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Abstract

Segmentation of the carpal bones from 3D imaging modalities, such as magnetic resonance 

imaging (MRI), is commonly performed for in vivo analysis of wrist morphology, kinematics, and 

biomechanics. This crucial task, however, is typically carried out manually and is labor intensive, 

time consuming, subject to high inter- and intra-observer variability, and may result in 

topologically incorrect surfaces. We present a method, WRist Image Segmentation Toolkit 

(WRIST), for 3D semi-automated, rapid segmentation of the carpal bones of the wrist from MRI. 

In our method, the boundary of the bones were iteratively found using prior known anatomical 

constraints and a shape-detection level set. The parameters of the method were optimized using a 

training dataset of 48 manually segmented carpal bones and evaluated on 112 carpal bones which 

included both healthy participants without known wrist condition and participants with thumb 

basilar osteoarthritis (OA). Manual segmentation by two expert human observers was considered 

as a reference. On the healthy subject dataset we obtained a Dice overlap of 93.0 ± 3.8, Jaccard 

Index of 87.3 ± 6.2, and a Hausdorff distance of 2.7 ± 3.4 mm, while on the OA dataset we 

obtained a Dice overlap of 90.7 ± 8.6, Jaccard Index of 83.0 ± 10.6, and a Hausdorff distance of 

4.0 ± 4.4 mm. The short computational time of 20.8 seconds per bone (or 5.1 seconds per bone in 

the parallelized version) and the high agreement with the expert observers gives WRIST the 

potential to be utilized in musculoskeletal research.
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1. Introduction

The human wrist is a complex anatomical structure consisting of eight independently 

moving bones that enable sophisticated maneuvers and motion. Carpal bone shape plays an 

important role in musculoskeletal research, such as for characterizing wrist biomechanics 

[32], developing joint replacement methods [41], and quantifying the role of sex [14, 17], 

skeletal maturation [11, 48] or other factors on disease processes such as osteoarthritis (OA) 

or rheumatoid arthritis [7, 19].

Magnetic resonance imaging (MRI), a three-dimensional in vivo imaging modality, is 

commonly employed for assessing wrist injuries and conditions (such as ligament tears, 

articular cartilage damage, and arthritis) and provides contrast for the carpal bones (see 

Figure 1). A critical step needed for utilizing MRI scans for studies involving analysis of 

carpal bone shape is their accurate segmentation from the images. Segmentation is the 

process of finding the boundaries of some object within the image, i.e. the carpal bones, and 

consists of two steps: (1) recognition (approximately finding the bones within the 3D 

image), and (2) delineation which finds the exact object boundaries using the approximate 

locations from step (1). Given that an MRI volumetric image may have tens if not hundreds 

of slices, manual delineation of the carpal bone outlines is labor intensive, time consuming 

(up to 4 hours), and susceptible to high inter- and intra-observer variability [7]. Additionally, 

there is currently a paucity of computational tools to accurately delineate carpal bone from 

wrist MRI scans efficiently [30].

In this study we propose WRIST, a WRist Image Segmentation Toolkit: a new 

computational toolbox for rapid, semiautomated delineation of carpal bones from wrist MRI. 

We optimized the method and assessed its merits considering manual segmentations by two 

human observers as a reference. The approach was validated on a healthy cohort of men and 

women and a symptomatic cohort of advanced OA participants and performed parameter 

optimization and initial seed location sensitivity analysis to gauge the tool’s robustness and 

accuracy. The manual segmentations were used for the validation and were compared for 

inter- and intra-observer variability. Our work aimed at providing improved segmentation 

accuracy compared to existing methods while also having significantly decreased 

computational time. It was implemented as an open-source module for the popular image 

analysis tool, 3D Slicer. The tool will be made available in the 3D Slicer module library at 

www.Slicer.org and posted to GitHub at www.GitHub.com/AJChaudhari/WRIST-

Segmentation upon the acceptance of this manuscript.

