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Objective—To determine whether the extent of overlap of the genetic architecture among the 

sporadic late-onset Alzheimer’s Disease (sLOAD), familial late-onset AD (fLOAD), sporadic 

earlyonset AD (sEOAD), and autosomal dominant early-onset AD (eADAD).

Methods—Polygenic risk scores (PRSs) were constructed using previously identified 21 

genome-wide significant loci for LOAD risk.

Results—We found that there is an overlap in the genetic architecture among sEOAD, fLOAD, 

and sLOAD. The highest association of the PRS and risk (odds ratio [OR] = 2.27; P = 1.29 × 10−7) 

was observed in sEOAD, followed by fLOAD (OR = 1.75; P = 1.12 × 10−7) and sLOAD (OR = 

1.40; P = 1.21 × 10−3). The PRS was associated with cerebrospinal fluid ptau181-Aβ42 on eADAD 

(P = 4.36 × 10−2).

Conclusion—Our analysis confirms that the genetic factors identified for LOAD modulate risk 

in sLOAD and fLOAD and also sEOAD cohorts. Specifically, our results suggest that the burden 

of these risk variants is associated with familial clustering and earlier onset of AD. Although these 

variants are not associated with risk in the eADAD, they may be modulating age at onset.
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1. Introduction

Alzheimer’s disease (AD) is the most common form of dementia. In AD, the onset of 

cognitive impairment is preceded by a long preclinical phase, lasting approximately 15 to 20 

years [1]. There is a large variability in the age at onset (AAO) of AD, and only a small 

fraction of cases (1%) present clinical symptoms at an early AAO (before the age of 65 

years). AD has a substantial but heterogeneous genetic component. Mutations in the amyloid 
β precursor protein (APP) and presenilin genes [2–6] cause the Mendelian forms of AD. 

Although autosomal dominant AD typically is associated with early symptoms onset 

(autosomal dominant early-onset AD [eADAD]), some families that carry known pathogenic 

mutations present a late onset (onset >65–70 years) [7], suggesting a continuum between 

late and early onset. In addition, a large proportion of AD cases with strong familial history 

of dementia also present a late onset and a complex genetic architecture (familial late-onset 

AD [fLOAD]) [8].

Most of the sporadic AD cases present a late onset (sporadic LOAD [sLOAD]) [9] but 

occasionally can present an early onset (sporadic early-onset AD [sEOAD]). The 

apolipoprotein E (APOE) ε4 allele increases risk for sEOAD, sLOAD [6], and also for 

fLOAD [7,10] (3-fold effect size for heterozygous carriers and 12-fold for homozygous 

carriers [11,12]). More recent genome-wide association studies (GWASs) of LOAD have 

identified additional loci with moderate protective and risk effects [13–18]. The International 

Genomics of Alzheimer’s Project study is a case control GWAS meta-analysis includes late-

onset cases from both unrelated and familial studies. Further studies suggest that polygenic 

Cruchaga et al. Page 2

Alzheimers Dement. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



risk scores (PRSs) created based on the 21 genome-wide loci capture the overall genetic 

architecture of LOAD and may help to predict AD risk [10,19,20].

The PRS aggregates the effects that multiple genetic markers (both protective and risk 

variants) confer to individuals for a specific complex trait [21]. When employed as 

biomarkers, PRS can provide important insights about the prognosis of the disease and can 

highlight early intervention strategies as well as inclusion criteria for targeted enrollment in 

clinical trials. Furthermore, PRS can be employed as a measure to identify the extent of 

overlap between the genetic architecture of comorbid complex traits [22]. This is done by 

evaluating the pleiotropic effects that the markers identified in one trait have in another trait, 

usually evaluated in an independent cohort [20]. For example, this approach has been 

employed to study the shared genetic architecture between schizophrenia and cognitive 

function, as well as between depressive disorder and body mass index [22].

Although multiple studies have analyzed the effect of PRS in sLOAD [19,20] or fLOAD [8] 

cases, no study have used the PRS to compare the relative burden of risk variants in the 

familial versus the sporadic late-onset forms. Neither has been compared the genetic 

architecture of the early- versus the late-onset forms of the disease both in the familial and 

sporadic presentation. Therefore, a thorough evaluation of these variants will help us 

understand the extent of the genetic architecture shared among the different classifications of 

AD.

