBS often presents as a sporadic condition, familial cases of PBS 

(Balaji et al., 2000; Ramasamy et al., 2005), as well as occurrence with chromosomal 

defects (Amacker et al., 1986; Fryns et al., 1991), suggest a genetic contribution. 

Specifically, PBS has been associated with chromosomal anomalies including trisomy 21 

(Amacker et al., 1986) and large deletions in the long arm of chromosome 6 (Fryns et al., 

1991). Additionally, there have been several reports showing that PBS occurs in both twin 

and non-twin siblings, as well as in successive generations (Balaji et al., 2000; Ramasamy et 

al., 2005). A study from a national database also noted a twofold higher proportion of PBS 

among blacks compared to the general population (Routh et al., 2010). Previous studies have 

also reported a gene deletion of the hepatocyte nuclear factor-1β gene in PBS cases (Haeri et 

al., 2010; Murray et al., 2008).

Studies examining PBS gene defects have been limited. To our knowledge, no study has 

systematically screened the genome of PBS cases for copy number variants (CNVs). We 

aimed to identify CNVs in PBS patients.

MATERIALS AND METHODS

Cases

The New York State (NYS) Congenital Malformations Registry (CMR) mandates reporting 

of major structural birth defects identified within the first two years of life. Hospitals enter 

birth defect descriptions as text fields which are then coded using the expanded British 

Pediatric Association (BPA) coding system. To identify PBS cases, we conducted a 

population-based review searching for a BPA code corresponding to congenital PBS (BPA 
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code 756.720) in the NYS CMR database. We also searched the text field for ‘prune belly 

syndrome’ and ‘Eagle-Barrett syndrome’ to ensure maximum case capture. In total, we 

identified 38 PBS cases with archived newborn screening dried blood spots from among 

2,023,083 live-births occurring in NYS from January 1, 1998 through December 31, 2005. 

We excluded those with a known genetic syndrome (Turner syndrome (n=1) and Beckwith-

Wiedemann syndrome (n=1)) and those where the BPA code and the clinical narrative were 

inconsistent (n=2). A total of 34 cases were studied; 18 with isolated PBS and 16 with PBS 

and other associated defects. We classified as isolated PBS cases those with other 

genitourinary defects that could have occurred secondarily to the primary PBS defects, such 

as renal dysplasia, hydronephrosis, ureteropelvic junction obstruction, renal pelvic 

obstruction, ureteral dilation/obstruction, and cryptorchism. The non-isolated PBS cases had 

other major birth defects such as gastrointestinal and heart defects. Demographic and 

clinical characteristics of mothers and cases were extracted from NYS vital records and 

compared with a random sample of NYS live-births (n=7,683). Statistical analyses were 

performed using t-tests or Fisher’s exact tests, where applicable with a p-value<0.05 used 

for statistical significance. All cases were de-identified by removing any personally 

identifying data and assigning a random identification number prior to genotyping and 

analysis. This study was approved by the NYS Department of Health Institutional Review 

Board (NYS IRB #07-007) and the National Institutes of Health Office of Human Subjects 

Research Protection (OHSRP#3687).

Genotyping

DNA was extracted from two 3-mm dried bloodspot punches using a lab-developed method 

(Saavedra-Matiz et al., 2013). Genotyping was performed at the University of Minnesota 

using IlluminaHumanOmni2.5-8_v1 bead arrays and the Infinium HD assay protocol. Data 

were analyzed with Illumina GenomeStudio v2011.1 with a genotype no-call threshold set at 

<0.15. In total, 34 PBS samples were genotyped concurrently with 140 cases with other 

unrelated phenotypes, three technical controls, and one HapMap control (in duplicate). 

Genotype clustering was based on the data generated in this project. Clusters were reviewed 

and cleaned based on Illumina’s Infinium Genotyping Data Analysis Technical Note 

(Illumina, 2014). A total of 2,278,660 autosomal probes, 55,207 probes on chromosome X, 

and 2,560 probes on chromosome Y were included in the CNV analysis. For autosomal 

SNPs, the average PBS sample SNP call rate ± SD (range) was 99.6% ± 0.7% (98.2–99.9%) 

and the mean log R ratio deviation was 0.133 ± 0.041 (0.096–0.287). After cleaning, SNP 

genotype reproducibility (based on two duplicates included among the 174 samples 

genotyped) was 100%.