2. Methods

The method consists of the following steps, as outlined in Figure 2.

1. The user defines one seed location in each carpal bone which initializes the 

method by constraining the search space and giving an initial location for the 

segmentation.

2. Pre-processing steps are used to enhance edges, reduce noise and MRI specific 

artifacts while preserving edges.
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3. A shape based level set approach [25] grows a region in three dimensions from 

the single user defined seed location per bone on the pre-processed image.

4. After convergence of the level set, volume based measures are derived and 

utilized to detect potential leakage areas or no change of the level set.

5. If the check fails, the parameters of the level set or the initial seed location are 

automatically adjusted and the level set is repeated iteratively.

The iterative aspect of the method aimed to increase the robustness of the method against 

image noise, partial volume effect, and broken boundaries of the image segmentation [1, 37]. 

Please see Figure 3 for example challenges of wrist MR images. The following subsections 

describe the MRI acquisition, method development, parameter optimization, reference 

segmentation creation, and validation in further detail.

2.1. MRI Scanning

We obtained Institutional Review Board approval and informed consent from 20 participants 

before acquiring wrist MR images from each participant using a 3D T1-weighted VIBE 

(volumetric interpolated breath-hold examination) pulse sequence with water excitation. The 

VIBE sequence is a common clinically-used pulse sequence. The 20 MRI exams were split 

randomly into 6 training exams (for developing the proposed method consisting of 48 carpal 

bones) and 14 evaluation exams (for evaluating the accuracy of the method consisting of 112 

carpal bones). Often times image segmentation methods use a single image spatial resolution 

for training and evaluation, but in our work we used several different resolutions that make 

the proposed method more generalizable to a wider variety of MRI exams. See Table 1 for 

the number of scans at each resolution. The training set consisted of participants with no 

known wrist conditions, and the evaluation set included 10 healthy subjects (5 men and 5 

women, 80 bones) and 4 participants with thumb basilar OA (32 bones). The ages for the 

healthy subjects was 31.4±8.2 years while the ages for the OA subjects was 62.8 ±10.3 

years.

2.2. Image Segmentation: Method development and optimization using training data

Image Pre-Processing—We conducted the following image processing steps to increase 

the accuracy and robustness of the segmentation result.

1. The N4ITK bias correction field filter [43], as implemented in SimpleITK [24], 

was applied to the images in order to reduce the bias of the magnetic field.

2. An anisotropic diffusion filter, an implementation from [31], was used to reduce 

noise while preserving edges with empirically chosen parameters including time 

step of 0.01, 5 iterations, and a conductance level of 2.

3. A sigmoid filter was then applied to reduce the image noise which required an 

upper threshold parameter. We automatically determined the sigmoid filter upper 

threshold parameter based on the mean and standard deviation of the MRI exam, 

i.e. a simple estimation of the image noise and mean intensity, by using the 

following linear model
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(1)

where x is the mean intensity of the image added to the standard deviation of the 

image and t(x) is the sigmoid threshold parameter. This simple model was 

created by fitting a line between the mean plus standard deviation of the six 

training MRI exams and manually selected sigmoid parameters for each exam, 

see Figure 5 for a plot of the data and the linear fit.

4. Lastly, an edge potential map was computed by

(2)

using the image intensity I(x, y, z) and the derivative of Gaussian operator (∇ * 

G) [24]. Essentially, the edge potential map estimates the probability of an edge 

being at each image position. Specifically, the areas of the image which are 

estimated to be bone have a value close to 1 while image areas which are 

estimated to be an edge have a value close to 0. Please see Figure 4(E) for an 

example of an edge potential map of the hamate bone.