We analyzed the extent of overlap in the genetic architecture of sLOAD, fLOAD, sEOAD, 

and eADAD. To do so, we derived the PRS from common variants identified in the GWAS 

of LOAD [18] and tested it in cohorts of affected participants with European ancestry with 

early- and late-onset in both familial and sporadic studies. Then we tested the association of 

the PRS with the clinical status in each of these. Finally, we explored whether the PRS is 

modulating additional aspects of AD, and evaluated its association with the AAO.

2. Materials and methods

2.1. Samples

We included participants with European ancestry from the Knight-Alzheimer’s Disease 

Research Center (Knight-ADRC) and the Dominantly Inherited Alzheimer Network (DIAN) 

study at Washington University [23], the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) [24], and the National Institute on Aging Genetics Initiative for Late-Onset 

Alzheimer’s Disease (NIA-LOAD) [25].

2.1.1. Cohorts

2.1.1.1. Autosomal dominant early-onset AD: eADAD are defined as affected participants 

who carry known highly penetrant mutations in the presenilin or APP genes. All the samples 

were selected from the DIAN study.

2.1.1.2. Familial LOAD: fLOAD includes affected subjects from families with a recorded 

family history of AD. To be considered a fLOAD, two siblings were required to have a 

diagnosis of definite or probable LOAD (onset >65 years) and a third biologically-related 
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family member (first, second, or third degree) was also required, regardless of cognitive 

status. Only one proband per family was included. All the samples were selected from the 

NIA-LOAD study.

2.1.1.3. Sporadic EOAD: sEOAD were defined as participants with diagnosis of AD, with 

an AAO <65 years without documented familial history of AD. Samples were selected from 

the Knight-ADRC and ADNI.

2.1.1.4. Sporadic LOAD: sLOAD defined as participants with a clinical diagnosis of 

probable AD, AAO >65 years, and insufficient family history to qualify under the fLOAD 

criteria. Samples were selected from the Knight-ADRC and ADNI.

2.1.1.5. Controls: Controls were defined as individuals older than 65 years who after 

neurological assessment were determined to be nonaffected. Unrelated samples were 

selected from the Knight-ADRC and ADNI.

We included 236 sEOAD, 1021 sLOAD, and 687 controls from the Knight-ADRC; 122 

sEOAD, 226 sLOAD, and 324 cognitively normal controls from ADNI; 1220 unrelated 

fLOAD from the NIA-LOAD and 249 eADAD (mutation carriers from the DIAN study).

2.1.2. Description of the AD data sets—Knight-ADRC research participants were 

evaluated by Clinical Core Personnel at Washington University. All the cases received a 

diagnosis of dementia of the Alzheimer’s type, using criteria equivalent to the National 

Institute of Neurological and Communication Disorders and Stroke-Alzheimer’s Disease 

and Related Disorders Association for probable AD [26,27] and their severity, was 

determined using the Clinical Dementia Rating (CDR) [28]. Controls received the same 

assessment as the cases but were nondemented (CDR = 0). Neuropsychological and clinical 

assessments and biological samples were collected for all participants as described 

previously [29–34]. Potential family history was obtained for all participants. Written 

consent was obtained from all participants. ADNI individuals were evaluated as described in 

the ADNI procedures manual (www.adni-info.org).

Affected participants from the NIA-LOAD Family Study had been diagnosed with AD 

dementia (National Institute of Neurological and Communication Disorders and Stroke-

Alzheimer’s Disease and Related Disorders Association) for probable AD [27]. All 

individuals had a family history of AD. Probands were required to have a diagnosis of 

definite or probable LOAD (onset >60 years) and a sibling with definite, probable or 

possible LOAD with a similar AAO. A third biologically related family member (first, 

second, or third degree) was also required, regardless of cognitive status. If unaffected, this 

individual had to be ≥60 years of age, but ≥50 years of age if diagnosed with AD or mild 

cognitive impairment. Within each pedigree, we selected a single individual to screen by 

identifying the youngest affected family member with the most definitive diagnosis (i.e., 

individuals with autopsy confirmation were chosen over those with clinical diagnosis only).

