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Abstract

Concepts organize our experiences and allow for meaningful inferences in novel situations. 

Acquiring new concepts requires extracting regularities across multiple learning experiences, a 

process formalized in mathematical models of learning. These models posit a computational 

framework that has increasingly aligned with the expanding repertoire of functions associated with 

the hippocampus. Here, we propose the Episodes-to-Concepts (EpCon) theoretical model of 

hippocampal function in concept learning and review evidence for the hippocampal computations 

that support concept formation including memory integration, attentional biasing, and memory-

based prediction error. We focus on recent studies that have directly assessed the hippocampal role 

in concept learning with an innovative approach that combines computational modeling and 

sophisticated neuroimaging measures. Collectively, this work suggests that the hippocampus does 

much more than encode individual episodes; rather, it adaptively transforms initially-encoded 

episodic memories into organized conceptual knowledge that drives novel behavior.
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Concepts define the relationships between similar objects; they represent combinations of 

features shared by objects of the same kind and allow us to recognize new instances of a 

concept when first encountered. Concepts also serve as the basis for inference about 

properties that have not or cannot be directly observed. To acquire a concept, we must 
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experience multiple instances across unique episodes and learn both what features are 

common to concept exemplars and what features differentiate between concepts. Both of 

these operations, extracting commonalities across related experiences and distinctly 

representing similar experiences, are akin to episodic memory functions associated with the 

hippocampus [1–3]. In particular, the hippocampus is thought to perform pattern separation 

to differentiate overlapping experiences into distinct memory representations [1, 2]. Pattern 

separation is complemented by memory integration, in which the hippocampus is thought to 

encode features of the current experience along with shared information from previously 

encoded experiences resulting in integrated memory representations that highlight 

commonalities across experiences [3, 4]. In other words, what concept acquisition requires 

largely overlaps with coding strategies attributed to the hippocampus.

The theoretical convergence between concept formation and episodic memory posits a role 

for the hippocampus in acquiring concepts. While initial patient work suggested otherwise 

[5, 6], subsequent findings indicate that the hippocampus plays a key role in representing 

concepts. For example, “concept cells” in the hippocampus show high selectivity to 

conceptual rather than perceptual features of events [7] and a recent report report showed 

hippocampal lesions impair concept learning [8]. Here, we review neuroimaging research 

that has begun to reveal the precise hippocampal mechanisms that support concept formation 

and use [9–14]. The success of this research has depended on the emergence of sophisticated 

analytic approaches that combine mathematical accounts of psychological learning theories 

with representational approaches to neuroimaging. We propose the Episodes-to-Concepts 

(EpCon) theoretical model of concept formation in the hippocampus, which links evidence 

from episodic memory and category learning.

Building concepts in the hippocampus

It is well established that the hippocampus is critical for rapidly encoding and retrieving 

experiences to and from memory [15, 16]. However, within the past decade, theories of 

hippocampal function have broadened beyond memory for single episodes [17, 18] to 

suggest that the hippocampus plays the more general role of building flexible representations 

that span multiple experiences [3], are sensitive to goal states [19, 20], and guide novel 

decisions [21–23]. We propose that this expanded functional repertoire situates the 

hippocampus as an ideal site for the formation of new conceptual knowledge. Central to this 

proposal is the EpCon theoretical framework that details how the hippocampus transforms 

episodic memories to organized concepts.

EpCon is motivated by the striking parallel between hippocampal-based memory processes 

and a computational model of concept learning named SUSTAIN [24, 25]. SUSTAIN posits 

that during new learning, conceptual representations are formed through a dynamic 

interaction of selective attention and memory (corresponding hippocampal processes are 

noted in italics, each of which will be described later):

1. When presented with a stimulus, attention is directed to stimulus feature 

dimensions that are diagnostic for the task goal according to the current state of 

knowledge (attentional biasing).
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2. The attention-weighted feature information then promotes retrieval of similar 

prior learning experiences (pattern completion). These memories are used to 

predict a concept label.

3. Depending on the prediction outcome (memory-based prediction error), a new 

distinct memory is created that binds together the current stimulus and the 

correct concept (pattern separation), and/or an existing concept representation is 

updated to incorporate the new stimulus (integration). This updated knowledge 

state then influences attentional strategy on subsequent learning experiences.