Segmentation—A shape detection 3D level set approach based on [25], as implemented 

in the “ShapeDetectionLevelSetImageFilter” in SimpleITK, was used to perform the 

segmentation on the postprocessed images. The segmentation contour grew in 3D from a 

single user-defined initial seed point somewhere within the bone boundary. This level set 

approach has fast computational time (a large advantage for this application), robustness to 

image noise and missing edges (commonly encountered in MRI), and flexibility by 

modifying or choosing just a few parameters. Broadly, due to these desirable properties, 

level sets have been demonstrated as being superior compared to other methods for 

segmenting various tissues on MR images such as brain tumors as well as whole organs such 

as the liver [12, 13, 33, 35]. The level set is described by

where this scaling factor k is defined by

from the edge potential map, Ψt is the current level set, FA is the propagation term, and FG 

is the diffusion term which depends on the local curvature for regularization. ∇Ψ was 

calculated based on a signed Maurer distance map [27] filter in SimpleITK. The parameters 

used with the level set were the maximum root mean square error, propagation scale, shape 

curvature scale, and maximum iteration number. These were selected based on a machine 
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learning optimization strategy as is outlined below. Please see Figure 4 for an example of the 

image segmentation steps.

Convergence Check—A check was automatically performed on the bone segmentation 

result to assess if it corresponded to a significantly different overall bone volume or 

bounding box size from prior anatomical knowledge, as we describe below. The prior 

knowledge we used was from Crisco et al., [6], where the volume of each carpal bone and 

the sex of the subject are provided. If the sex of the subject was unknown, then the mean 

between men and women for each bone was used instead. The bone volumes range from the 

smallest bone, i.e. pisiform, with 854 ± 203 mm3 in men and 570 ± 122 mm3 in women to 

the largest bone, i.e. capitate, with a volume of 3701 ± 564 mm3 in men and 2547 ± 345 

mm3 in women [6].

If the convergence check failed, the segmentation was automatically repeated using either a 

smaller or larger number of iterations (by a random percentage between 5% and 15%, with 

an average of 10%) to attempt to improve the level set convergence. Additionally, if the 

volume was too small, a new initial seed location was automatically chosen by selecting a 

nearby randomly chosen voxel within a 3×3×3 cube of the first location. This convergence 

check allowed for improved robustness of the segmentation result if the level set grew into 

the background regions (due to a missing or weak boundary), if the level set failed to grow 

from the initial seed location (perhaps due to large image noise around the initial seed 

location), or if the maximum iteration parameter chosen was too small to allow the level set 

to converge onto the boundary of the bone.

Parameter Selection and Sensitivity—Selection of suitable parameters of the shape 

detection level set to use as default settings in the tool was done in two steps. First, an 

optimization procedure was used to find the best parameter values on the training dataset. 

Next, a sensitivity analysis of the parameters around the values found from the optimization 

procedure was done to see how changes in these values influence the resulting segmentation.

The machine learning procedure used for optimizing the parameters was the differential 

evolution (DE) method [39] as implemented in SciPy (a Python toolkit) [18]. DE is a 

multivariate stochastic optimization method which optimizes by utilizing a population of 

candidate solutions and creating new candidate solutions by combining existing ones [18]. 

The optimization provides a measure of quality of a candidate solution such that a gradient 

is not needed. The method was primarily chosen due to its ability to optimize several 

variables simultaneously without the need of computing a gradient. The method requires a 

user-defined search space for each parameter as a range of values. The search space was 

empirically chosen as the following: maximum iteration number 100–2000, level set 

curvature scale 0–6, level set propagation scale 0–6, and maximum root mean square (RMS) 

error 0.001–0.05. The measure of quality for the candidate solution was the Dice overlap of 

the resulting segmentation as compared with a manual segmentation on a training set of 48 

bones from the 6 training MR images.

The machine learning considered all parameters at once so the sensitivity of any one 

parameter on the segmentation result was found by varying only one parameter at a time 
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while keeping all others at the default values found previously. This was important 

information because a parameter with little influence on the segmentation result will not 

need to be changed for a variety of images while a more sensitive parameter may need slight 

adjustment for different image characteristics. The same interval as was used for the DE 

optimization was chosen and each parameter was linearly varied within this interval by 40 

equally spaced steps.

