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Geographical range size and latitude
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While genetic diversity within species is influenced by both geographical

distance and environmental gradients, it is unclear what other factors are

likely to promote population genetic structure. Using a machine learning

framework and georeferenced DNA sequences from more than 8000 species,

we demonstrate that geographical attributes of the species range, including

total size, latitude and elevation, are the most important predictors of which

species are likely to contain structured genetic variation. While latitude is

well known as an important predictor of biodiversity, our work suggests

that it also plays a key role in shaping diversity within species.
1. Background
Intraspecific genetic variation is a key component of evolution. Population gen-

etic theory predicts that the physical separation of individuals limits the

exchange of alleles, producing genetic variation that is geographically struc-

tured [1]. Within a species, genetic distance should be positively correlated

with geographical distance under an isolation-by-distance (IBD) model, and

might enable local adaptation along environmental gradients [2]. For example,

a meta-analysis of 70 studies by [3], found that isolation-by-environment (IBE)

plays a strong role in structuring populations. Whether correlated with

geographical or environmental distance, genetic structure has been detected

in a variety of species with vastly different distribution patterns [4–6].

While thousands of phylogeographic investigations have been published

[7], the discipline has not addressed questions on the broadest scales. Several

meta-analyses have examined IBD, IBE or both [3,8,9], and while informative,

are limited in scope due to the nature of meta-analyses and often contain con-

flicting results [3,9,10], which stem from differences in study design, search

criteria and publication bias [8] that are difficult to circumvent. Rather than

attempt such a meta-analysis, we repurpose existing georeferenced genetic

data from online repositories: GenBank and Global Biodiversity Information

Facility (GBIF). Because the collection of these data was motivated by a variety

of reasons, repurposing enabled us to assess IBD and IBE in an unbiased

manner on a larger scale. We compare both geographical and environmental

distance matrices to a matrix of genetic distance for over 8000 species and

apply a machine learning approach to identify intrinsic and extrinsic character-

istics that best explain variation in population genetic structure among species.
2. Material and methods
We downloaded all occurrence data from GBIF and identified records that included

GenBank accessions, retrieved these sequences from GenBank and conducted mul-

tiple sequence alignment on a gene-by-gene basis for each species. All statistical
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Figure 1. Global sampling. Collection localities from 561,534 georeferenced sequences. Colours correspond to the numbers of individuals sampled from that locality.

Table 1. The proportion of datasets significant for geography (Geo) and the environment (Env). p-value of a binomial test ( p ¼ 0.05) of whether the
proportion of significant datasets was greater than expected by chance.

Group n datasets prop.sig Geo. p-value Geo. prop.sig Env. p-value Env.

fungi 23 0.04 0.69 0.04 0.69

mosses 10 0 1 0 1

ferns 7 0 1 0 1

Gymnosperms 111 0.07 0.19 0.06 0.32

angiosperms 870 0.1 ,0.01 0.1 ,0.01

arthropods 6014 0.15 ,0.01 0.13 ,0.01

vertebrates 2577 0.29 ,0.01 0.21 ,0.01

Annelida 33 0.21 0 0.15 0.02

Cnidaria 6 0.5 0 0 1

Echinodermata 14 0.21 0.03 0.21 0.03

Mollusca 44 0.18 0.01 0.16 0.01

Nematoda 6 0.33 0.03 0.33 0.03

Platyhelminthes 15 0 1 0.2 0.04

total 9730 0.19 ,0.01 0.15 ,0.01

rsbl.royalsocietypublishing.org
Biol.Lett.14:20170566

2

analyses were conducted using R v. 3.2.3 [11]. See electronic sup-

plementary material for more details. The distribution of

georeferenced data was mapped by calculating the frequency

of localities associated with each GPS coordinate (figure 1; elec-

tronic supplementary material, table S1). We calculated genetic,

geographical and environmental distance matrices for each data-

set. In order to characterize the environmental conditions

experienced by each species, we followed [12]. Given that geogra-

phy and environment are often correlated, as we observe in our

data (mean r ¼ 0.77), we conducted a multiple matrix regression
with randomization (MMRR) [12] to examine the effects of two

different distance matrices (geographical (IBD) and environ-

mental (IBE)) on the response variable (genetic distance), while

controlling for the other matrix.