CNV Calling and Annotation

Autosomal CNVs were called using PennCNV v2011/05/03 (Wang et al., 2007) and 

Illumina’s cnvPartition algorithm v3.1.6. For both algorithms, data were GC-wave adjusted, 

and the minimum number of probes required for a CNV call was three. The confidence 

threshold for CNV calling was set to the default value of 10 for PennCNV and 35 for 

cnvPartition. Sex chromosome CNVs were called using PennCNV after recomputing Log R 

ratio (LRR) and B allele frequency (BAF) values using sex-specific centroids. Median 

values for R and theta were computed for each marker on the X and Y chromosomes in 
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males and females separately and then applied using in-house software that implement the 

standard formulas (Peiffer et al., 2006) to generate new LRR and BAF values. These new 

values were then fed into PennCNV as “autosomal” probes using custom sex-specific 

population frequency of B allele (.pfb) and GC content (.gcmodel) files. The PennCNV 

function clean_cnv.pl was run with default parameters to merge adjacent CNV calls. 

Autosomal CNV call files were annotated using custom C++ programs as previously (Rigler 

et al., 2015) to compare concordance between CNV calling algorithms, count the number of 

cases and controls carrying overlapping CNVs in the current study, determine overlap with 

an in-house database of CNVs generated from cases and controls of other unrelated defects, 

determine overlap with the Database of Genomic Variants archive (DGV2), and identify 

intersecting transcripts and genes (Iafrate et al., 2004). Transcripts included full-length 

coding transcripts and full-length non-coding transcripts with a well characterized biotype 

downloaded from GENCODE (version 19, accessed via UCSC genome browser May 2014) 

(Harrow et al., 2012). Genes were defined as those included in the Consensus Coding 

Sequence project (CCDS; release 15, accessed via UCSC genome browser June 2014) 

(Pruitt et al., 2009). Each sex chromosome CNV call was manually reviewed and annotated.

CNV Selection and Prioritization

We prioritized CNVs that were not detected in our in-house controls (i.e. PBS CNVs of the 

same type and with the same predicted breakpoints), encompassed a minimum of 10 

consecutive single nucleotide polymorphism (SNP) probes, were at least 20 Kb in size, had 

≤20% overlap with common variants in HapMap (Altshuler et al., 2010) and Children’s 

Hospital of Philadelphia (CHOP) (Shaikh et al., 2009) CNV datasets, and had ≤20% overlap 

with any variant previously detected in other birth defect phenotypes screened in our 

laboratory. We uploaded CNVs meeting these requirements to the DGV2 genome browser 

(release data 2014-10–16 version), using build37/hg19 coordinates, and examined them for 

overlap with known CNVs.

CNV Validation

Seventeen autosomal CNVs were selected for validation studies using two to four 

quantitative real-time PCR (qPCR) TaqMan assays (Applied Biosystems, Carlsbad, CA) per 

CNV region. Genomic DNA was extracted from one 3-mm dried blood spot, diluted 1:10 in 

water, and amplified using TaqMan Environmental Master Mix (ABI) in 5µl reaction 

volumes. A fragment of the RNaseP H1 RNA gene was co-amplified and used as an internal 

control (TaqMan Copy Number Reference Assay, ABI). Assays were run in quadruplicate 

on either an ABI 7900HT or an ABI QuantStudio. CopyCaller software v2.0 (ABI) was used 

to analyze the real-time data using relative quantitation (2−ΔΔCt method). The manual Ct 

threshold was set to 0.2 with the automatic baseline on. CopyCaller software parameters 

were as follows: the median ΔCt for each experiment was used as the calibrator, wells with 

an RNaseP Ct > 38 were excluded and the zero copy ΔCt threshold was set to 6. The average 

copy number and a software-generated confidence value were calculated for each subject. 