Initial Seed Sensitivity—We quantified the sensitivity of the initial seed selection on the 

segmentation accuracy. First, the manual segmentations for each bone were eroded by 3 

voxels to prevent the randomly selected seed from being exactly on the bone boundary while 

still allowing it to be quite close, a fair assumption given that the module instructions will 

advise users not to click on the boundary of the bone for the initial seed selection. Next, 30 

voxels were randomly chosen within the eroded manual segmentation regions to avoid any 

selection bias of the seed locations. Finally, the segmentation result of the first seed was 

compared with the other 29 seeds to calculate the Dice overlap coefficient to quantify the 

overlap of all the resulting segmentations with each other. This process was repeated for all 

bones, and the seed sensitivity was evaluated on both the training (N=1,440 seeds) and the 

healthy subject evaluation datasets (N=2,400 seeds) of expert manual segmentations with 

randomly chosen seed locations. If the segmentation was not sensitive at all to the initial 

seed location the Dice overlap would be 100%, while if it was sensitive to seed location the 

Dice would be lower.

Parallelization—Multiple logical cores, either in the same computer or over a cluster of 

computational nodes, can be used to significantly speed up the computational time. 

Parallelizing computations is made fairly straightforward with recent advances in software 

tools. The free open-source SCOOP (Scalable COncurrent Operations in Python) module for 

Python was used for distributing the computations across CPU nodes [16]. The segmentation 

of each carpal bone is independent of the other segmentations so this, in principle, is done 

efficiently at the same time. The preprocessed image and user defined seed for each bone 

were fed into separate logical cores of the computer, and the segmentation step was done 

concurrently. Since the bones are segmented one at a time, this should lead to up to N times 

faster computation for a computer with N logical cores. While the number of logical cores 

was automatically determined for this study, users have the option to specify a number. The 

method can easily be run in either a serial mode (one bone at a time on one core) or in a 

parallelized mode (several bones being segmented at the same time).

3D Slicer Module—WRIST was implemented as an open-source module for a popular 

image analysis tool, 3D Slicer [9] found at www.slicer.org, to allow for easy sharing and 

installation. Please see Figure 6 for the layout of the module within 3D Slicer. 3D Slicer is 

advantageous due to its excellent ability to load, save, and display images and renderings of 

segmentations. It also allows the user to input the initial seed locations needed (manually 

using the visualization interface, or via a script) and comes with Python built in so the user 

does not need to configure or build anything from source code. The installation of WRIST 

consists of simply copying and pasting the code into a particular 3D Slicer folder. After 

installation, WRIST will automatically load with 3D Slicer. After opening and loading an 
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MRI exam, the user simply adds a fiducial marker to each bone of interest and 

corresponding label of the bone within the module so that the anatomical prior knowledge of 

each particular bone can be utilized. Upon acceptance of this paper, the tool will be released 

on the Slicer module library for even easier installation (just an install button within Slicer) 

as well as on GitHub at www.GitHub.com/AJChaudhari/WRIST-Segmentation.

In the GitHub repository, there is also a command line tool which may be useful for 

processing a large number of images by reading in a text file of initial seed locations and 

MRI file-names. The command line tool incorporates both the serial and parallelized modes.

2.3. Segmentation Method Evaluation

Several commonly used statistics of segmentation accuracy were calculated, including the 

Dice overlap coefficient, Jaccard index, and the Hausdorff distance [26]. The Dice 

coefficient and Jaccard index are measures of the volume overlap while the Hausdorff 

distance measures the maximum distance between the two segmentations and is especially 

useful for evaluating local deviations which do not take up much volume. The Dice overlap 

coefficient in percentage was defined as

(3)

and the Jaccard Index in percentage was defined as

(4)

where S is the segmented image and G is the ground truth image [42]. Both the Dice 

coefficient and Jaccard index were expressed as percentages. They range from 0% (no 

overlap) to 100% (perfect agreement). The Hausdorff distance was defined in a two stage 

manner using the following equations, where

is the maximum value of the minimum distance from all points in S to G,

is the maximum value of the minimum distance from all points in G to S, and
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(5)

is the Hausdorff distance which is the maximum of HSG and HGS [2].