As learning continues, this process iterates. Pattern completion retrieves previously 

integrated representations that highlight the common features diagnostic of the concept, 

which, in turn are updated with new information from the current experience. Irrelevant 

features are dropped from concept representations, and concept exemplars are organized 

according to their similarity on the most relevant features, with the most typical exemplars 

taking a central position in representational space. By learning what features are common to 

concept exemplars and what features differentiate between concepts, this adaptive process 

transforms initially-encoded episodic memories into organized conceptual knowledge 

representations (Figure 1).

The component processes of this theoretical framework for concept learning map onto the 

hippocampal functions of pattern separation and completion, memory integration, and 

memory-based prediction error, and the framework is further influenced by the fact that 

hippocampal encoding is biased by attention. The EpCon model is thus a theoretical bridge 

between SUSTAIN’s formalism of concept learning and the functions of the hippocampus. It 

is important to note that concept learning is supported by many brain regions (see [26] for a 

recent review); EpCon serves to highlight how the hippocampus is an important player in 

concept learning’s broader neural substrate. Below, we review the evidence for EpCon by 

highlighting the complementary hippocampal functions that are implicated in concept 

formation.

Memory integration

Memory integration arises when the current experience shares features with previously-

encoded experiences, which may trigger hippocampal pattern completion resulting in the 

retrieval of related memories. The current experience may then be encoded into the 

reactivated memory trace, resulting in an updated representation that captures both the 

features of the current experience as well as those of the retrieved memory [1, 3, 27, 28]. A 

wave of recent findings has converged on the existence of such integrated representations in 

the hippocampus that support complex inference behaviors [29–34].

In particular, one recent human fMRI study by Schlichting and colleagues [32] targeted the 

specific nature of integrated representations in the hippocampus. In this study, participants 

learned pairs of novel objects that shared one common object (AB and BC) before making 

inference judgments about the objects indirectly linked by the shared object (AC; Figure 2). 

Critically, participants viewed each object before and after learning, allowing investigation 

of learning-related changes in the neural representations for the A and C items with 

representational similarity analysis (RSA). This analysis revealed that neural patterns in 
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anterior hippocampus for indirectly-associated A and C items showed greater similarity after 

learning (Figure 2). By quantifying the learning-related changes at the level of individual 

elements of episodes (i.e., A and C objects), these findings provide compelling evidence for 

memory integration during encoding. Although these findings are limited to memory 

representations formed for overlapping experiences, it follows that integrative encoding 

mechanisms characterized in this study likely underlie the formation of more complex 

representations including multi-step chains of associations [35]. Importantly, this work 

characterizes how individual learning experiences can be extended and shaped to include 

features from related experiences, a process that is fundamental to the formation of new 

concepts [24].

Memory-based prediction error

Errors are critical to learning concepts; whether generated through internal evaluation or 

surprise or provided by external feedback, models of concept learning leverage prediction 

errors and mismatch signaling to guide how prior knowledge is updated with new 

information [24]. The importance of error signals to learning is paralleled in memory 

theories that suggest that the hippocampus, in particular subregion CA1, serves as a 

comparator that detects when new experiences deviate from memory-based expectations [1, 

36]. Indeed, both rodent [37] and human [31, 38–40] work has implicated CA1 in signaling 

novelty, mismatch, or errors. This memory-based prediction error extends to expectations 

derived from conceptual knowledge [41]. For example, anterior hippocampus engagement is 

greater during encoding of conceptually-novel word pairs (e.g. “purple banana”) that are 

later remembered [42].

Hippocampal prediction error signals are thought to trigger encoding processes that lead to 

pattern separation, in the case of large errors, or forge integrative links between the current 

experience and prior memory, in the case of smaller errors [3, 43, 44]. Recent rodent work 

has shown increased CA1 activity and plasticity in the presence of novelty [37]. Such 

novelty-related encoding would lead to binding of activity patterns that reflect not only 

perceptually-available content, but also reactivated memory content leading to integrated 

representations. In humans, CA1 mismatch signaling during encoding of overlapping 

experiences has been shown to predict subsequent success in inferring relationships between 

indirectly-related memory elements [31]. Importantly, such CA1 mismatch signaling 

increases across repetitions of overlapping, but not non-overlapping pairs, consistent with 

memory-based prediction error [40].