Samples with confidence values ≥0.95 were considered valid; samples with confidence 

values <0.95 were rerun in quadruplicate. Since multiple assays targeted each CNV, in all 

cases, no single sample contained all low confidence calls throughout a CNV region. One 

probe (Hs06815519_cn) was excluded due to discordant results obtained when retesting 
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multiple samples with low confidence calls (Supplemental Table S1). All assays were 

initially tested in each of the 34 cases and 24 control subjects. We subsequently screened all 

validated CNVs against an additional 174 control samples from unaffected NYS births using 

at least one assay targeting the area of interest. Therefore, a total of 198 unaffected controls 

were screened using at least one assay in the candidate CNV region.

RESULTS

We identified a total of 34 PBS cases (30 males and 4 females) in the NYS CMR from a 

population of 2,023,083 live-births (1,036,842 males) resulting in a birth prevalence of 1.68 

in 100,000 live-births or 2.89 in 100,000 male live-births. Patients with PBS were 

significantly more likely than the random sample of control infants from NYS (n=7,683) to 

be male (88% vs 51%), and to be born early (36.5 vs 39.2 weeks’ gestation) with a lower 

birthweight (2994 vs 3330 grams) (p<0.001) but there were no differences in small for 

gestational age (SGA) status. The proportion of African-American infants born with PBS 

was greater than that of the general population (35% vs 18%; p-value borderline 

significant=0.077). The two groups did not differ with respect to maternal age and education 

at delivery, parity, smoking status, or body mass index (Table I).

The microarray analysis of all 34 PBS patients resulted in a total of 3,109 autosomal 

PennCNV calls, 72 PennCNV calls on chromosome X, zero calls on chromosome Y, and 

1,296 autosomal cnvPartition calls. Only two CNVs on chromosome X met our inclusion 

criteria; both were in the same patient, but neither was followed up for validation 

(Supplemental Table SII). We selected 18 candidate PBS-associated autosomal CNVs of 

interest in 14 different cases for follow-up (7 with isolated PBS and 7 with PBS and 

associated defects, Supplemental Table SIII). Ten cases each carried one candidate PBS-

associated CNV while four cases each had two candidate CNVs. Two cases carried the same 

CNV resulting in 17 CNVs for follow-up.

All 17 CNVs were validated by qPCR (Table II) and ranged in size from 20 Kb to 1.3 Mb. 

The CNVs consisted of four heterozygous deletions and eleven duplications, each 

intersecting at least one gene/transcript. One CNV predicted as a triplication followed by 

duplication was determined to be two triplications with an intervening duplication by qPCR 

(Fig. 1). Two additional duplications were intergenic. One complex CNV was confirmed to 

be a large duplication with an intervening deletion by qPCR (Fig. 2).

We prioritized CNVs as PBS candidates based on the genes involved and their function. 

Findings of interest included a 158 Kb duplication at 4q22 overlapping the 3’ end of bone 

morphogenetic protein receptor type 1B (BMPR1B) (Fig. 3); two intronic Stromal 

Interaction molecule 1 (STIM1) gene duplications of different sizes; a 67 Kb duplication 

202 Kb downstream of the Noggin (NOG) gene; and a 1.34 Mb deletion encompassing the 

Myocardin (MYOCD) gene.

DISCUSSION

Our study identified several CNVs that encompassed genes involved in mesodermal, muscle, 

and urinary tract development and differentiation. During the embryonic period, the 
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intermediate and lateral plate mesoderm are the origins of the abdominal wall musculature. 

The intermediate mesoderm also forms the urogenital ridge which is the origin of the 

kidneys and the urinary tract (Sadler, 1994). Defective mesodermal development could 

potentially explain the multisystem defects of the abdominal wall musculature and urinary 

tract that characterize PBS (Moerman et al., 1984; Straub and Spranger, 1981).

A defining feature of PBS is abdominal muscle deficiency. Muscle development is a 

multifactorial and highly regulated process. The BMP signaling pathway is a member of the 

transforming growth factor-beta superfamily and is suggested to tightly regulate the 

formation of lateral mesoderm which later develops the hypaxial musculature (Dietrich et 

al., 1998). Hypaxial musculature is the origin of the body wall musculature including rectus 

abdominis muscle (Dietrich et al., 1998). BMPs function through receptors and activate gene 

transcription through signaling pathways such as Smad (Zhang and Li, 2005). BMPs 
regulate development by precisely controlling differentiation of stem cells in various organ 

systems via the specific combinations of type II receptors with one of type Ia or 1b receptors 

(Zhang and Li, 2005).

