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Anaplastic large cell lymphomas (ALCLs) constitute a group of peripheral (i.e. post-thymic) 

T-cell non-Hodgkin lymphomas (PTCLs) with overlapping pathologic characteristics, but 

varying clinical and molecular features. Specifically, ALCLs share cytological and 

immunophenotypic features, including consistent expression of the lymphocyte activation 

marker, CD30.1 The World Health Organization (WHO) classifies ALCLs by their clinical 

presentation (systemic or cutaneous) and whether or not they bear rearrangements of the 

anaplastic lymphoma kinase gene, ALK (ALK-positive ALCL and ALK-negative ALCL, 

respectively).2

ALK-positive ALCL is characterized by a unique gene expression signature that 

distinguishes it from ALK-negative ALCL.3–5 ALK rearrangements have a broad spectrum 
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of functional consequences, prominent among which is activation of the signal transduction 

protein STAT3.6 Analogously, STAT3 may be activated in ALK-negative ALCLs by somatic 

events involving non-ALK tyrosine kinase genes, including rearrangements of the TYK2 or 

ROS1 tyrosine kinase genes as well as mutations in JAK1 or STAT3 itself.7, 8 However, the 

full spectrum of tyrosine kinases involved in ALK-negative ALCL pathogenesis and growth 

remains incompletely understood, as does the similarity of these events to the molecular 

signature identified in ALK-positive ALCLs. For example, a subclass of ALK-negative 

ALCL expressing aberrant transcripts of the ERBB4 tyrosine kinase gene had a gene 

expression signature distinct from ALK-positive ALCLs.9

To evaluate the relationship between the gene expression profiles of ALK-positive and ALK-

negative ALCLs, we performed expression profiling on 31 frozen ALCL tissue samples 

(Supplementary Table 1) using Affymetrix arrays and derived an ALK signature from our 

dataset comprising the 29 probes most differentially expressed between these 2 groups (see 

Supplementary Methods for details). Clustering using this ALK signature identified a single 

ALK-negative case, ALCL11, which clustered with ALK-positive ALCLs (Figure 1A.i; 

P=0.02, Kolmogorov-Smirnov test). The validity of the ALK signature we derived was 

supported by the presence of multiple genes in common with previously published 

signatures, including ALK, ARHGEF10, ANXA3, GALNT2, HTRA3, IL1RAP, MC1R and 

PDE4DIP (Supplementary Table 2). Furthermore, clustering analysis using previously 

published ALK-positive ALCL signature genes replicated the unique clustering pattern of 

ALCL11, but not other ALK-negative ALCLs, with ALK-positive ALCLs (Supplementary 

Figure 1).

We next used outlier analysis to identify possible non-ALK kinase gene overexpression 

underlying the ALK-like signature in ALCL11. The top kinase genes found to be outliers in 

this case were fyn related Src family tyrosine kinase (FRK) and neurotrophic receptor 

tyrosine kinase 1 (NTRK1; Figure 1A.ii, Supplementary Table 3). FRK was expressed 

exclusively in ALCL11. NTRK1 was also expressed in 2 cases of ALK-positive ALCL, a 

disease in which its protein product, TrkA, was recently shown to interact functionally with 

ALK fusion proteins.10 To confirm expression of these genes and evaluate this case for 

potential gene fusions, we performed RNA sequencing in ALCL11. The SnowShoes fusion 

detection algorithm revealed a novel CAPRIN1-FRK fusion transcript (Figure 1B, 

Supplementary Table 4). This fusion was validated by RT-PCR and Sanger sequencing 

(Supplementary Figure 2A), and the resultant fusion protein was detected by Western 

blotting in a frozen tissue lysate from ALCL11 (Supplementary Figure 2B).

FRK, also called protein tyrosine kinase-5 (PTK5), is a member of the BRK family of 

tyrosine kinases that are related to Src family kinases and similarly possess SH3, SH2, and 

kinase domains.11 Of note, the FRK and ALK regulatory networks share a number of 

proteins in common, including STAT3 (Supplementary Table 5). While FRK was originally 

described as a tumor suppressor, recent studies in multiple cancer types have revealed 

oncogenic genetic events involving FRK, including activating mutations in hepatocellular 

neoplasms and an ETV6-FRK fusion in an isolated case of acute myelogenous leukemia 

(AML).11–13 Consistent with exon-level FRK expression data from RNA sequencing 

(Supplementary Figure 2C), the sequenced CAPRIN1-FRK fusion transcript encodes exons 
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3–8 of FRK, with a breakpoint at amino acid 156 in the FRK SH2 domain that leaves the N-

terminal kinase domain intact in the resultant fusion protein (Figure 1B). Caprin-1 (CAPR1) 

is a cell cycle-associated protein that is constitutively expressed in lymphocytes,14 and 

widely expressed in ALCLs based on our gene expression data (Supplementary Figure 2D). 