A data table was developed to identify the strongest predic-

tors of population genetic structure: habit (terrestrial, aquatic,

volant, parasitic), metabolism (ectotherm, endotherm, photo-

synthetic), gene type (nDNA, mtDNA, cpDNA), number of

individuals (n) in the dataset, total area of species’ range, mini-

mum distance from the equator, mid-point of latitude, the
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Figure 2. Predictor variables and the proportion of IBD by group. (Inset) Mean decrease in accuracy of predictor variables. Taxonomic rank and land cover variables
were averaged for clarity of presentation. (Outer) Proportion of species that exhibit significant population genetic structure (see scale on the lower portion of the
figure). Groups marked with an asterisk (*) are not monophyletic clades, but are grouped together due to small sample sizes and similarity of life-history traits.
(Online version in colour.)
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extent of latitude and elevation mean and standard deviation.

Taxonomy was included to assess the role that phylogenetic

relatedness plays in structuring populations, and served as a

proxy for organismal traits common to particular clades. Finally,

the proportion of GPS coordinates within each of the 23 land

cover classes described by the European Space Agency Glob-

Cover Portal [13] was included to evaluate environmentally

dependent organismal traits [14].

Random forest analysis was used to determine which of the

above variables were the most important predictors of IBD or IBE

[15,16]. This is a machine learning approach that uses multiple

decision trees (a forest) to predict the response based on many

potential predictor variables, and is designed to deal with large

correlated datasets. The importance of each variable is deter-

mined by measuring the mean decrease in accuracy (MDA) of

the prediction after the removal of each variable from the predic-

tive function. We categorized datasets as either being significant

for IBD or IBE ( p-value , 0.05), or not. We conducted a series of
random forest analyses with different cut-offs for n, and used

several downsampling schemes to assess biases in the data,

such as uneven response variables, and uneven geographical

sampling. Classification error rates were calculated to assess

the accuracy of the models.
3. Results
After filtering data that did not contain sufficient sample

sizes, we analysed 9730 datasets from 8955 species. A total

of 19% of the datasets were significant for IBD and 15%

were significant for IBE (table 1). In most taxonomic

groups, there were more datasets with population genetic

structure than expected by chance (p , 0.05) (table 1;

figure 2; electronic supplementary material, figure S1). Out

of the datasets that were significant for either IBD or IDE,



Table 2. Comparison of geographical range characteristics for species with and without IBD.

variable mean with IBD mean without IBD t-test p-value

area (km2) 6.24 � 106 3.50 � 106 1.93 � 1027

minimum distance from equator 29.6712 32.1637 7.12 � 10210

mid-point latitude of range 31.4947 34.1037 6.92 � 1028

length of latitude8 14.5924 10.4653 2.20 � 10216

mean elevation 113.9991 112.9753 0.4563

standard deviation elevation 63.5219 59.7870 3.92 � 1027
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57% were significant for both, 27% were significant for IBD

only, and 15% were significant for IBE only (electronic

supplementary material, figure S2).