We identified four CNVs that overlap or are in close proximity to genes, including 

BMPR1B, STIM1, MYOCD, and NOG, which are linked to embryonic muscle 

development. The BMPR1B and NOG genes are involved in the BMP signaling pathway. 

Knocking out BMP signaling in mice resulted in multiple malformations and early 

embryonal death (Zhao, 2003). In addition to its association with osteoblastic differentiation 

(Shi et al., 2016), BMPR1B is expressed locally in somites (Danesh et al., 2009). Since 

BMPR1B is a receptor of the BMP signaling pathway (Zhang and Li, 2005), it is possible 

that defects at BMPR1B expression at these cells result in ineffective receptor combinations. 

That the distribution and combination of type I and type II BMP receptors defines the effect 

that BMP molecules have on each cell (Costantini, 2012) suggest that defective BMPR1B 
could lead to malfunctioning receptor combination during embryogenesis, which could 

cause insufficient BMP pathway molecule-BMP receptor interaction. As a result, muscle-

determining genes during embryogenesis might not be effectively expressed, leading to 

improper hypaxial musculature formation. This might explain rectus abdominis muscle 

weakness and atrophy seen in PBS.

We also identified a 67 Kb duplication 202 Kb downstream of NOG, a BMP antagonist that 

acts by directly binding on BMPs, preventing interaction with their receptors (Furthauer et 

al., 1999). NOG acts as a regulator of BMP signaling to control and maintain the balance 

between active and inactive BMPs (Furthauer et al., 1999). The role of regulated BMP 
antagonism is well established (Costamagna et al., 2016; Mine et al., 2008; Stafford et al., 

2011). Dysregulation of BMP antagonism by a malfunction in NOG expression could lead to 

a disruption of that balance. Ineffective NOG activity has been associated with lower 

musculature differentiation potential in vivo (Costamagna et al., 2016) and could explain 

rectus abdominis defects in PBS.

BMP signaling has been shown to have a defining role in urogenital development and ureter 

morphogenesis, key features of PBS (Cain et al., 2008; Manson et al., 2015; Raatikainen-

Ahokas et al., 2000; Wang et al., 2009). BMPR1B is expressed in the branching ureter, the 
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ureter epithelium, and the Wolffian duct (Miyazaki et al., 2000). BMPs are highly expressed 

in the mesenchyme in a specific pattern through embryonic life and they have a vital role in 

urogenital development (Cain et al., 2008; Costantini, 2012; Dunn et al., 1997; Manson et 

al., 2015; Tsujimura et al., 2016). BMP4 expression defects have been associated with 

enlarged kidneys in mouse studies (Dunn et al., 1997). Since a differential distribution of 

receptors for BMP molecules has been suggested to contribute to the pattern of action of 

those factors (Costantini, 2012), defective BMPR1B expression in ureter epithelium could 

complicate ureter formation. Furthermore, ineffective activation or disruption of the BMP 
signaling due to a defective BMPR1B receptor, as well as dysregulation of BMP molecule 

balance due to impaired NOG antagonism, could both result in defective ureter formation 

potentially leading to urinary tract defects such as the blockage and hydronephrotic 

phenotype seen in PBS.

Two cases had duplications of STIM1 intron 1–2 Intron 1–2 includes enhancers, promoter 

flank regions and transcription factor binding sites which are regulatory elements for the 

expression of STIM1. STIM1 encodes a transmembrane protein that acts as a calcium sensor 

at the endoplasmic reticulum and mediates internal calcium store repletion after depletion 

through the store-operated calcium-entry (SOCE) mechanism (Kiviluoto et al., 2011). SOCE 

has a role in muscle development, because defective STIM1 signaling in mice results in 

ineffective muscle differentiation (Stiber et al., 2008). The fact that BMPR1B, NOG and 

STIM1 all have a clear role in embryonic muscle development supports the contention that a 

genetic component could contribute to the abdominal muscle defects in PBS.

In one additional case we identified a 1.34 Mb deletion encompassing the MYOCD gene. 