One recent study, in particular, examined memory-based prediction error in the hippocampus 

during concept learning [11]. In this study, participants learned to categorize visual objects 

into categories based on a combination of feature dimensions. Learning performance was 

quantified with SUSTAIN [24] to derive trial-by-trial predictions of decision uncertainty, a 

latent signal that can trigger encoding of new information with existing knowledge [36]. 

This model-based uncertainty measure correlated with anterior hippocampus engagement 

throughout learning. These findings suggest that the hippocampus signals more than novelty, 

rather it indicates the degree that current experience deviates from existing conceptual 

knowledge.
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Attentional biasing

Models of concept learning posit that selective attention is a key mechanism that shapes 

representations during learning by biasing encoding to concept-relevant features and 

ignoring irrelevant dimensions [24]. A similar view of attention is found in theoretical 

accounts of memory, whereby top-down attention biases hippocampal encoding and retrieval 

according to current goal states [45, 46]. That is, attention is not a hippocampal computation 

per se, but rather acts to impact hippocampal function. Neural evidence of attention’s 

influence on hippocampal engagement has been mixed [47, 48]; rather, attention may act on 

representations in activity patterns across the hippocampus. In the rodent hippocampus, the 

same environment is remapped to different spatial codes depending on what features matter 

for the animal’s current goal state [49, 50]. Specifically, when presented with an odor-based 

cue for a food reward that varied in location trial-to-trial, hippocampal place cells 

dynamically reconfigured to represent the location of the rewarded odor on every trial [49]. 

These findings suggest attention rapidly influences the information encoded in hippocampal 

representations.

Two recent human fMRI studies [19, 20] have demonstrated that hippocampal 

representations are shaped by different tasks that require distinct attentional strategies. In 

these studies, visual search of room images for a style of wall art evoked distinct 

hippocampal patterns relative to searching the same room for a specific room layout. 

Critically, this remapping due to attentional state was tied to memory behavior: Task-

relevant information was better remembered when the hippocampus was in a task-specific 

encoding state [20]. These findings offer compelling evidence that attention enhances 

encoding and retrieval of distinct hippocampal representations. Although this work only 

tested the contribution of attention to memory processes, it is clear that attentional strategy 

can bias hippocampal coding and motivates the notion that similar attention-hippocampus 

interactions are at play during concept learning.

Directly relating hippocampal function to concept formation with model-

based fMRI

Several recent studies have directly tested the parallels between formal computational 

models of concept learning and hippocampal representation of concepts using model-based 

fMRI. These studies motivate the EpCon model by demonstrating the links between the 

hippocampal mechanisms reviewed above (memory integration, memory-based prediction 

error, and attentional biasing) and concept formation.

Davis, Love, and Preston, 2012

Davis and colleagues [12] tested the hypothesis that the hippocampus dynamically recruits 

and shapes representations during concept learning. They explored this hypothesis with rule-

plus-exception category learning in which multidimensional visual stimuli were mapped 

onto categories according to a unidimensional rule with the exception of two items that 

violated the rule.
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Davis et al. derived quantitative predictions for hippocampal engagement throughout 

learning with SUSTAIN. According to SUSTAIN, exception items require the formation of 

distinct representations that distinguish exceptions from rule-following items, whereas rule-

following items are supported by abstracted representations that capture their average 

features through a process of integration. Davis et al. proposed a hippocampal role in 

representing both exception and rule-following items and predicted that during learning, 

hippocampal activation would track recognition strength, a model measure that indicates the 

extent that a test item activates SUSTAIN’s category representations. In the rule-plus-

exception task, SUSTAIN’s recognition strength is characterized by two aspects (Figure 

3A): 1) It increases over learning as stored category representations are updated to better 

represent the structure of the learning task, and 2) exception items are supported by distinct 

representations that show greater recognition strength than rule-following items. These trial-

by-trial predictions of recognition strength were directly incorporated into fMRI analyses as 

parametric regressors. As predicted, activation throughout learning in the hippocampal body 

and tail significantly tracked the recognition strength predictions (Figure 3A). In other 

words, how SUSTAIN’s flexible category representations are differentially informative to 

rule-following and exception items throughout learning was reflected in hippocampal 

engagement.