Finally, eADAD participants (n = 249) were drawn from the DIAN [1,35]. Individuals at risk 

for carrying a mutation for autosomal dominant AD (i.e., PSEN1, PSEN2, or APP) 
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mutations were enrolled in the DIAN study. Participants from families with known 

pathogenic eADAD mutations were recruited from 197 families at six sites in the USA, one 

in the UK, and three in Australia [1,35]. The process of recruitment and enrollment has been 

described in detail previously [1,35].

2.2. Genotyping platforms and proxy selection

Table 1 summarizes the demographic and clinical characteristics of each clinical group. The 

Institutional Review Board of all participating institutions approved the study.

The fLOAD cohort is part of NIA-LOAD and was genotyped as described previously [9]. 

Participants, from the Knight-ADRC, DIAN, and ADNI, were genotyped with the Illumina 

610 chip, Omni-express chip, or HumanCore Exome (Illumina, San Diego, CA, USA). All 

samples were imputed using SHAPEIT/IMPUTE2 [36,37] with the 1000 Genomes Project 

as reference panel [38]. We discarded genotypes that did not pass quality criteria and 

retained those with dosage levels >0.9 across all three genotype possibilities and an 

information score filter >0.3.

In addition, we performed gender verification and tested for duplicates and unexpected 

familial relatedness, which were removed from our analysis, by estimating the pairwise 

genome-wide estimates of the proportion identity-by-descent. We performed standard 

quality control procedures on each genotyping array separately before combining data. A 

call rate ≥98% was applied for single-nucleotide polymorphisms (SNPs) and individuals. 

SNPs not in Hardy-Weinberg equilibrium (P < 1 × 10−6) or with minor allele frequency 

(MAF) <0.02 were excluded. We inferred the population structure and confirmed the 

ethnicity of participants by calculating the principal components using PLINK v1.9 (http://

www.cog-genomics.org/plink2) (Supplementary Fig. 1). Only individuals who clustered 

within the European-American samples were included in the study.

APOE genotype was determined for all individuals [33]. Briefly, APOE ε2, ε3, and ε4 

isoforms were determined by genotyping rs7412 and rs429358 using TaqMan genotyping 

technology as previously described [33,39].

We employed proxy SNPs to tag the genome-wide significant loci reported for sLOAD [18] 

that did not pass our quality control process (Supplementary Table 1). We selected the SNPs 

with the highest genotyping rates, the highest R2 and D’ values (in both imputed data and in 

the 1000 genomes) to the reported SNPs in the IGAP study [18].

2.3. Screening of mutation in known AD or FTD genes

We sequenced the most common genes that carry pathogenic variants for AD and 

frontotemporal dementia (FTD). We restricted our analysis to those genes listed in the 

AD&FTD Mutation Database (http://www.molgen.vib-ua.be/ADMutations, accessed 

November, 2016), particularly, we focused on APP, PSEN1, and PSEN2 for AD and GRN, 

MAPT, C9ORF72, CHMP2B, FUS, TARDBP, TBK1, and VCP for FTD. The genotypes 

were obtained sequencing all the Mendelian genes as described elsewhere [7]. The presence 

of the C9ORF72 expanded hexanucleotide repeat and the number repeats for the longest 

allele was determined by previously reported methods [40,41].
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2.4. Computation of PRS

We derived a weighted PRS [21], modeling the odd ratios (ORs) as reported in IGAP study 

[18] (Supplementary Table 1) using a logarithm of base 2 transformation. SNPs utilized for 

the score would either need to have a high genotyping rate (greater than 90%) or otherwise 

be a reasonable proxy to the IGAP hits. We utilized PLINK v1.90b3.42 to calculate the PRS 

choosing the score function and the no-mean-imputation option to ensure that no scores 

would be imputed. The resulting mean was corrected by the multiplying allele count (log 

OR score).