MYOCD regulates smooth muscle cell differentiation in the ureter (Caubit et al., 2008; 

Martin et al., 2013), which might suggest a connection with defective urinary tract 

development. Furthermore, the BMP signaling pathway is a downstream regulator of 

MYOCD expression (Caubit et al., 2008). This emphasizes the complexity of urinary tract 

development regulation by genetic factors and lends further support to urinary tract defects 

in PBS potentially having an underlying genetic basis.

Our study has several strengths. To our knowledge, this is the first population-based 

genome-wide search for PBS CNVs. We found evidence of expression with different 

intensities for BMPR1B, STIM1, and NOG genes in the embryonal kidney (Harding et al., 

2011; McMahon et al., 2008) and for MYOCD in the embryonal ureter (Martin et al., 2013). 

We observed shorter gestational age and lower birth weight in PBS cases compared to a 

random sample of NYS births. Our estimated birth prevalence of 2.9 per 100,000 male live-

births is lower than has been previously reported of 3.6 per 100,000 male live-births (Lloyd 

et al., 2013) possibly due to the exclusion of syndromic cases. Similar to another study we 

reported a twofold higher proportion of PBS among African-Americans in comparison to the 

general population (Routh et al., 2010). One limitation of our study is that we did not have 

parental DNA and were unable to identify whether these CNVs were de novo or inherited. 

We reported on two interesting complex CNVs, one with a triplication and a duplication and 

another with a large duplication and an intervening deletion, we do not know the 

significance of these CNVs as they intersected transcripts of unknown function. Some PBS 

cases may not have been reported however; PBS is an obvious defect to medical 
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professionals (Lloyd et al., 2013). Additionally, estimates available from the NYS CMR 

suggest that the registry identifies a large proportion of children born with congenital 

malformations in NYS (Sekhobo and Druschel, 2001). Lastly, bias in genomic databases 

reduce our ability to confidently rule out the presence of CNVs in the normal population and 

assess the clinical significance of the identified CNVs (Duclos et al., 2011).

In conclusion, we identified several CNVs that included genes involved in mesodermal, 

muscle and urinary tract development and differentiation, all systems that are affected in 

PBS. Our findings support a genetic contribution to PBS etiology. The BMP signaling 

pathway is a well-known contributor to mesodermal differentiation and formation (Mine et 

al., 2008; Zhao, 2003). Thus, identifying CNVs in BMPR1B and NOG gene areas, both 

regulators of the BMP pathway, strengthens the hypothesis that abnormal mesoderm 

development leads to PBS phenotypes. Further research on the genetic factors identified, 

particularly of BMP signaling and genes associated with mesodermal development, is 

warranted.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIG 1. 
Visualization of the 49 Kb triplication/duplication determined to be two triplications with an 

intervening duplication by qPCR in patient 6 at 4q28, exported from the Illumina Genome 

Viewer. The top panel depicts B-allele frequency (ratio of minor to major alleles) and the 

bottom panel depicts the logR ratio data (signal intensity). Tracks provided by Illumina show 

cytobands, CpG islands and the location of SNPs on the array. Custom tracks were created 

to display the location targeted by copy number assays used to validate CNVs (“CN 

probes”), and copy number losses (“DGV Deletions,” shown in red) and gains (“DGV 

Duplications,” shown in blue), both of which were downloaded from the DGV2 database 

(2014-10-16 version). CNV calls made using the pennCNV algorithm are highlighted 

(heterozygous deletions in orange and duplications are in blue). hg19 coordinates shown.

[Color figure can be viewed in the online issue, which is available at http://

onlinelibrary.wiley.com/journal/10.1002/(ISSN)1552-4833.]
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FIG 2. 
Visualization of the 1.1 Mb complex CNV determined to be a large duplication with an 

intervening deletion by qPCR in patient 11 at 9p23, exported from the Illumina Genome 

Viewer. The top panel depicts B-allele frequency (ratio of minor to major alleles) and the 

bottom panel depicts the logR ratio data (signal intensity). Tracks provided by Illumina show 

cytobands, CpG islands and the location of SNPs on the array. Custom tracks were created 

to display the location targeted by copy number assays used to validate CNVs (“CN 

probes”), and copy number losses (“DGV Deletions,” shown in red) and gains (“DGV 

Duplications,” shown in blue), both of which were downloaded from the DGV2 database 

(2014-10-16 version). A subset of genes/transcripts overlapping CNVs are listed below the 

panels. CNV calls made using the pennCNV algorithm are highlighted (heterozygous 

deletions in orange and duplications are in blue). hg19 coordinates shown.

