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Persistent phenotypic changes due to early-life stressors are widely acknowl-

edged, but their relevance for wild, free-living animals is poorly understood.

We evaluated effects of two natural stressors experienced when young

(maltreatment by adults and nutritional stress) on stress physiology in

wild Nazca boobies (Sula granti) 6–8 years later, an exceptionally long inter-

val for such studies. Maltreatment as a nestling, but not nutritional stress,

was associated years later with depressed baseline corticosterone in females

and elevated stress-induced corticosterone concentration [CORT] in males.

These results provide rare evidence of long-term hormonal effects of natural

early-life stress, which may be adaptive mechanisms for dealing with future

stressors.
1. Introduction
Early-life stress during critical periods of development can have important and

persistent ‘programming effects’ on the neural and endocrine systems [1], often

through the actions of glucocorticoid hormones released by the hypothalamic–

pituitary–adrenal (HPA) axis [1]. Captive animal and human studies generally

suggest that early-life stress programmes a hyperactive response, depending on

the timing/type of stressor [1,2]. However, the persistence of stress-induced

programming effects for wild species remains largely unknown. Some degree

of persistence is required for either adaptive (e.g. forecasting future environ-

ment) or non-adaptive explanations (e.g. based on constraint) of observed

programming effects [3]. While captive animal studies have revealed stress-

induced programming effects in controlled environments, the few long-term

studies conducted in the wild have produced mixed results [4].

A seabird, the Nazca booby (Sula granti), offers a promising system to evaluate

persistence of programming effects in the wild because their nestlings experience

early-life stress in the form of maltreatment, which correlates with later-life mal-

treatment behaviour as adults [5]. Adult non-breeding Nazca boobies often

approach unguarded nestlings and engage in aggressive, sexual and ‘affiliative’

maltreatment ([6]; electronic supplementary material, Video S1). Typical maltreat-

ment episodes involve one non-parental adult visitor (NAV) ([6]; electronic

supplementary material, figure S1). Most (84%) nestlings are victims of at least

one NAV event [6], during which nestling corticosterone concentration [CORT]

is upregulated approximately fivefold, remaining elevated for up to 23 h [7].

Nazca booby nestlings also vary substantially in growth rate due to nutri-

tional stress, typical of single-chick pelagic seabirds [8]. Low food intake slows

growth, maintains lower mass throughout the nestling period [8] and is a

strong negative predictor of juvenile survival in Nazca boobies [9]. Nutritional

stress raises circulating glucocorticoids in most vertebrates and other seabirds

[10,11], thus providing opportunity for programming effects to occur.

Here, we ask whether natural early-life stress is correlated with long-term

changes in circulating glucocorticoids in free-living Nazca boobies into adulthood
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Table 1. b-coefficients, associated 95% confidence intervals (95% CI), t-values and p-values of variables in the top model predicting [CORT] over a 40-min
period (marginal r2 ¼ 0.81, n ¼ 329, 87 individuals). ‘� ’ indicates an interaction.

predictor b +++++95% CI t-value p-value

time series 2.748 0.211 25.467 ,0.001

(time series)2 20.405 0.042 218.910 ,0.001

scaled mass index 20.177 0.123 22.829 0.006

RDST 0.832 0.604 2.701 0.009

NAV victimization 20.124 0.156 21.562 0.122

sex (female) 20.260 0.262 21.939 0.056

sampling date 0.079 0.075 2.064 0.042

scaled mass index � time series 0.063 0.042 2.902 0.004

RDST � time series 20.261 0.207 22.467 0.014

sex � time series 0.061 0.087 1.380 0.169

NAV victimization � sex 20.409 0.279 22.872 0.005

NAV victimization � time series 0.064 0.050 2.484 0.014

NAV victimization � RDST 21.370 0.730 23.680 ,0.001

NAV victimization � time series � sex 0.071 0.091 1.533 0.127

NAV victimization � RDST � time series 0.426 0.247 3.381 0.001
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(6–8 years), a duration of life experience rarely examined in this

context [4]. We monitored nestling exposure to two early-life

stressors: maltreatment (NAV victimization) and nutritional

stress (growth rate). Years later, we located these individuals

to measure the CORT stress response and evaluate the relative

and combined explanatory ability of these stressors.
2. Material and methods
Nazca boobies tolerate human proximity on Isla Española,

Galápagos (1.398 S, 89.628 W) [8]. Adults (life expectancy

14 years; [12]) were identified by numbered metal leg bands.

Age at which only 1% of downy plumage remains (a proxy for

growth period; [8]) and NAV interactions were recorded for all

nestlings during three breeding seasons (2001–2003; [5]). Nests

were patrolled by one to two observers from 13.00 to 17.00 h,

when the majority of NAV interactions occur [6], from January to

March, when nestlings are at ages attractive to NAVs [6]. NAV

interactions were observed easily in the open colony (electronic

supplementary material, video S1).

In March 2009, we conducted standardized capture–

restraint tests [13] on 87 of these birds as adults (6–8 years old;

median ¼ 6). We obtained blood within 3 min of initial disturb-

ance (1 ml), then at 10, 25 and 40 min post-capture (400 ml),

between 02.30 and 06.00 h, when circulating [CORT] is least

affected by external stimuli [14]. Mass and ulna length were

measured at the end of the test. Total [CORT] was measured

by quantitative competitive enzyme immunoassay (see electronic

supplementary material, S1 for additional methods).