2.5. Statistical analysis

The association of the PRS with case-control status was tested using a logistic regression, 

including age and gender as covariates. All samples within each data set were included in 

this analysis. Age was not included as a covariate in the eADAD analyses because the 

autosomal dominant AD cases were significantly younger (by design) than the controls.

The area under the curve (AUC) for receiver operating characteristic (ROC) analysis was 

calculated for the entire range of PRS included in each of the cohorts using the R package 

pROC v1.8, correcting for the same covariates as the logistic model. The areas obtained for 

the models were compared using the function roc.test.

To compare the effect of the PRS between the different data sets, we calculated the OR of 

the PRS by comparing the first versus the last tertile using logistic regression (The R 

Foundation for Statistical Computing v3.3.1). To analyze the eADAD cohort, we employed 

the functions glmer and lmer (package gee 4.13.19) clustering at family level to ascertain the 

effect of the PRS on clinical status and cerebrospinal fluid (CSF) biomarkers, respectively. 

The statistical significance between the effects of the cohorts was calculated deriving the Z-

score of the absolute difference of the ORs, corrected by its standard error.

For all analyses, we employed multiple models to investigate the extent of overlap of the 

genetic architecture of AD under different scenarios: model 1, model 2, and model 3.

Model 1 includes the calculated PRS correcting for sex and study as well as age for the late-

onset cohorts.

Model 2 extends model 1 by incorporating the effects of APOE ε2 and ε4 genotypes as 

covariates, which are also weighted by logarithm base 2 of the ORs (i.e., ε2/ε2 = 0.6; ε2/ε3 

= 0.6; ε2/ε4 = 2.6; ε3/ε4 = 3.2; ε4/ε4 = 14.9) as previously reported [11]. Sex, study, and 

age (for the late-onset cohorts) are also included as covariates in the model 2.

In model 3, the effects of APOE alleles are included into the PRS, and we also corrected for 

sex, study, and age (for the late-onset cohorts).

Quantile regression [42] models for the relation between the PRS and the AAO for sporadic 

early- and late-onset participants were calculated for the 5-quantiles (quintiles) using the R 

package quantreg v5.29.
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2.6. Analyte measurement

CSF tau, phosphorylated tau-181 (ptau181), and amyloid β 42 (Aβ42)—markers of neuronal 

injury, neurofibrillary tangles, and amyloid, respectively—were measured in the DIAN 

study. Biomarker values were measured following internal standards and controls [43,44]. 

CSF was collected in the morning under fasting conditions by means of lumbar puncture. 

Samples were shipped on dry ice to the DIAN biomarker core laboratory. Concentrations in 

the CSF of Aβ1-42, total tau, and tau phosphorylated at threonine 181 were measured by 

immunoassay (INNOTEST amyloid β1-42 and INNO-BIA AlzBio3; Innogenetics). All 

values had to meet quality-control standards, including a coefficient of variation of 25% or 

less, kit “controls” within the expected range as defined by the manufacturer, and 

measurement consistency between plates of a common sample that was included in each run. 

CSF values were normalized as previously described [33,45] before analyses.

2.7. ADNI material and methods

Data used in the preparation of this article were obtained from the ADNI database 

(www.loni.ucla.edu/ADNI). The ADNI was launched in 2003 by the National Institute on 

Aging, the National Institute of Biomedical Imaging and Bioengineering, the Food and Drug 

Administration, private pharmaceutical companies, and nonprofit organizations, as a $60 

million, 5-year public-private partnership. The principal investigator of this initiative is 

Michael W. Weiner, M.D. ADNI is the result of efforts of many co-investigators from a 

broad range of academic institutions and private corporations, and subjects have been 

recruited from over 50 sites across the United States and Canada. The initial goal of ADNI 

was to recruit 800 adults, ages 55 to 90 years, to participate in the research; approximately 

200 cognitively normal older individuals to be followed for 3 years, 400 people with MCI to 

be followed for 3 years, and 200 people with early AD to be followed for 2 years. For up-to-

date information see www.adni-info.org.