Davis et al. also investigated memory-based prediction error during feedback. Specifically, 

they derived a model measure, error correction, that indicated the difference between 

SUSTAIN’s predicted category and the actual category. Error correction serves the important 

role of dictating how much category representations should be updated after each trial. Much 

like recognition strength, error correction changes over learning and differs between rule-

following and exception items (Figure 3B). By including trial-by-trial predictions of error 

correction as parametric regressors, Davis et al. found that feedback-related activity in 

posterior hippocampus tracked this measure of memory-based prediction error signaling 

(Figure 3B).

The Davis et al. study offers a direct argument for hippocampal involvement in concept 

formation. A key prediction of SUSTAIN is that during learning, representations are flexibly 

adapted to capture the nature of new concepts. And, a rule-plus-exception paradigm provides 

a strong test of this representational flexibility, with distinct item-specific representations 

supporting exceptions and abstracted prototype-like representations capturing rules [13]. The 

Davis et al. findings suggest that such representations are formed in the hippocampus: Rule-

following representations emerge throughout learning by integrating over overlapping 

experiences and distinct exception item representations result from pattern separation.

Mack, Love, and Preston, 2016

Conceptual knowledge supports flexible adaptation to different learning goals. Mack et al. 

[14] asked how conceptual representations of visual objects in the hippocampus are flexibly 

encoded to reflect changing goal states. In this study, participants first learned to categorize a 

set of multidimensional objects into one of two categories before learning to categorize the 

same set of objects in a new, orthogonal category structure. The two learning problems were 

defined by a unidimensional rule and a two-dimensional XOR rule with each problem 
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relying on distinct stimulus dimensions (Figure 4A). This paradigm, therefore, required 

participants to change attentional strategies between problems to form new conceptual 

representations that best supported the changing learning goals.

Mack et al. leveraged the quantitative predictions of SUSTAIN to perform a model-based 

analysis of fMRI data recorded during the two learning problems. Specifically, participant-

specific model parameter estimates were used to quantify the nature of the object 

representations learned within the context of the changing problems. This was accomplished 

by using the fitted model to predict how similar each pair of objects were within each 

learning problem. It was expected that the same two items could be similar or different 

depending on the learning problem, and even that items in the same category could be highly 

dissimilar depending on the learned attentional biases and conceptual representations. The 

resulting similarity matrices (Figure 4B) demonstrated that the model predicted very 

different underlying conceptual representations across the problems even though the same 

visual objects were present in both problems.

The key question posed by Mack et al. [14] was if SUSTAIN’s prediction of conceptual 

reorganization across the two learning problems was evident in neural representations in the 

hippocampus. To answer this question, they performed model-based RSA to compare the 

neural similarity of hippocampal activation patterns for all pairs of visual objects for each 

learning problem, resulting in problem-specific neural similarity matrices. If hippocampal 

representations reorganize in the face of changing learning goals, these neural similarity 

matrices should correspond with the model-based similarity matrices. This is exactly what 

was found; anterior hippocampus showed a reorganization in neural representations across 

the learning problems that matched SUSTAIN’s concept reorganization (Figure 4C). These 

findings demonstrate that as goals change and new concepts must be learned, hippocampal 

representations reorganize in concert with changing attentional strategy to reflect the 

relevant information for the current goal.

It is important to note that these highlighted studies [12, 14] were possible only by 

leveraging the quantitative predictions of how conceptual representations are formed and 

organized by learning as formalized in a computational model. The predictive power of this 

approach stems from a comprehensive mechanistic account of concept learning that 

combines the computations of selective attention, memory-based prediction error, and 

memory integration. By leveraging computational models, the latent processes and 

representations of psychological learning theory can be linked to the neural substrate of 

concept formation.

A role for anterior hippocampus?

