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The last large marsupial carnivores—the Tasmanian devil (Sarcophilis harri-
sii) and thylacine (Thylacinus cynocephalus)—went extinct on mainland

Australia during the mid-Holocene. Based on the youngest fossil dates

(approx. 3500 years before present, BP), these extinctions are often con-

sidered synchronous and driven by a common cause. However, many

published devil dates have recently been rejected as unreliable, shifting

the youngest mainland fossil age to 25 500 years BP and challenging the syn-

chronous-extinction hypothesis. Here we provide 24 and 20 new ages for

devils and thylacines, respectively, and collate existing, reliable radiocarbon

dates by quality-filtering available records. We use this new dataset to

estimate an extinction time for both species by applying the Gaussian-

resampled, inverse-weighted McInerney (GRIWM) method. Our new data

and analysis definitively support the synchronous-extinction hypothesis,

estimating that the mainland devil and thylacine extinctions occurred

between 3179 and 3227 years BP.
1. Background
During the Late Pleistocene, Tasmanian devils (Sarcophilus harrisii) and thyla-

cines (Tasmanian tiger or wolf, Thylacinus cynocephalus) were widespread

over the Australian continent [1,2]. Both species subsequently became extinct

on mainland Australia, only surviving into historical times on the island of Tas-

mania. The thylacine was hunted to extinction after European arrival [3], while

devils have suffered declines of more than 80% in less than 20 years, largely due

to a transmissible cancer [4]. Based on the youngest dated fossils available, both

species are assumed to have become extinct on mainland Australia during the

mid-Holocene (approx. 3500 years before present, BP) [5].

The cause of these extinctions is the subject of debate, with introduced din-

goes, human intensification and climate change being the three main

competing, but not necessarily mutually exclusive, hypotheses [3]. Debate

around extinction drivers has almost always assumed that both extinctions

were roughly synchronous and therefore, potentially attributable to a

common cause (or set of causes). However, the reliability of many fossil ages

for devils across Australia has recently been questioned [6], shifting the main-

land devil’s youngest reliable fossil age back to 25 500 years BP and

challenging the synchronous-extinction hypothesis.
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Figure 1. Time series of new and previously published ages of Tasmanian
devil (genus Sarcophilus: blue) and thylacine (genus Thylacinus: red) fossils
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The youngest fossil age of an extinct taxon is nearly

always an inaccurate proxy for the final extinction date.

These two dates will inevitably diverge due to incomplete

sampling, taphonomic bias and uncertainty in radiometric

dating [7,8]. Many statistical models have been developed

to estimate extinction time (and the associated uncertainty)

using the time series of fossil ages, but their accuracy varies

with the mode of extinction and sampling density over

time [5].

To address these issues, we combined 44 new, high-

quality ages for mainland devils and thylacines with existing

data that met stringent quality requirements. We applied the

Gaussian-resampled, inverse-weighted McInerney (GRIWM

[9]) method, which incorporates both sampling density and

dating errors to calculate the confidence bounds of the

mainland extinction dates for both species.
from mainland Australia, showing the temporal sequence of fossils from
youngest to oldest ( y-axis) against logarithmic ages +1 s.d. (x-axis).
Ages that passed quality filtering and were used to estimate extinction
time are shown in dark colours, while ages that did not pass quality filtering
are shown in light colours. Vertical bars represent the estimated extinction
time for each species (devils: blue/solid, thylacines: red/dashed) as produced
using the GRIWM approach.
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2. Material and methods
We collected less than 1 g of bone or tooth from previously

undated thylacine (n ¼ 20) and devil (n ¼ 24) fossils from

southern mainland Australia (electronic supplementary material,

figure S1 and table S1) in existing museum palaeontology and

mammal collections. Samples were pre-treated using ultrafiltra-

tion [10] and the collagen fraction radiocarbon-dated at the

Australian National University, the University of Waikato or

the Oxford Radiocarbon Accelerator Unit. We added these new

ages to 129 existing mainland devil and 104 mainland thylacine

museum records extracted from the FosSahul database (doi:10.

4227/05/564E6209C4FE8) [11]. We removed all unreliable ages

using a set of objective criteria based on the reliability of the

dating procedure used, followed by an evaluation of the confi-

dence in the stratigraphic relationship of the dated material to

the target taxon (for full details, see [6]). We calibrated all

dates to calendar years (BP) using the Southern Hemisphere Cali-

bration curve (ShCal13) from the OxCal radiocarbon calibration

tool v. 4.2 (https://c14.arch.ox.ac.uk). As there is uncertainty

about whether Sarcophilus laniarius was a separate, co-occurring

species to Sarcophilus harrisii, or the same lineage that experi-

enced dwarfism during the Pleistocene [12], we repeated our

analyses excluding S. laniarius ages.