3. Results

3.1. The PRS derived from genome-wide meta-analysis studies has similar effect for fLOAD 
and sLOAD

We initially verified the prediction accuracy of the PRS by ascertaining the cohort of 

sLOAD from the Knight-ADRC and ADNI participants. We observed that the PRS is 

significantly associated with clinical status for sLOAD (model 1: OR = 1.40; P = 1.21 × 

10−3; Table 2). Given the strong effect that APOE genotypes have on LOAD, we ascertained 

the association of the PRS correcting for the effects of APOE genotypes (model 2). We 

observed a similar OR = 1.41 (P = 1.33 × 10−3; Table 2) that was not significantly different 

to the OR estimated when APOE was not included as a covariate (Pmodel 1 vs model 2 = .94). 

Then, we extended the PRS to reflect the risk and protection effects of the ε4 and ε2 

genotypes (model 3). The addition of the APOE genotype increased the effect of the PRS 

(OR = 4.01; P = 5.29 × 10−34; Table 2).

The ROC analysis revealed an AUC (model 3 AUC = 0.67; 95% CI = 0.65–0.69; Fig. 1), 

which resembles the results of other studies [10,20]. (Please refer to Supplementary Fig. 2 

for the ROC curves of additional models.)
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The PRS was also significantly associated with risk in the fLOAD cohort (model 1: OR = 

1.75; P = 1.12 × 10−7; Table 2). The OR of the PRS for the fLOAD did not change when we 

corrected for the APOE genotypes (Pmodel 1 vs model 2 = .44). The effect of the PRS with 

fLOAD was similar to that seen for sLOAD, and the strength of the association of the PRS 

was not statistically different (ORsLOAD = 1.40 vs. ORfLOAD = 1.75; P = .13).

The model 3, which includes the effects of APOE ε2 and ε4 genotypes into the PRS, 

showed an OR = 7.85 (P = 2.52 × 10−48; Table 2) for the fLOAD, which is significantly 

higher than the OR calculated for the sLOAD (ORsLOAD = 4.01 vs. ORfLOAD = 7.85; P = 

3.01 × 10−3). The AUC (model 3) for the fLOAD = 0.75 (95% CI = 0.73–0.78; Fig. 1) was 

also significantly higher than the AUC for sLOAD (Venkatraman’s test, P < 2.2 × 10−16). 

This difference is driven by a higher number of APOE ε4 carriers in the fLOAD cohort 

(Table 1), as previously reported [7].

3.2. The effect of the PRS is significantly higher for sEOAD than for the fLOAD or sLOAD

To study possible effects that the PRS might have for sEOAD, we analyzed a cohort of 

participants with sEOAD included in the Knight-ADRC and ADNI studies. None of these 

participants carry a pathogenic mutation in the known AD or FTD genes [7,41]. We derived 

the PRS and included elderly nondemented participants as controls. Thus, the statistical 

model corrects for sex, but not age. We observed an increased OR associated with the PRS 

(model 1: OR = 2.27; P = 1.29 × 10−7; Table 2), which did not differ significantly when we 

corrected for the effect of APOE genotypes (Pmodel 1 vs model 2 = .91; see Table 2). However, 

the OR for the sEOAD was significantly higher than the OR estimated for the fLOAD cohort 

(ORsLOAD = 1.40 vs. ORsEOAD = 2.27; P = 9.78 × 10−3) and sLOAD (ORfLOAD = 1.75 vs. 

ORsEOAD = 2.27; P = 9.88 × 10−3).

We also observed an increased OR when the effects of APOE alleles were included into the 

PRS (model 3: OR = 6.44; P = 5.80 × 10−26; Table 2). The OR of the PRS with APOE for 

the sEOAD was also significantly higher than the OR calculated for the sLOAD (ORsLOAD 

= 4.01 vs. ORfLOAD = 6.44; P = 2.45 × 10−2), but not for the fLOAD. This is driven by the 

high enrichment of APOE ε4 alleles in the familial cases. Consistently with these analyses, 

the ROC analysis for model including the PRS and APOE revealed a better performance for 

the sEOAD AUC = 0.72 (95% CI = 0.69–0.76; Fig. 1) compared with the sLOAD (AUC = 

0.67; Venkatraman’s test P = 2.00 × 10−3; Fig. 1).