The variable with the most predictive ability was sample

size (n; electronic supplementary material, table S4), which

is indicative of a bias introduced by low sample sizes. To

address this, we plotted a rarefaction curve to see where

the proportion of datasets that are significant for IBD levels

off as a function of sample size (electronic supplementary

material, figure S3). There was a large jump from n . 3 to

n . 10, and at n . 20 the proportion of datasets that are sig-

nificant levels off. We therefore repeated the analysis with

n . 10 and n . 20 (electronic supplementary material,

tables S5–S10 and S13–S14; n . 10 datasets ¼ 4,304). The

accuracy of the random forest model improved when the

response variable was even, and slightly improved when geo-

graphical sampling was even (electronic supplementary

material, tables S15–S17). The top predictor variables in all

analyses were related to the geographical range: latitude, area

and elevation (figure 2; electronic supplementary material,

tables S4–S14). This suggests that regardless of potential

sampling size and/or biases, the importance of the geo-

graphical variables in predicting IBD and IBE is a strong

signal in the data. Results were similar when using p , 0.01

as significant for IBD or IBE (electronic supplementary

material, tables S18–S19).

Whether the most important variables were significantly

different in species with or without IBD was examined

using t-tests (table 2). The mean size of the geographical

range of a species with IBD was almost twice that of a species

without population genetic structure, while the total latitudi-

nal length is 1.5� longer, and datasets with IBD were

significantly further from the equator for both mid-point lati-

tude and minimum distance. The standard deviation of

elevation for those with IBD was significantly larger than

those without, while the mean elevation was higher, but

not significantly different.
4. Discussion
There is a considerable amount of population genetic struc-

ture within species that can be explained by geographical

and environmental differences. Geographical distance had a

slightly stronger signal, although neither is substantially

more responsible for genetic structure across all taxonomic

groups (table 1; electronic supplementary material, figures

S2–S5). Our random forest analyses identified several predic-

tor variables related to the geographical range of species,

such as area and measurements related to latitude (figure 2;
electronic supplementary material, tables S4–S12), as impor-

tant in predicting population genetic structure, similar to

findings by [17]. These variables are likely important because

they are related to both organismal dispersal ability and

physiological adaptations to conditions in the abiotic

environment [18,19], and hold true even after controlling

for latitudinal sampling bias. Attributes of the geographical

range were significantly different in species with and without

IBD (table 2). As observed in other studies (e.g. [20]), IBD and

IBE are identified along elevation gradients. We suspect that

the reason why elevation mean is an important predictor in

the random forest, but not significantly different between

species with and without IBD, is because while important,

the elevation at which it influences IBD depends on geo-

graphical location. The complex relationship between these

variables should be considered in future studies.

While mapping genetic diversity on a global scale pro-

vides important information [21], identifying factors that

influence genetic diversity within species will improve our

ability to protect biodiversity [22]. This structure is important

as species adapt across their geographical ranges and their

life-history traits evolve in response to environmental press-

ures. Furthermore, we are likely underestimating global

genetic structure given limitations of available data. This sup-

position is supported by the difference in rate of IBD

estimated from the full dataset (approx. 15%) as opposed to

that estimated from species where more than 100 samples

are available (approx. 40%; electronic supplementary

material, figure S3). While our analyses suggest that we

have detected IBD and IBE in a greater number of species

than expected by chance (electronic supplementary material,

figure S1), it is very likely that we lack sufficient genetic data

for most species and thus are underestimating the proportion

of species that are structured by geography, the environment,

or both.

Geographical variation in intraspecific genetic structure

likely results from variation in speciation, migration and

extinction rates. Lower rates of speciation in temperate

regions of the world [23–25] might explain the difference in

IBD due to latitude because as species remain intact, there

is more time for genetic differentiation to accumulate across

geographical space. We suspect that area is an important pre-

dictor of IBD and IBE due to both the intrinsic dispersal

ability of species and the larger amounts of landscape varia-

bility that are likely to be found in large ranges.

Our findings were made possible by repurposing existing

georeferenced genetic data that contain immense potential for

insight [7,26,27]. Unfortunately, most available sequence data

are not linked to geographical coordinates [28]. This disasso-

ciation of genetic and geographical accessions limits the
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utility of open source databases and must be addressed if bio-

diversity scientists are to leverage the information contained

within existing data to meet the challenges associated with

conservation of species on a global scale.
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