2.4. MRI datasets

The training set of exams from healthy participants was used for optimizing the parameters, 

evaluating the parameter sensitivity, developing the 3D Slicer module, and evaluating the 

initial seed location sensitivity. The evaluation set was manually segmented by two 

independent expert observers using the manual delineation tools in the ITK-SNAP [47] 

software and compared with segmentations from the same images generated via the 

proposed method. The training set was manually segmented by a different expert observer 

also using ITK-SNAP for manual delineation.

3. Results

3.1. Parameter Optimization

The DE optimization approach was used with the proposed method to optimize the various 

parameters on the training images, see Figure 7. The convergence is rather noisy due to its 

stochastic approach for selecting the parameter values in the next iteration, but eventually 

suitable parameter values were found with a maximum Dice overlap of 96% on the training 

dataset. The resulting values found for each parameter were 550 maximum iterations, 

curvature scale of 1.10, propagation scale of 3.90, and RMS error of 0.003. These were 

made the default values (Figure 6) for our method.

3.2. Parameter Sensitivity

The RMS error parameter did not significantly affect the Dice overlap for the training 

images for values between 0 and around 0.015, see Figure 8. Values larger than this caused a 

decrease in the accuracy of the segmentation result likely due to failure of the level set to 

converge. The initial maximum iteration number did not affect the Dice overlap for any 

values over 200 which is likely due to the leakage check of the method which uses 

anatomical knowledge to determine convergence. When convergence is estimated to not 

have been achieved, the maximum iteration number is automatically increased. The 

propagation scale was required to be between 3.9 and 4.6 for a good segmentation result. 

Values outside of this range caused the level set to either not grow at all, i.e. values less than 

3.5, or grow past the boundaries into the background, i.e. values larger than 5, which led 

eventually to a Dice overlap of close to 0. Lastly, the curvature scale was only mildly 

sensitive for values less than 1.2 while the level set failed to grow for values larger than 1.2.

3.3. Comparison with Manual Segmentations

Our results are from the evaluation dataset of 112 carpal bones. First, the proposed method 

was compared to expert manual delineation. Next, observer 1 was compared with observer 2 

to quantify normal variance in manual segmentation definition. Please see Table 2 for the 

measures by carpal bone for the healthy participants and Table 3 for the measures by carpal 
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bone for the OA participants. In general, the proposed method provided smoother 

segmentations than the individual observers (Figure 9), which may be important for bone 

shape analysis [3, 19]. Please see Figure 10 which shows segmentation examples from the 

proposed method on a less noisy and noisy MRI scans.

3.4. Seed Location Sensitivity

Overall, we found a Dice overlap of 92.9 ± 6.0%, see the evaluation dataset results in Table 

4 which suggests that picking random seeds within the bones will overlap by 92.9%. The 

capitate had the highest agreement between the various seed locations while the trapezium 

had a marginally lower agreement. Choosing an appropriate seed location is more important 

for some bones, such as the trapezium and hamate, while being less important for others 

such as the capitate and pisiform.