To confirm that the sEOAD cases have a higher genetic burden than the sLOAD, we 

compared the PRS of the sEOAD versus the sLOAD directly, instead of comparing the OR. 

We observed that the PRS for sEOAD is significantly higher than that for sLOAD (model 1 

P = 1.95 × 10−3 and model 2 P = 9.04 × 10−3), suggesting that these loci could explain in 

part the earlier onset of these cases. We observed similar results for the analysis of sEOAD 

cases restricted to an AAO >60 years (data not shown).

3.3. PRS is associated with the AAO for the AD cases with sporadic AD

The increased OR that the PRS showed for clinical status when analyzing the sEOAD 

compared with the one obtained for the sLOAD led us to question the possible association of 

PRS with the AAO. In particular, we hypothesized that the additive effects of the genome-
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wide significant loci identified for LOAD would affect the AAO of AD for participants from 

unrelated studies, regardless of the classification of the onset of symptoms (i.e., early vs. 

late).

We initially verified that in our cohort of sLOAD, the PRS was associated with AAO, and as 

expected, a lower AAO was associated with higher PRS (model 1 P = 1.52 × 10−28; 6.3 

months lower AAO per standard deviation [SD] increase of PRS; model 2 P = 7.62 × 10−3 

and 6 months lower AAO). In contrast, the analysis within the sEOAD cohort did not show a 

significant association (model 1 P = .37 and model 2 P = .33). However, this lack of 

association could be due to the lower variability of the AAO in the sEOAD.

To test this hypothesis, we investigated the effect of PRS on AAO in all sporadic AD cases 

(including all early- and late-onset cases) in specific quantiles of the AAO. We employed 

quantile regression analysis to model the association of the PRS to 5-quantiles (quintiles) of 

AAO [46]. This analysis showed that for all the quintiles, the PRS is significantly associated 

with AAO (P <.05; Supplementary Table 2 panel A). Our analyses revealed that all the 

coefficient estimates fall within the confidence intervals of the ordinary least squares method 

employed to solve linear regressions (Supplementary Fig. 3), indicating that (1) a linear 

regression analysis should be sufficient to analyze the association between the PRS and the 

entire range of AAO (lower 10.9 months per unit of SD of the PRS; model 1 P = 1.06 × 

10−4) and (2) this association is not driven exclusively by the cases with older AAO, but all 

the cases (both early- and late-onset cases). We observed similar results when we modeled 

the effects of APOE as covariates (10.3 months lower AAO per SD increase of PRS; model 

2 P = 1.52 × 10−4; see Supplementary Table 2 panel B for the quantile regression P-values 
and Supplementary Fig. 3).

These analyses indicate that the genetic factors identified for LOAD not only increase the 

risk for sEOAD but also their additive effects modulate the entire spectrum of AAO of 

sporadic AD cases.

3.4. PRS is not associated with risk for eADAD but shows a significant association with 
CSF ptau181-Aβ42 ratio

We derived the PRS, based on the genetic factors identified for LOAD, for DIAN 

participants. The DIAN cohort includes subjects with autosomal dominant AD, and our 

analyses are restricted to carriers of known pathogenic mutations in APP, PSEN1, or PSEN2 
genes. We calculated the PRS for these subjects along with elderly nondemented 

participants, which we employed as controls. In a similar approach to the one we employed 

for the sEOAD, age was not included in the model, as by design of the test, it predicts 

perfectly the case-control status. Our analysis did not show any significant association of the 

PRS with the clinical status for this cohort (model 1: OR = 0.96; P = 9.73 × 10−1; Table 2). 

Neither did we observe a significant association of the PRS when we incorporated the risk 

conferred by the APOE ε4 and ε2 alleles into the PRS (model 3: OR = 0.98; P = 9.66 × 

10−1; Table 2). Nevertheless, we observed that the PRS is associated with the CSF ptau181-

Aβ42 ratio (β = 0.18; P = 4.36 × 10−2) and also CSF tau (β = 0.08; P = 4.27 × 10−2) in the 

eADAD affected participants included in the DIAN study. The CSF ptau181-Aβ42 ratio was 

previously shown to be a strong predictor of both the progression of cognitively normal 
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subjects to very mild or mild dementia [47] and the rate of decline across time in individuals 

with very mild dementia [43]. These results suggest that if any, the effect size of the genetic 

architecture of LOAD is too small to be significantly identified with statistical power 

conferred by the cohort of eADAD; but still it also indicates that these genetic risk factors 

are modulating biological aspects of AD, as it is shown by the association of the PRS and 

the CSF ptau181-Aβ42 ratio.