Thus, similar to NPM1-ALK and other kinase fusions in ALCL, CAPRIN1-FRK leads to 

expression of the tyrosine kinase domain of an otherwise unexpressed protein under control 

of the active promoter of a constitutively expressed partner gene.

We next developed a novel breakapart fluorescence in situ hybridization (BAP-FISH) probe 

for the FRK locus to investigate the frequency and subtype distribution of FRK 
rearrangements in ALCL and other PTCLs (see Supplementary Methods for probe details). 

BAP-FISH for FRK rearrangements was performed on 225 PTCLs and lymphoproliferative 

disorders, including the original FRK fusion case, ALCL11. The original FRK 
rearrangement was validated and additional rearrangements were identified exclusively in 

ALK-negative ALCLs, with a frequency in this group of 5.4% (P = 0.013; Figure 1C; 

Supplementary Table 6). The ALCLs with FRK rearrangements included 5 systemic cases 

and 1 primary cutaneous case. All were of the so-called “triple-negative” genetic subtype, 

i.e., in addition to being ALK-negative they lacked rearrangements of DUSP22 and TP63.15 

To assess FRK fusion partners further, we then performed dual-fusion FISH for CAPRIN1-
FRK in 5 ALCLs with FRK rearrangements and found this fusion only in ALCL11 

(Supplementary Table 7). Therefore, we attempted RNA sequencing from paraffin material 

in these cases; while this approach either failed or was suboptimal in most of the cases, we 

did identify one case with a PABPC1-FRK fusion and another with a possible MAPK9-FRK 
fusion. For both of these events, FRK expression began at exon 3, identical to the fusion site 

observed in CAPRIN1-FRK (Supplementary Table 7). Because ALK-positive ALCL is 

associated with favorable outcome, 1 we examined outcomes in ALCLs with FRK 
rearrangements. Indeed, although our series is small, the index case was alive 17 years after 

diagnosis and 3 of the 4 remaining patients with systemic disease survived at least 5 years 

(Supplementary Table 8).

To assess the function of CAPRIN1-FRK, the fusion transcript was cloned from ALCL11 

into the pLEX lentiviral expression vector (see Supplementary Materials). We were unable 

to achieve stable overexpression in ALCL cells, other T-cell lymphoma cell lines, or normal 

T cells, despite multiple attempts and testing additional expression vectors; this may have 

been due in part to the large insert size of the CAPRIN1-FRK fusion transcript. However, we 

were able to achieve overexpression of CAPRIN1-FRK in HEK-293T cells and IL3-

dependent Ba/F3 cells. The Caprin-1-FRK fusion protein localized primarily to the 

cytoplasm in HEK-293T cells (Supplementary Figure 3A), consistent with the pattern of 

FRK immunohistochemical staining in ALCL11 (Figure 1C). In HEK-293T cells, 

CAPRIN1-FRK promoted colony formation 2.7-fold over control vector (P < 0.001; Figure 

2A). Correspondingly, CAPRIN1-FRK induced STAT3 phosphorylation, which was absent 

in control cells despite similar levels of total STAT3 (Supplementary Figure 3B). Both 

effects were somewhat greater than those induced by NPM1-ALK in this model. CAPRIN1-
FRK but not NPM1-ALK also induced phosphorylation of STAT1 and STAT5, suggesting 

that CAPRIN1-FRK may have additional targets not shared by NPM1-ALK (Supplementary 

Figure 3B). Previously published data by Hosoya et al that ETV6-FRK did not lead to 

Hu et al. Page 3

Leukemia. Author manuscript; available in PMC 2018 April 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



phosphorylation of STAT1/3/5/613 may reflect differences in cellular context and/or 

expression of total STAT proteins. In the IL3-dependent Ba/F3 model, both CAPRIN1-FRK 
and NPM1-ALK, but not control vector, rescued cells from IL3 withdrawal (Figure 2B,C.i). 