3.5. Computation Time

While conducting the seed sensitivity test for 2,400 segmentations, the computation time for 

each segmentation was noted on an 8 core, i7 CPU, 3.50 GHz, 64-bit, and 32 GB RAM 

computer running Windows 7. When running the method in its serial mode, the mean time 

for segmenting one carpal bone was 20.8 ± 8.3 seconds. When running the method in its 

parallelized format, the time was reduced to 5.1 ± 3.2 seconds per bone, i.e. 40.8 seconds for 

all eight carpal bones in one MRI exam. The time reduction was less than 20.8/8 seconds for 

the 8 logical cores likely due to the overhead of running it in parallel or not enough RAM 

memory, but the computational time improvement was on average a factor of 4.1 times faster 

then in serial mode. In comparison, the expert observers reported spending an average of 4 

hours per MRI to manually segment the eight carpal bones due to the anatomical complexity 

and high number of slices (mean of 170 slices per evaluation MRI scan).

4. Discussion

Precise carpal bone segmentations can be utilized for applications, such as biomechanical 

modeling [32], quantifying sex-based differences (a possible predisposition for OA) [3, 14, 

17, 19], skeletal maturity and development models [11, 48], bone erosion quantification in 

rheumatoid arthritis [7, 19], and quantification of treatment effects on wrist joints. 

Segmentations from volumetric images during active motion, e.g. radio-ulnar deviation, are 

needed to compute the wrist kinematics which is crucial for better understanding 

scapholunate advanced collapse [15, 22], and sex-based motion differences [21]. In this 

approach, MRIs of the wrist in multiple static orientations would be acquired and the bone 

surfaces derived from each image. A small study may image both wrists of 20 volunteers at 

5 static positions per wrist, i.e. 200 MR images. Manual segmentation of these 200 high-

resolution MRI volumes would be impractical and could take months. This problem worsens 

with larger sample sizes such as MRIs of 50 volunteers. The proposed method utilizes 

properties of level sets, such as their high computational speed and robustness to missing 

edges, to fill in the gap of a lack of an accurate and fast segmentation tool for the carpal 

bones, and provides an efficient solution.
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Surface models may also be potentially beneficial in the development of medical devices 

such as artificial bone implants in individuals with severely diseased thumb basilar OA joints 

for which there is still no satisfactory replacement for advanced OA [28] and for surgical 

planning based on a particular patient’s wrist type (row vs. column) or bone morphology to 

better reconstruct their normal biomechanics post-surgery [5].

Prior work on carpal bone segmentation has focused extensively on wrist images acquired 

from CT [1, 4, 8, 37]. Anas et al. [1] and Chen et al. [4] describe methods to segment the 

carpal bones based on a registration procedure to estimate the pose of the wrist by 

determining the orientation of the hand relative to the forearm. Anas et al. reported an 

average Jaccard index of 86% [1] while Chen et al. reported an average Jaccard index of 

87% for the eight carpal bones [4]. This is very similar to the mean Jaccard index of 87% 

found in our paper. However, despite automation, other techniques had long computational 

times and steps which would not directly translate to MRI carpal bone segmentation, such as 

use of a segmentation initiation via thresholding. From an image segmentation standpoint, 

CT has several obvious advantages that simplify the delineation task, including standardized 

Hounsfield units for bones and tissues, a high spatial resolution, and a high speed of image 

acquisition (helpful in reducing motion artifacts) [23, 40, 34]. MRI on the other hand has 

superior contrast resolution for evaluation of wrist injuries and other conditions, therefore is 

the most commonly used imaging modality for that purpose, and does not involve ionizing 

radiation. However it suffers from motion (due to longer acquisition times), bias field, non-

standardized image values, and partial voluming [44]. A recent method by Włodarczyk et al. 

[46], an expansion on their earlier work [45], first found seed locations using the multi-Otsu 

thresholding algorithm on a user defined region of interest of the carpal bone area. These 

marker locations were then applied to a watershed algorithm for the final segmentation with 

a Dice overlap co-efficient of 89 ± 12% for the carpal bones. Parameter selection sensitivity 

however was not justified or evaluated across MRIs of different resolutions or different noise 

characteristics. Kock et al. [20] proposed an approach in which bounding boxes were 

automatically found around each carpal bone followed by thresholding each box using a 

Gaussian mixture algorithm with a mean point-to-mesh error of 0.48 mm. There has also 

been work on using statistical shape models [36] and meshes [10], but the initialization 

accuracy remained a challenge and negatively affected the final segmentation and 

computational time.