[Color figure can be viewed in the online issue, which is available at http://

onlinelibrary.wiley.com/journal/10.1002/(ISSN)1552-4833.]
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FIG. 3. 
Visualization of the 158 Kb duplication in patient 5 at 4q22 overlapping the 3’ end of bone 

morphogenetic protein receptor type 1B (BMPR1B), exported from the Illumina Genome 

Viewer. The top panel depicts B-allele frequency (ratio of minor to major alleles) and the 

bottom panel depicts the logR ratio data (signal intensity). Tracks provided by Illumina show 

cytobands, CpG islands and the location of SNPs on the array. Custom tracks were created 

to display the location targeted by copy number assays used to validate CNVs (“CN 

probes”), and copy number losses (“DGV Deletions,” shown in red) and gains (“DGV 

Duplications,” shown in blue), both of which were downloaded from the DGV2 database 

(2014-10-16 version). A subset of genes/transcripts overlapping CNVs are listed below the 

panels. Genes mentioned in the tables/text are in red. CNV calls made using the pennCNV 

algorithm are highlighted (heterozygous deletions in orange and duplications are in blue). 

hg19 coordinates shown.

[Color figure can be viewed in the online issue, which is available at http://

onlinelibrary.wiley.com/journal/10.1002/(ISSN)1552-4833.]

Boghossian et al. Page 15

Eur J Med Genet. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1552-4833
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1552-4833


A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Boghossian et al. Page 16

TABLE I

Demographic characteristics of patients with prune belly syndrome as compared to a random sample of New 

York State live-births

PBS Cases
(n=34)

NY Birth Sample
(n=7,683)

p-value

Maternal characteristics

  Age years, mean (SD) 27.7 (6.5) 28.8 (6.2) 0.31

  Age years, n (%) 0.87

    <20 2 (5.9) 612 (8.0)

    20–34 27 (79.4) 5637 (73.4)

    ≥35 5 (14.7) 1434 (18.7)

  Race/ethnicity, n (%) 0.077

    Non-Hispanic White 15 (44.1) 4339 (56.6)

    Non-Hispanic African American 12 (35.3) 1369 (17.9)

    Hispanic 4 (11.8) 1359 (17.7)

    Other 3 (8.8) 600 (7.8)

  Education years, n (%) 0.33

    <12 7 (20.6) 1335 (17.6)

    12 13 (38.2) 2221 (29.2)

    >12 14 (41.2) 4045 (53.2)

  Nulliparous, n (%) 14 (41.2) 3165 (41.2) 1.0

  Smoking, n (%) 5 (14.7) 760 (9.9) 0.38

  Prepregnancy BMI kg/m2, n (%) 0.13

    ≤24.9 7 (36.8) 2368 (56.4)

    25–29.9 8 (42.1) 992 (23.6)

    ≥30 4 (21.1) 837 (19.9)

Newborn characteristics

  Male, n (%) 30 (88.2) 3916 (51.0) <0.001

  Gestational age weeks, mean (SD) 36.7 (3.4) 38.8 (2.3) <0.001

  Birth weight g, mean (SD) 2994 (790) 3330 (577) <0.001

  Low birth weight, n (%) 7 (20.6) 500 (6.5) 0.006

  SGA, n (%) 5 (16.1) 883 (12.1) 0.42

BMI: body mass index, SGA: small for gestational age.

Data missing for PBS patients on: BMI: 15, gestational age: 3, SGA: 3; for NY State Births on: maternal smoking: 12, race/ethnicity: 16, 
education: 82, birth weight: 1, BMI: 3486, gestational age: 377, SGA: 378. Among the 381 missing SGA, 4 infants born <22 weeks’ gestation were 
not coded since the Kramer (Kramer et al. 2001) cut-off points start at 22 weeks’ gestation.
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