To estimate the mainland extinction date for these species, we

followed a general guide (model-selection key in Saltré et al. [5])

for choosing the most appropriate model among the five most

commonly used frequentist approaches (i.e. Solow’s [7],

Marshall’s [13], McCarthy’s [14], McInerny’s [15] and GRIWM

[9]) for a given series of dated fossils. Identifying the appropriate-

ness of the models depends largely on how they treat both the

probability of record occurrence and the uncertainties in record

dates. GRIWM was the most appropriate method as a function

of the statistical characteristics of the dataset [5] (see full analysis

in electronic supplementary information and table S2). In

addition to GRIWM [9], and following the same approach as

Lima-Ribeiro & Diniz-Filho [16], we used the four other, well-

evaluated methods regardless of the nature of sampling effort

over time [17]. As these methods make different assumptions

about the type of extinction (e.g. sudden versus gradual), they

estimate a complete range of potential true extinction dates

(see both full description and results of these approaches in the

electronic supplementary material).
3. Results and discussion
The 44 new radiocarbon ages for mainland devils and thyla-

cines (electronic supplementary material, table S1) include
the youngest, reliably dated samples for each species (devil:

3245+62 years BP and thylacine: 3290+ 49 years BP). All

our new ages passed quality filtering, but only 31 of the

129 previous devil (24.0%) and 27 of 104 thylacine (26.0%)

ages in the FosSahul database [11] met the minimum

reliability criteria (A*- or A-rated only) [11]. Adding these

records to the new dates produced final, high-quality datasets

of 56 devil and 48 thylacine ages (figure 1). Excluding

S. laniarius from the devil dataset left 45 reliable ages.

The continent-wide GRIWM approach produced main-

land extinction estimates (Text) of 3179 years BP (95% CI:

3131–3224) for devils, and 3227 years BP (CI: 3170–3281)

for thylacines (figure 1). Removing S. laniarius barely modi-

fied the estimate for devils (DText ¼ 6 years). These results

are supported by the outputs of the other statistical methods

(electronic supplementary material, table S3). Our youngest

reliable age for mainland devils contrasts the most recent esti-

mate based on high-quality ages at 25 500 years BP [6]. As

such, the addition of 24 new dates changes the reliable per-

sistence timeline for this species by approximately 22 000

years.

Younger dates assessed by Rodrı́guez-Rey et al. [6] were

mostly rejected based on inappropriate pre-treatment proto-

cols and/or unsuitable materials used, highlighting the

importance of choice in dating method. For example, all

ages of bone and dentin collagen processed using ultrafiltra-

tion, ninhydrin or XAD-2 protocols or ages on individual

amino acids are considered highly reliable, whereas decalci-

fied bone or tooth dated with no information about

collagen presence or those presenting collagen purification

issues were discarded (see the detailed application of

dating criteria for radiocarbon ages of vertebrate fossils in

electronic supplementary material, table S4). Regarding

ages of fossils that were not dated directly, but based on

association, the strength of this association (i.e. the strati-

graphic relationship between the fossil of a target species

and the dated remains) was tested. Dates with no strati-

graphic control or any lack of stratigraphic integrity that
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affects the depositional context of the target species led to

rejection of that date (for more detail, see [6]).

Our results constrain the reliable dates of mainland devil

and thylacine extinction to within a short (less than 50 years)

period, between 3179 and 3227 years BP, which is consistent

with a scenario of synchronous extinction. Synchronous

extinctions have been proposed on other continents and at

different time points as evidence for large-scale, common

extinction drivers [18–20]. For example, analysis of the

extinction chronology in North America’s Pleistocene mam-

mals suggested that a single event wiped out up to 35

genera across the continent over a 2000-year period [21].

Extending this concept to derive the most likely cause of

extinctions, Cooper et al. [19] examined multiple waves of

synchronous extinctions and biotic transitions across the

Holarctic and found them coincident with climate warming

events that likely exacerbated declines arising from human

hunting. Conversely, the concurrent extinction of Australian

megafauna during the Pleistocene seems to be independent

of continental-scale climate change, potentially indicating a

dominant human role [18,22].

Under the assumption that the mainland devil and thyla-

cine extinctions were coincident, several studies have

explored possible causes. For example, as the dingo arrived

in Australia approximately 4000 years BP and never reached

Tasmania, dingoes have been suspected of driving the main-

land extinctions of devils and thylacines [23]. Johnson &

Wroe [24] suggested that human innovation in hunting tech-

nology and more intensive use of resources could also have

led to the mainland extinctions. Prowse et al. [3] used a mod-

elling approach to conclude that human intensification,

followed by climate change, were the most likley candidate

determinants.

Other studies have avoided the assumption of synchro-

nous extinctions by focusing on devils or thylacines

separately. Letnic et al. [25] used morphological analyses to

conclude that direct killing of thylacines by dingoes was bio-

logically feasible and could therefore have contributed to

their demise. Similarly, Brown [26] argued that climate
instability associated with the onset of El Niño–Southern

Oscillation (ENSO) events could have affected mainland

devils, but not thylacines.

Our estimated extinction window for mainland devils

and thylacines is similar to the assumed, but until now unva-

lidated, extinction time in most previous studies, and

therefore does not challenge any aforementioned arguments,

nor do our results exclude the possibility of separate or mul-

tiple causes of these extinctions. However, by supporting the

assumption of synchronous extinctions with reliably dated

fossil specimens, and taking into account the notion that

the youngest fossil age is an inaccurate proxy for the true

extinction time, our analyses provide a strong and defendable

basis on which further research can build. Our understanding

of these extinctions will become more complete as more

palaeoclimatic, palaeoecological and archaeological data are

used to uncover the biogeographic histories of these species.
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