4. Discussion

To test for common genetic architecture among autosomal dominant and sporadic forms of 

early- and late-onset AD, we analyzed four cohorts of well-characterized participants and a 

common set of elderly nondemented participants. We derived PRS for the participants, 

assuming an additive non-interaction effect of the common (MAF > 5%) genome-wide 

significant variants identified for LOAD in the IGAP meta-analysis. This approach allowed 

us to demonstrate a significant overlap in the genetic architecture of the sporadic early-onset. 

In contrast, we would have required larger sample sizes if we would have used just SNPs, 

instead of the PRS. This is because the relatively small effect size of the genetic variants 

identified to LOAD. We also anticipate that the PRS will become more powerful and 

specific as novel GWAS loci are identified and additional variants with lower frequency 

(MAF < 5%) associated with AD (i.e., TREM2 [48,49], PLD3 [50], SORL1 [51,52], or 

ABCA7 [34,53]) are also incorporated in these analyses.

We chose to include affected participants from the NIA-LOAD, Knight-ADRC, and ADNI 

that were also analyzed in the IGAP study, obtaining more accurate estimates, but restricting 

the employment of this study as an independent replication. However, the analysis of 

participants from non-overlapping families with the IGAP study shown similar effects 

(Supplementary Table 4). Cases from families with strong incidence and cases with 

undetermined familial history of AD were employed in the IGAP study. In any case, our 

analysis showed that the fLOAD and sLOAD cases have similar burden of generic risk 

factors. However, the samples with a strong family history (fLOAD), independent of the 

pattern of heritance, show the highest percentage of APOE ε4 carriers, which is reflected in 

a higher OR once the effect of this allele is incorporated in the PRS (model 3).

Interestingly, the analysis of the sEOAD participants revealed that the PRS has a more 

pronounced effect on individuals with younger AAO. Indeed, this finding not only indicates 

that the genetic architecture is shared among sporadic cases but also suggests that AAO of 

AD is modulated by the additive effect of these loci. We subsequently confirmed this 

hypothesis identifying a similar effect for different quintiles of the AAO (Supplementary 

Table 2 and Supplementary Fig. 3).

We could not identify a significant association of the PRS with the eADAD cohort (DIAN). 

However, this cohort has the smallest number of participants. Our empirical power estimates 

showed that the sample size of this cohort provides a 98% chances to detect an association 

with ORs comparable with that observed for sEOAD. It is more likely that the lack of 

association of the PRS with eADAD is not because of statistical power but because the 

GWAS loci do not confer risk for this population, characterized by the presence of mutations 
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in APP, PSEN1, and PSEN2 genes. Nonetheless, we identified an association of the PRS 

with the CSF ptau181-Aβ42 ratio in the participants with eADAD; showing that these loci 

have additional effects on AD pathophysiology most likely in AAO, but it could also affect 

disease duration or rate of progression.

Pathway analyses from the AD GWAS that includes the loci included in this study identified 

that the immune and inflammation as one of the most important pathways for LOAD [54]. 

Some of the loci included in the PRS are also clearly involved in immune response and/or 

inflammation (BIN1, CR1, SP1, or HLA between others). This is also supported by the 

identification of low-frequency coding variant associated with AD risk in TREM2, which is 

clearly involved on immune response and inflammation [49,55,56]. Our results indicate that 

in the non-Mendelian form of the disease the immune response and inflammation play also 

an important role and that a higher number of risk variants in those genes will lead to an 

earlier onset. On the other hand, this is not the case of the Mendelian cases, in which the 

disease is caused by a single variant that affects Aβ production [57]. However, the 

association of the PRS with CSF ptau181-Aβ42 ratio suggests that the immune response and 

inflammation genes also play a role in eADAD.