In addition, expression of both CAPRIN1-FRK and NPM1-ALK promoted phosphorylation 

of STAT3 in the absence of IL3 (Figure 2C.i). We then used the Kinase Inhibitor Resource 

database (see Supplementary Methods) to identify dasatinib, a tyrosine kinase inhibitor with 

activity against Src-family and other kinases, as a candidate drug targeting FRK fusions. 

Indeed, dasatinib inhibited CAPRIN1-FRK- but not NPM1-ALK-driven growth following 

IL3 withdrawal (Figure 2C.ii), and correspondingly reversed CAPRIN1-FRK-induced 

STAT3 phosphorylation (Figure 2C.iii). Conversely, the ALK inhibitor crizotinib specifically 

inhibited growth in cells expressing NPM1-ALK with significantly less effect on CAPRIN1-
FRK-expressing cells (Figure 2C.iv).

In summary, FRK rearrangements are recurrent in ALK-negative ALCLs, with a frequency 

of 5.4% and encompassing both systemic and primary cutaneous subtypes. In the index case, 

a CAPRIN1-FRK fusion transcript was discovered and expression of the resultant fusion 

protein was confirmed. Other fusion partners also exist. CAPRIN1-FRK promoted 

phosphorylation of STAT3 and in vitro cell growth that could be inhibited by the kinase 

inhibitor dasatinib. Thus, FRK rearrangements represent a novel, candidate therapeutic 

target in a subset of ALK-negative ALCLs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Discovery of FRK rearrangements in ALK-negative ALCL
A. i. Clustering of 31 ALCLs using 29 probes that most significantly differentiated ALK-

positive and ALK-negative ALCL groups (see also Supplementary Table 2). A single ALK-

negative ALCL clustered with the ALK-positive cases (ALCL11, arrows). ii. Kinase gene 

outlier analysis in ALCL11 identified FRK and NTRK1 as the top outlier genes (see also 

Supplementary Table 3). B. RNA sequencing and fusion detection in ALCL11 identified a 

chimeric CAPRIN1-FRK transcript fusing exon 18 of CAPRIN1 to exon 3 of FRK (see also 

Supplementary Table 4). The domain structure of the predicted Caprin-1-FRK fusion protein 

resulting from the identified CAPRIN1-FRK transcript is shown at right. C. FISH evaluation 
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of 225 PTCLs showed FRK rearrangements in 5.4% of ALK-negative ALCLs and not in any 

other PTCL subtype (see also Supplementary Table 5). Top center image, hematoxylin and 

eosin stain of ALCL11 (original magnification, ×1000). Top right image, 

immunohistochemical staining for FRK was present in ALCL11; inset: staining is absent in 

an ALK-positive case without an FRK rearrangement (ALCL26; see also Supplementary 

Figure 2B; original magnification, ×400). Bottom center image, FISH in ALCL11 using a 

breakapart probe to the FRK locus showed one normal red-green fusion signal and abnormal 

separation of the remaining red and green signals; inset: signal pattern in a normal cell 

showing two fusion signals (original magnification, ×600).
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Figure 2. Function and targetability of CAPRIN1-FRK
A. CAPRIN1-FRK promoted colony formation 2.7-fold in HEK-293T cells compared to 

empty vector (pLex; P<0.001). Cells expressing NPM1-ALK also are shown. B. Ba/F3 cells 

were cultured in the absence (48 h withdrawal) of IL3 followed by analysis by Western Blot. 

CAPRIN1-FRK (as well as NPM1-ALK) induced STAT3 phosphorylation at Y705 in Ba/F3 

cells (V, empty vector; NA, NPM1-ALK; CF, CAPRIN1-FRK). C. i. CAPRIN1-FRK and 

NPM1-ALK rescued IL3-dependent Ba/F3 cells from IL3 withdrawal. ii. The tyrosine 

kinase inhibitor dasatinib targeted CAPRIN1-FRK but not NPM1-ALK in Ba/F3 cells. iii. A 

dose-dependent inhibition of pSTAT3 was observed in CAPRIN1-FRK-expressing cells but 
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not in cells expressing NPM1-ALK. iv. The ALK inhibitor crizotinib targeted NPM1-ALK 
but was relatively ineffective in inhibiting Ba/F3 cells expressing CAPRIN1-FRK.
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