Notably, the work reviewed here implicates anterior hippocampus in concept formation. Not 

only has this region been shown to form integrated neural codes that capture commonalities 

across individual experiences [14, 31, 32], it has also been associated with uncertainty 

during concept learning [11]. Relatedly, more complex memory functions that rely on 

integrating and organizing prior experiences such as autobiographical memory [51], 

schematic representation [52], and imagining the future [53, 54] have been distinctly 

Mack et al. Page 7

Neurosci Lett. Author manuscript; available in PMC 2019 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



associated with anterior hippocampus. Anatomically, anterior hippocampus is well suited for 

the operations that mediate concept formation. Place fields in anterior hippocampus have 

broad receptive fields [55], potentially allowing for representations that generalize across 

episodes and behavioral relevance [56]. Anterior hippocampus also has anatomical 

connections to anterior temporal and medial prefrontal cortices [57], areas that may be 

involved in the retrieval of previously-learned conceptual/schematic information during new 

learning [56]. Although future studies are needed to fully characterize the functional 

properties of anterior hippocampus, and how they differ from posterior hippocampus, the 

current evidence suggests it may play an important role in concept formation.

Conclusion

The research on concept learning and related processes reviewed here is in line with other 

recent work suggesting that the hippocampus plays a much broader role in cognition that 

originally thought [17, 18]. The hippocampus seems to be the brain’s integrative code 

builder, binding together elements that share spatial, temporal, or conceptual features to 

form relational codes that capture the commonalities and organization of our experiences. 

The hippocampus, of course, is not the only region implicated in concept formation. An 

important question is how the hippocampus interacts with other brain regions to support the 

acquisition of knowledge from individual episodes both immediately during learning [14] 

and over time through consolidation [58, 59]. The goal of the EpCon model discussed here, 

however, is to bridge an influential set of computational and neurobiological theories of 

learning and memory [1–3, 24, 25, 36], most notably SUSTAIN [24] and its neural 

framework [14, 25]. In doing so, EpCon provides a means to isolate the computations the 

hippocampus performs not only in the service of concept learning, but cognition more 

generally.
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Highlights

• The hippocampus integrates across experiences to support complex behaviors.

• Activation patterns in the hippocampus are influenced by selective attention.

• These hippocampal processes align with formal accounts of concept learning.

• Recent fMRI evidence supports a role for the hippocampus in concept 

formation.
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Figure 1. 
The Episodes-to-Concepts (EpCon) theoretical model of concept formation in the 

hippocampus. Initially, each new learning experience consisting of stimulus features (e.g., 

dotted outline, red fill, and vertical center) and concept label (e.g., B) is encoded as a distinct 

memory (dotted blue lines represent hippocampal encoding). After encoding these initial 

experiences, memory integration processes soon dominate learning: Pattern completion 

processes retrieve related memories (solid blue lines depict hippocampal retrieval) that are 

used to predict a concept label. Feedback then leads to integration across experiences (e.g., 

red items with dotted outlines are associated with concept B) and/or distinct representation 

of the current experience through pattern separation. Concept formation continues as 

learning progresses, with more complex integrated representations that span experiences 

retrieved through pattern completion and encoded through memory integration. This 

adaptive process culminates in conceptual coding in which the learned integrated 

representations capture the structure of the concept. Brain illustration by Margaret 

Schlichting.
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Figure 2. 
Associative inference paradigm and RSA results from Schlichting et al. [32]. Participants 

learned direct associations (AB and BC) before being tested on an indirect inference (AC). 

Participants were cued with a C object and selected the indirectly associated A object 

(circled object). RSA measures showed evidence of integrated representations (i.e., 

increased similarity between A and C objects post- versus pre-learning) in left anterior 

hippocampus. Figure adapted from [32].
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Figure 3. 
SUSTAIN-based measures of concept formation during a rule-plus-exception category 

learning task [12] and corresponding statistical maps of the hippocampus. A) Recognition 

strength varies across learning trials and is greater for exception (red) versus rule-following 

(green) items. Trial-by-trial activation in bilateral hippocampus (red regions) correlated with 

recognition strength. B) Error correction correlated with activation in bilateral hippocampus 

(yellow regions) during learning trial feedback. Figure adapted from [12].
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Figure 4. 
Mack et al. [14] learning problem schematics, model predictions, and corresponding neural 

results. A) Participants learned to classify the same set of multidimensional objects (beetles 

with different legs, antennae, and mandibles) according to two different learning problems. 

B) SUSTAIN-based predictions of the similarity between object representations in the two 

problems. Lighter cells correspond to higher similarity. C) Neural representations in left 

anterior hippocampus corresponded with the conceptual reorganization between learning 

problems as predicted by SUSTAIN. Figure adapted from [14].
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