The effect size of the IGAP loci are lower to that of APOE, and the AUC for ROC indicate 

that the additive effect of these loci are not strong predictors of disease status (usually 

expected to be higher than 0.95). However, the identification of those loci are important 

from a biological point of view because as explained previously they identified novel 

pathways implicated on AD, and they are helpful to analyze potential overlap of the genetic 

architecture of multiple complex traits. In addition, our results indicate that individuals with 

familial history or earlier onset are enriched for these genetic factors. These findings can 

have important repercussion in the design of future genetic studies. Selecting AD cases with 

earlier onset (but not Mendelian mutations) or strong family history should provide more 

statistical power than a similar number of sporadic late-onset cases.

One limitation of this study is that to evaluate the extent of overlap of the genetic 

architectures among the distinct classification of AD we employed common genome-wide 

significant and replicated variants. A recent study indicates that the SNPs that are significant 

for AD risk but do not pass the stringent multiple test correction thresholds of GWASs can 

still be informative for the PRS [20]. Additional studies show that low-frequency variants 

not analyzed in GWASs are also associated with sLOAD risk [48,50]. Therefore, further 

studies including common and rare variants may provide more accurate estimation of the 

genetic burden of the sEOAD and familial samples in comparison with the sLOAD.

In conclusion, our analysis revealed an overlap among the genetic architecture of the 

affected participants with either strong or not familial AD history. The genetic factors 

identified for LOAD also affect subjects with earlier AAO who are not carriers of AD 

Mendelian mutation, with a higher effect in risk than that observed in the late-onset 

participants and modulate the age at symptom onset of AD.
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RESEARCH IN CONTEXT

1. Systematic review: We evaluated whether the genetic architecture of sporadic 

late-onset Alzheimer’s disease (sLOAD) is shared with sporadic early-onset 

(sEOAD), autosomal dominant early-onset AD (eADAD), and familial late-

onset (fLOAD). Polygenic risk scores (PRSs) were constructed using 21 

genome-wide significant loci identified for sLOAD.

2. Interpretation: We identified an overlap in the genetic architecture among 

sEOAD (odd ratio [OR] = 2.27; P = 1.29 × 10−7), fLOAD (OR = 1.75; P = 

1.12 × 10−7), and sLOAD (OR = 1.40; P = 1.21 × 10−3), but not for the 

eADAD.

3. Future directions: The fact that the PRS showed a higher effect size for the 

sEOAD and fLOAD than that observed for sLOAD can have important 

repercussion in the design of future genetic studies. Selecting these cases 

should provide more statistical power than a similar number of sLOAD. Low-

frequency variants associated with AD and common variants not satisfying 

genome-wide threshold can improve the accuracy of the PRS and improve the 

understanding of the shared genetic architecture among the different 

manifestations of AD.
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Fig. 1. 
Receiver operating characteristics—Area under the curve for the different cohorts analyzed. 

The lines correspond for the accuracy of obtained for the models that included gender, study, 

age (for late-onset data sets), and APOE ε4/ε2 alleles. Abbreviations: fEOAD, familial 

early-onset Alzheimer’s disease; fLOAD, familial late-onset Alzheimer’s disease; sEOAD, 

sporadic early-onset Alzheimer’s disease; sLOAD, sporadic late-onset Alzheimer’s disease.
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Table 1

Demographics of the cohorts

Cohort N Female (%) Age (SD)* APOE ε4+ (%)†

Autosomal dominant early onset (DIAN) 249 57.03 37.16 (14.03) 27.18

Sporadic early onset 358 49.17 60.41 (4.83) 62.74

Familial late onset 1220 63.10 75.30 (8.34) 74.08

Sporadic late onset 1247 57.30 76.18 (7.00) 58.27

Nondemented (controls) 1011 56.38 77.03 (7.05) 31.22

Abbreviations: DIAN, Dominantly Inherited Alzheimer Network; SD, standard deviation.

*
Age at onset for affected participants and age of last assessment for non-demented subjects and for DIAN participants’ age of recruitment.

†
Percentage of participants’ carriers of APOE ε4 allele.
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