The use of WRIST to quantify wrist pathologies may enhance epidemiological studies of 

wrist diseases, thus contributing to improved diagnostics and accelerated identification of 

optimal treatment plans. For a computational tool which achieves this goal to be broadly 

relevant and useful, it needs to be computationally efficient while also having a high mean 

Dice overlap coefficient as compared with expert manual segmentations. One of our goals 

was to accelerate the delineation of the segmentation process. Our method took 20.8 seconds 

per bone in serial mode and 5.1 seconds per bone in parallel mode. Expert observers 

reported spending 4 hours per MRI scan to manually segment the eight carpal bones. In 

comparison, other reported computational times for the MRI based carpal bone 

segmentation methods include 6.17 minutes [20], <9 minutes [46], and others simply 

reported as <30 minutes [10, 29, 45]. The methods from CT had computational times also 

quite long with <20 minutes [1] and <40 minutes [8].
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The computational time was an important aspect while designing the proposed method 

which led to choosing a semiautomated approach for identifying the bones in the image over 

a fully automated one. Unfortunately, the high computational cost and low accuracy of the 

recognition step of the bone segmentation within the volumetric CT or MRI exam is 

currently a limiting factor for automated methods in the clinical environment. It takes a high 

performance workstation 20+ minutes to attempt to identify the 8 carpal bones [1, 10, 45, 

29] while a human observer could do the same task in several seconds with a single click on 

each bone. Conversely, finding the exact boundaries (the delineation step) is very time 

consuming for a human observer, but a computer can do this much faster. We took the best 

approach of both steps to have the human observer click once per bone and then have the 

computer find the exact boundaries of the bones (using our level set-based approach), 

growing from the user click within each bone. For many clinical tasks, the tradeoff between 

semi-automated and much faster computational speed could be justified over a slower but 

automated tool. The proposed method can also easily be extended by finding the seeds 

locations in an automated way, such as by using an anatomical atlas, if this can be done in a 

computationally efficient manner. The marginal variance in computational times of our 

method is likely due to the iterative nature of the proposed method convergence. If the initial 

iteration number is sufficient, only one cycle needs to be done otherwise the method would 

have to segment several times resulting in a longer computational time.

Our proposed tool could be used to help construct a statistical shape model of the carpus. 

While providing initial seed locations for carpal bones is a fairly quick process for users 

familiar with WRIST evaluating limited numbers of MR images, we acknowledge that this 

process can become time consuming for greater image quantities, e.g. 100 scans. We aim to 

address the initial seed location selection by assessing the utility of atlases for providing the 

initial seed.

There were several limitations of the study which should be noted. First, two of the MR 

images of the participants with OA had motion artifacts, especially affecting the trapezium 

and trapezoid. The segmentation accuracy was lower in these images compared to the other 

images. Motion artifacts continue to be a challenge for carpal bone segmentation. Secondly, 

the shape detection level set is fairly robust to small missing boundaries, but leakage into the 

background did occur when there were large missing boundaries or substantial partial 

voluming at the interface of tendon and bone. The anatomical prior information on carpal 

bone dimensions did help with the leakage by automatically adjusting the level set iteration 

number, but additional prior knowledge on mean shape and variation could increase the 

robustness of the method. Lastly, other open source methods such as Seg3D are available, 

and we will do a segmentation comparison in future work [38].