We evaluated [CORT] via linear mixed modelling with a

continuous autoregressive covariance structure and a random

intercept for each bird ID in R v. 3.3.1 (package ‘nlme’; [15]).

Growth rate was calculated as days from hatching to 1%

down plumage, and NAV victimization was the total count of

NAV events experienced during the observation period.

time between disturbance and the first blood sample

(disturbance–sample time) was strongly correlated with NAV vic-

timization (r ¼ 20.34, p , 0.001); thus, we used the residuals of

disturbance–sample time regressed on NAV victimization
thereafter (residuals disturbance–sample time, RDST). [CORT]

was natural-log-transformed to correct minor deviations from nor-

mality. NAV victimization, growth rate, and sampling date were

z-scored. The global model included the predictors NAV victimiza-

tion, growth rate, sex, scaled mass index (Mi, a measure of body

condition; [16]), sampling date, start time (24 h time at initial

sample), RDST, time series (one to four; sequence of samples)

and (time Series)2. Second- and third-order interactions were

allowed, except those involving sampling date and (time series)2.

Models were evaluated by Akaike’s Information Criterion (AICc)

model comparison (R package ‘MuMIn’; [17]).
3. Results
Time series, sex and RDST moderated the effect of NAV

victimization on [CORT] (the interaction between sex, time

series, and NAV victimization was included in our top model

by AICc selection). [CORT] decreased with NAV

victimization early in tests (table 1; electronic supplementary

material, S2), especially for females (figure 1a). However,

40 min after capture, this effect reversed, such that stress-

induced [CORT] increased with NAV victimization, especially

for males (figure 1d). Females had lower [CORT] than males at

all time points (figure 1). [CORT] decreased with scaled

mass index initially, and this effect reversed across time

series (figure 2). RDST had a slight moderating effect on the

relationship between NAV victimization and [CORT]

(electronic supplementary material, S2). Growth rate was not

in the top model, although it was within 4 AICc from the top

model. Age did not predict [CORT] (DAICc ¼ 10.09) (see

electronic supplementary material, S2 for model rankings,

model-averaged coefficients and [CORT] time courses).
4. Discussion
Wild Nazca boobies exhibited sex-specific correlations between

adult [CORT] and post-natal stress exposure, providing rare
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Figure 1. Sex-specific relationship between NAV victimization and [CORT] (n ¼ 57 males, 30 females) at (a) 0 – 3, (b) 10, (c) 25 and (d ) 40 min post-disturbance.
Dots represent individuals, solid lines are regression lines and dotted lines are 95% confidence intervals. Removal of the male with the highest NAV events
experienced did not change our results.
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Figure 2. Relationship between Scaled Mass Index and [CORT] (n ¼ 87) at (a) 0 – 3, (b) 10, (c) 25 and (d ) 40 min post-disturbance. Dots represent individuals,
solid lines are regression lines and dotted lines are 95% confidence intervals.
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evidence of long-term hormonal effects of natural early-life

stress in a free-living vertebrate. Maltreatment experience was

correlated with depressed baseline [CORT] (especially for

females) and elevated stress-induced [CORT] (especially for

males), with females exhibiting lower [CORT] than males.

The effect of early-life stress on later-life baseline [CORT] in

other vertebrates is highly variable, both between and within

species, and depends on timing and type of stressor [18,19].

However, our results regarding stress-induced [CORT] corre-

spond to an emerging, but not universal, vertebrate trend of

HPA-axis hypersensitivity following post-natal stress [18,19].
Sex-dependence of these long-term effects is also observed

(e.g. [20]) and suggests interaction between the HPA and hypo-

thalamic–pituitary–gonadal (HPG) axes. Effects of [CORT]

dynamics on fitness depend on ecological, social and individual

conditions [19,21], and further research would determine if our

observed correlations are adaptive in this species.

Growth rate by itself or interacting with maltreatment was

not strongly correlated with [CORT] dynamics. However, we

did find correlations between current body condition and

[CORT] in adulthood, suggesting that current nutritional stress

affects the Nazca booby stress response more strongly than
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early-life nutritional stress. Boobies with low body condition

had increased baseline [CORT], corresponding to findings

for other seabirds during nutritional stress [22]. We also detec-

ted a positive relationship between body condition and

stress-induced [CORT], perhaps due to energetic constraints of

mounting a [CORT] stress response.

Our findings regarding early-life nutritional stress contrast

with results from other altricial birds [19], but not precocial

Japanese quail (Coturnix japonica) [23]. In most altricial species,

perinatal food deprivation is associated with sibling compe-

tition, whereas brood reduction to one nestling occurs before

food is limiting in obligately siblicidal Nazca boobies [24].

Within this context, sibling competition (and involvement of

the HPG axis) may be the stronger cue for long-term HPA-

axis programming than early-life nutritional stress alone [25].

Alternatively, early-life nutritional stress may not be a stressor

capable of inducing organizational effects in boobies, or we

may be unable to detect effects due to reduced juvenile survival

following nutritional stress [9]. Regardless, our results indicate

that maltreatment affects adult CORT stress physiology more

strongly than early-life nutritional stress.

The unexpected strong negative correlation between NAV

victimization and time between disturbance and sampling

suggest that early-life maltreatment also affects behaviour, a
hypothesis supported by correlations between early-life mal-

treatment experience and later-life maltreatment behaviour in

this species [5]. Longer times to sample resulted from stronger

resistance to handling, which is highly repeatable in other

species [26,27]. Maltreatment thus appears to be correlated

with both hormonal and behavioural response to later-life

stress, although further research is needed.
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