5. Conclusion

In this work we created an open source computational toolkit, WRIST, for the segmentation 

of the carpal bones from wrist MR images and integrated it into the 3D Slicer platform. The 

tool achieved good agreement with two expert observers and generated the segmentations in 

significantly less time than other methods in the literature. Our proposed method was 

demonstrated to be quite robust to both the parameter selection and the initial seed location 
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such that the user could use this tool to obtain fairly accurate segmentations. WRIST may 

assist musculoskeletal researchers for in vivo analysis of wrist morphology, kinematics, and 

biomechanics.
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Highlights (for review)

• A computational toolkit for fast carpal bone segmentation from MRI was 

created

• Method incorporated anatomical knowledge and shape-detection level sets

• Achieved shorter computational time and higher agreement with 2 expert 

observers
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Figure 1. 
Wrist MRI (from our work). (A) Coronal section with the carpal bones in the dashed yellow 

box. (B) Zoomed image of the carpal bones. (C) Labeled rendered surfaces of the eight 

carpal bones.
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Figure 2. 
Flowchart of the proposed method. Inputs, e.g. MRI scans, and manually selected 

parameters, are given in the solid lined boxes while the processing and segmentation steps 

are given in dashed boxes.
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Figure 3. 
Examples of the challenges for carpal bone segmentation from MRI. (A–B) Missing 

boundaries between the trapezoid and the second metacarpal bones, due to partial volume, 

are not uncommon. (C–D) Tendons and bones (in this case the trapezium) may map to 

similar intensity values and contours estimated from region growing-based methods may 

leak into the background. Noise is seen in the images such as in a relatively lower noise 

image (E) or high noise image such as (F) which makes finding the boundaries difficult.
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Figure 4. 
Example of the segmentation steps. (A) Original MRI exam of the hand and wrist. (B) The 

user selects an initial seed location on the hamate bone (yellow dot) and a search space is 

automatically determined (yellow dashed box). (C) Image is cropped to include only the 

search space. (D) Anisotropic diffusion filtering is applied to reduce noise. (E) An edge 

potential map is created using the found sigmoid parameter, and the shape detection level set 

grows from the seed point on this image. (F) A bounding box is created around the 

segmentation to estimate the convergence using anatomical prior knowledge. (G) The 

segmentation (white area) is then placed back into the coordinate system of the original MRI 

scan.
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Figure 5. 
The sigmoid filter upper threshold parameter was selected based on fitting a curve between 

manually selected parameters against the mean image intensity plus the standard deviation 

(STD) of the image.
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Figure 6. 
Layout of the 3D Slicer WRIST module with one of the training MR images shown with an 

initial seed location on the capitate. The table on the left is used to select the bone(s) of 

interest and the order of seed locations. The optimized parameter values are the default 

parameters of the module.
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Figure 7. 
Optimization of the segmentation parameters using the DE optimization approach is plotted. 

The Dice overlap coefficient of the training dataset was the objective function used, and is 

plotted against the iteration number. The blue line represents the cumulative maximum Dice 

coefficient found so far with a maximum Dice overlap of 96%. These parameters were then 

used on the training and evaluation dataset.
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Figure 8. 
Sensitivity of the Dice overlap coefficient to a range of parameters values. Parameters 

included the RMS error, initial maximum iterations, level set propagation scale, and the level 

set curvature scale.
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Figure 9. 
Example renderings of the eight carpal bones from WRIST, observer 1, and observer 2. Note 

that WRIST gives a smoother surface as compared with the manual segmentations which is 

important for shape analysis and may be more reproducible over manual segmentations. 

Arrows point to segmentation artifacts on the rendered surfaces by non-smooth manual 

segmentations.
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Figure 10. 
Segmentation example of a lower noise/higher resolution MRI (A–C) and a higher noise/

lower resolution MRI (D–F). Note the shape detection level set correctly found the 

separation between the trapezoid (“T”) and capitate (“C”) despite the missing boundary 

between them (white arrow).
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Table 1

MRI Voxel Dimensions

Training Set Evaluation Set Resolution

2 6 0.24 × 0.24 × 0.29 mm

4 5 0.47 × 0.47 × 0.50 mm

0 3 0.47 × 0.47 × 1.00 mm
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